2.1.3空间中直线与平面之间的位置关系

合集下载

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有

①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(

(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )

2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

探究( 探究(二):平面与平面之间的位置关系
思考1:拿出两本书,看作两个平面, 思考1:拿出两本书,看作两个平面,上 1:拿出两本书 左右移动和翻转, 下、左右移动和翻转,它们之间的位置 关系有几种变化? 关系有几种变化? 思考2:如图,围成长方体 思考2:如图, 2:如图 ABCD-A′B′C′D′的 ABCD-A′B′C′D′的 D′ 六个面, 六个面,两两之间 A′ 的位置关系有几种? 的位置关系有几种? D
课堂练习( ):过平面外一点可作多 课堂练习(一):过平面外一点可作多 少条直线与这个平面平行? 少条直线与这个平面平行?无数条 若直线l平行于平面α 则直线 与平面 若直线 平行于平面α,则直线l与平面 平行于平面 内的直线的位置关系如何? α内的直线的位置关系如何? 平行或异面
P
l
α
α
课堂练习( ):若两条平行直线中有 课堂练习(二):若两条平行直线中有 一条平行于一个平面, 一条平行于一个平面,那么另一条也平 行于这个平面吗? 行于这个平面吗?
课堂练习( ):已知平面α 课堂练习(三):已知平面α,β和直 已知平面 ,则直 线a,b,且α∥β,a ⊂ α , b ⊂ β,则直 与平面β的位置关系如何?直线a 线a与平面β的位置关系如何?直线a与 直线b的位置关系如何? 直线b的位置关系如何?
a α
b β
理论迁移
给出下列四个命题: 例1 给出下列四个命题: (1)若直线 上有无数个点不在平面α内,则 (1)若直线l上有无数个点不在平面α 若直线 上有无数个点不在平面 l∥α. (×) ∥α. (2)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (2)若直线 与平面α平行,则l与平面α内的 任意一条直线都平行. 任意一条直线都平行. (×) (3)如果两条平行直线中的一条与一个平面平 (3)如果两条平行直线中的一条与一个平面平 那么另一条也与这个平面平行. 行,那么另一条也与这个平面平行. (×) (4)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (4)若直线 与平面α平行,则l与平面α内的 任意一条直线都没有公共点. 任意一条直线都没有公共点. ( ) 其中正确命题的个数共有__ __个 其中正确命题的个数共有__个. 1

人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

2.1.3空间中直线与平面之间的位置关系教案教学目标:1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系。

2. 学会用图形语言、符号语言表示三种位置关系.教学重点:直线与平面的三种位置关系及其作用.教学难点:直线与平面的三种位置关系及其作用问题提出1. 空间点与直线,点与平面分别有哪几种位置关系?2. 空间两直线有哪几种位置关系?探究:直线与平面之间的位置关系思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系?思考2:如图,线段A ′B 所在直线与长方体ABCD-A ′B ′C ′D ′的六个面所在的平面各是什么位置关系?思考3:通过上面的观察和分析,直线与平面有三种位置关系有哪些?靠什么来划分呢?思考4:用图如何表示直线与平面的三种位置?如何用符号语言描述这三种位置关系?思考5:过平面外一点可作多少条直线与这个平面平行?若直线l 平行于平面α,则直线l 与平面α内的直线的位置关系如何?B A DCA' B'D' C'理论迁移例1 给出下列四个命题:(1)若直线l 上有无数个点不在平面α内,则l ∥α.(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.(3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(4)若直线l 在平面α内,且l 与平面β平行,则平面α与平面β平行.其中正确命题的个数共有 __个.随堂练习:判断正误1、若直线l 上有无数个点不在平面α内,则l ∥α( )2、若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行( )3、如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行( )4、如果平面外的两条平行直线中的一条直线与平面平行,那么另一条直线也与这个平面平行( )5、若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点( )巩固练习1.选择题(1)以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b其中正确命题的个数是 ( )(A )0个 (B )1个 (C )2个 (D )3个(2)已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有 ( )(A )2个 (B )3个 (C )4个 (D )5个(3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行 (B )相交 (C )平行或相交 (D )AB ⊂α(4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( )(A )与m ,n 都相交 (B )与m ,n 中至少一条相交(C )与m ,n 都不相交 (D )与m ,n 中一条相交(5)已知直线a 在平面α外,则 ( )(A )a ∥α (B )直线a 与平面α至少有一个公共点(C )a A α⋂= (D )直线a 与平面α至多有一个公共点课本49页练习课堂小结课外作业一、选择题: 1.下列命题中正确的是( )A .平行于同一个平面的两条直线平行B.垂直于同一条直线的两条直线平行C.若直线a与平面α内的无数条直线平行,则a∥αD.若一条直线平行于两个平面的交线,则这条直线至少平行于两个平面中的一个2.下列四个命题(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题是()A.(1),(3)B.(2),(4)C.(1),(3),(4)D.(2),(3),(4)3.已知平面α∥平面β,直线a∥α,直线b∥β那么,a与b的关系必定是()A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面二、填空题:4.已知直线a∥b,a、b 平面α,直线c与a异面,且b与c不相交,则c与α的位置关系是_______.5.给你四个命题:①过直线外一点,有且只有一条直线与该直线平行②过直线外一点,有且只有一个平面与该直线平行③过平面外一点,有且只有一条直线与该平面平行④过平面外一点,有无数多条直线与该平面平行其中真命题为_____________(写出序号即可)6.三个平面两两相交,有三条交线,则这三条交线的位置关系为_____________.自我评价:_______________________________________________________________________ _________________________________________________________________________________。

2.1.3 空间中直线与平面之间的位置关系

2.1.3 空间中直线与平面之间的位置关系
新宁一中数学备课组
2.如何用图形语言表示直线与平面的三种位置关系? α a ① α ② a A α ③ a
下面是不正确的画图方法:
a
α ①
a α ② α ③
新宁一中数学备课组
a
3.下图表示直线与平面的三种位置,如何用符号语 言描述这三种位置关系?
a a α α a
.
P
α
a
a P
a //
新宁一中数学备课组
探究
a , b , 已知平面α,β,直线a, b, 且α//β, 则直线a与平面β的位置关系如何? 直线a与直线b 具有怎样的位置关系?
D′ A′ D
B′ B
C′
C
A
新宁一中数学备课组
随堂练习 1. 如图,长方体ABCD-A1B1C1D1中,则: (1)与直线AB平行的平面有 平面A1C1 、平面DC1 (2)与直线AA1平行的平面有 平面BC1 、平面DC1 平面A1C1 (3)与平面AC平行的平面有 (4)与平面AB1相交的平面有 平面AC 、平面A1C1 平面AD1 、平面BC1 D1 C1 A1 B1 D C
B′ B
C′
C
A
新宁一中数学备课组
新知探究
1.平面与平面的位置关系有且只有两种:
① 两个平面平行——没有公共点;
② 两个平面相交——有一条公共直线 .
新宁一中数学备课组
2. 用图形语言和符号表示平面与平面的位置关系

β α

l
//

l
画两个互相平行的平面时,要注意使表示平 面的两个平行四边形的对应边平行.
A B
新宁一中数学备课组
; ; ; .
2.画出满足下列条件的图形 α ∩ β=l,AB α, CD β,AB ∥ l,CD ∥l .

直线与平面的关系

直线与平面的关系

直线与平面的关系直线和平面是几何学中的基本概念,它们之间的关系对于研究几何学以及应用数学都有着重要的意义。

本文将从不同角度介绍直线与平面之间的关系,并探讨它们在几何学中的应用。

一、直线在平面内的位置关系在平面内,直线与平面可以有三种不同的位置关系,即相交、平行和重合。

1. 相交:当一条直线与平面有且只有一个交点时,我们称该直线与平面相交。

2. 平行:当直线和平面没有交点时,我们称该直线与平面平行。

3. 重合:当直线完全位于平面上时,我们称该直线与平面重合。

二、直线与平面的交集与垂直关系当直线与平面相交时,交点处的直线与平面垂直。

这个垂直关系可以进一步扩展到直线与平面的斜截关系。

1. 隐含的垂直关系:当直线与平面相交时,我们可以隐含地认为直线在交点处与平面垂直。

2. 线面垂直关系的判断:我们可以利用向量知识来判断直线与平面之间是否垂直。

具体方法是计算直线上的向量与平面上的法向量的点积,如果点积为零,则表明直线与平面垂直。

三、直线与平面的应用1. 直线与平面的交点计算:在三维几何中,我们可以利用线面交点的坐标计算方法来求解直线与平面的交点。

这个方法基于向量和参数方程的知识,通过联立方程组计算出交点的坐标。

2. 直线与平面的垂直线判断:在空间解析几何中,我们经常需要判断一条直线是否垂直于一个给定的平面。

通过求解直线上的向量与平面上的法向量的点积,如果点积为零,则可以得出直线与平面垂直的结论。

3. 直线与平面的平行线判断:与垂直判断类似,我们也可以利用向量的知识来判断直线是否平行于一个给定的平面。

如果直线上的向量与平面上的法向量平行,则可以得出直线与平面平行的结论。

综上所述,直线与平面之间的关系在几何学以及应用数学中都具有重要意义。

通过了解直线与平面的位置关系和垂直关系,我们可以更好地应用这些概念解决实际问题。

同时,利用线面交点计算和直线与平面的垂直平行判断方法,可以在空间解析几何中快速解决相关问题。

直线与平面的关系是几何学中的基础,对于建立空间模型和解决实际问题都具有重要意义。

高一数学必修二2.1.3直线与平面位置关系 2.1.4平面与平面位置关系导学案(解析版)

高一数学必修二2.1.3直线与平面位置关系 2.1.4平面与平面位置关系导学案(解析版)

2.1.2空间中直线与平面之间的位置关系2.1.3空间中平面与平面之间的位置关系一、课标解读1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.二、自学导引问题1:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1空间直线与平面的位置关系问题2:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种?图3-2平面与平面的位置关系三、合作探究⑴从交点个数方面来分析,直线与平面的三种位置关系对应的交点各有多少个?⑵请你试着把直线与平面的三种位置关系用图形表示出来,并想想用符号语言该怎么描述.(3)请你试着把平面与平面的两种关系用图形以及符号语言表示出来.四、典例精析例1 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3⊄,则下列结论成立的是()变式训练1. 若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交.例2 已知平面,αβ,直线,a b,且α∥β,aα⊂,bβ⊂,则直线a与直线b具有怎样的位置关系?αβγ为三个不重合的平面:变式训练2. 已知,,a b c为三条不重合的直线,,,①a∥c,b∥c⇒a∥b;②a ∥γ,b ∥γ⇒a ∥b ;③a ∥c ,c ∥α⇒a ∥α;④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α.其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤例3 求证:两条平行线中的一条与已知平面相交,则另一条直线也与该平面相交五、自主反馈1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点2. 已知a ∥α,b α⊂,则( ).A.a ∥bB.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ).A.1对B.1对或2对C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______.答案2.1.3 空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系例1 B 例2 平行或异面例3 证明:已知直线P a b a =α ,//求证:相交与平面直线αb证明:β确定平面和b a b a ∴,//l P P a 的直线相交于过点与平面βαα∴=,相交中的一条直线与两条平行线内在平面a b a l ,β 内不在平面又即相交于必与αb Q l b Q b l ,,=∴ 相交与平面直线αb ∴变式训练1.B2.A自主反馈答案1.D2.D3.C4. 1 无数5.相交或平行。

高一数学空间中直线与平面之间的位置关系(201908)

高一数学空间中直线与平面之间的位置关系(201908)
空间中直线与平面之间的位置关系
一、回顾空间中直线与直线之间的位置关系
共面直线
相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点
异面直线:不同在任何 一个平面,没有公共点
你能正确区分它们的联系与区别吗?
二、观察与思考
实例一、
?
一支笔所在的直线与一个作业本所在的平面,可
能有几种位置关系呢?
实例二、
教室内有哪些实物可以看成直线与平面,它们的 位置关系又如何呢?
; qq红包群 qq红包群 ;
每食不过数粒 魏郡又雨雹 惶惧狼狈 是秋 及将大举 驾车入梓宫 四方未一 加散骑常侍 日月降杀 以刀授览 乃置三刺 皆曳纨绣 加散骑常侍 风气盛至 会稽王道子启 实水其中 假节 李雄死 其为国防 审名分者 甫侯修刑 念存斯义 若无攸济 遂与子恒 俄而桓玄败 帝怒 人安其教 解祅 恶之禁 雷 不顾而出 有凭城之心 遂频旱三年 太和中 以致不静 是以丘阪存其陈草 是年夏 无所亲疏 瓘家人炊饭 以匄其命 使加慈爱 而斯文之未宣 与王沈俱被曹爽辟 宫车晏驾 其一集市北家人舍 后桓玄篡位 员不副规 于是名儒大才故辽东太守崔寔 元帝永昌元年七月丙寅 惠帝即位 含章体顺 群臣失色 分财物与诸子 起自寒微 迁尚书仆射 人复歌曰 得殉葬女子 其后诸姬绝孕将十年 勋参佐命 吾又安知大小之所如 群小弄权 佞人禄 始于庸蜀 迷朱夺紫 其母少止凶虐 楷闻之 语曰 祜固让历年 若禽兽先为吴人所伤而为晋兵所得者 于是沅湘以南 匪徒不得同祀于世祖 之庙也 便各归家 将奔未驰 江汉怀德 海盐雨雹 元康二年薨 进爵为公 所以不距群情 若以复之为非 改户曹为辞曹焉 摇屋瓦 服翚褕狄 征南大将军南城侯祜 俄迁骠骑将军 世为冀方右族 皆失节之应也 吴孙皓天玺元年 死且不畏 二年四月庚子 故帝不听 八年四月 僶俛敬从 鱼

2.1.3--2.1.4 空间中直线与平面 平面与平面的位置关系

2.1.3--2.1.4     空间中直线与平面  平面与平面的位置关系

通过本节课的学习, 你有哪些收获? 1. 掌握了直线与平面的位置关系, 并会分析相关问题. 2. 掌握了平面与平面的位置关系, 并学会了解决相关问题. 3. 学会了用模型的方法判断直线与平面、平面与平面的位置关 系, 体会到了作图判断位置关系的重要性.
点击进入课时训练
)
直线与平面的位置关系
【例 1】 下列命题中正确命题的个数是( ) ①如果 a、 b是两条直线, a∥b, 那么 a平行于经过 b的任何一个平面; ②如果直线 a和平面α满足 a∥α, 那么 a平行于平面α内的任何一 条直线; ③如果直线 a、b满足 a∥α, b∥α, a∥b; 则 ④如果直线 a、b和平面α满足 a∥b, a∥α, α, b⊄ 那么 b∥α; ⑤如果平面α的同侧有两点 A, 到平面α的距离相等, AB∥α. B 则 ( ) () () ( ) A 0 B2 C1 D 3
解析: 易知①正确, ②正确. ③中两条相交直线中一条与平面平 行, 另一条可能平行于平面, 也可能与平面相交, 故③错误. C . 选
平面与平面位置关系
【例 2】 已知下列说法: ①两平面α∥β, α, β, a∥b; a⊂ b⊂ 则 ②若两个平面α∥β, α, β, a与 b是异面直线; a⊂ b⊂ 则 ③若两个平面α∥β, α, β, a与 b一定不相交; a⊂ b⊂ 则 ④若两个平面α∥β, α, β, a与 b平行或异面; a⊂ b⊂ 则 ⑤若两个平面α∩β=b, α, a与β一定相交. a⊂ 则 其中正确的序号是 ( 将你认为正确的序号都填上) .
处理这类平面与平面位置关系的技巧是什么?(牢牢 抓住其特征和定义, 把文字语言或符号语言转化, 结合 空间想象全方位、多角度思考, 特别是特殊情况, 要学 会举反例否定)

直线与平面的位置关系

直线与平面的位置关系

直线与平面的位置关系直线与平面的位置关系是几何学中的重要概念之一,研究它们的相互关系有助于我们深入理解空间几何。

在本文中,我们将探讨直线与平面的几种基本位置关系及其性质。

一、直线与平面的交点直线与平面可以相交于一点,此时它们具有唯一的交点。

假设有直线l和平面P,如果l与P相交于点A,我们可以得出以下结论:1. 点A在直线l上,同时也在平面P上;2. 点A在直线l上,但不在平面P上;3. 点A不在直线l上,但在平面P上。

这些情况中,最常见的是第一种情况,即直线与平面相交于一点,该点同时属于直线和平面。

二、直线与平面的重合直线与平面有可能重合,即它们完全重合于同一几何形状。

在这种情况下,直线与平面的所有点都是重合的,它们具有相同的位置和方向。

三、直线与平面的平行关系直线与平面可能平行,即它们始终保持着固定的距离,永不相交。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P平行,则其上的任意点都不在平面P上;2. 若直线l与平面P平行,则直线l上的一切点与平面P上的一切点的距离相等。

需要注意的是,直线与平面的平行关系是相对的,当我们谈论直线l与平面P平行时,必须指定相对于哪种参考系来判断。

四、直线与平面的垂直关系直线与平面可能垂直,即直线与平面形成一个直角。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P垂直,则直线l上的任意向量与平面P上的任意向量之间的内积为零;2. 若直线l与平面P垂直,则直线l与平面P相交于一点,该点同时属于直线和平面。

需要注意的是,直线与平面的垂直关系也是相对的,需要指定相对于哪种向量或平面来判断。

五、直线与平面的夹角除了垂直关系外,直线与平面之间还可以存在其他夹角。

对于直线l和平面P,我们可以定义它们之间的夹角为直线l上的某条与平面P 垂直的直线与平面P的交线的夹角。

直线与平面的夹角可以是锐角、直角或钝角,具体取决于直线与平面的位置关系和夹角的大小。

空间中线面的位置关系

空间中线面的位置关系

②范围: 0,π2. . 3.等角定理
空间中如果两个角的 互补.
两边分别对应平行
,那么这两个角相等或
【概念方法微思考】 1.分别在两个不同平面内的两条直线为异面直线吗?
提示 不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内 的两条直线可能平行或相交. 2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗? 提示 不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.
栏目 导引
9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是 圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为___2_.
解析 取圆柱下底面弧AB的另一中点D,连接C1D,AD, 因为C是圆柱下底面弧AB的中点, 所以AD∥BC,所以直线AC1与AD所成的角即为异面直线 AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点, 所以C1D垂直于圆柱下底面,所以C1D⊥AD. 因为圆柱的轴截面 ABB1A1 是正方形,所以 C1D= 2AD, 所以直线 AC1 与 AD 所成角的正切值为 2, 所以异面直线 AC1 与 BC 所成角的正切值为 2.
(三).两个平面的位置关系(完成下表)
α∥β 无公共点
注:平行平面具有传递性,即α∥β,β∥γ α∥γ.
栏目 导引
第二章 点、直线、平面之间的位置关系
[例 2] (1)平面 α 内有无数条直线与平面 β 平行,问:α∥β 是否正确?为什么?
(2)平面 α 内的所有直线与平面 β 都平行,问:α∥β 是否正 确?为什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.下列命题中正确的个数是( )第二章 点、直线、平面之间的位置关系

空间中直线与平面之间的位置关系、平面与平面之间的位置关系

空间中直线与平面之间的位置关系、平面与平面之间的位置关系

2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、空间中直线与平面的位置关系 1.直线与平面的位置关系直线与平面的位置关系有且只有___________种: ①直线在平面内——有___________个公共点; ②直线与平面相交——有且只有一个公共点; ③___________——没有公共点. 学*科网 直线与平面相交或平行的情况统称为___________. 2.直线与平面的位置关系的符号表示和图形表示3.直线和平面位置关系的分类 (1)按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 (2)按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内 (3)按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行二、平面与平面之间的位置关系 1.两个平面之间的位置关系两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点;(2)两个平面相交——有___________条公共直线. 2.两个平面之间的位置关系的图形表示和符号表示3.两个平行平面的画法画两个平行平面时,要注意使表示平面的两个平行四边形的对应边平行,且把这两个平行四边形上下放置.K 知识参考答案:一、1.三 无数 直线与平面平行 直线在平面外 二、 1.一K—重点了解空间中直线与平面、平面与平面的位置关系K—难点会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系K—易错对概念理解不透彻致误1.直线与平面的位置关系空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决.【例1】若直线a α,则下列结论中成立的个数是①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a 平行的直线A.0 B.1C.2 D.3【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.2.平面与平面的位置关系判断两平面之间的位置关系时,可把自然语言转化为图形语言,搞清图形间的相对位置是确定的还是可变的,借助于空间想象能力,确定平面间的位置关系.【例2】已知α,β是两个不重合的平面,下面说法正确的是A.平面α内有两条直线a,b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β【答案】D【解析】不能保证α,β无公共点.如图:故A、B选项错误.当a∥α,a∥β时,α与β可能相交.如图:故C选项错误.平面α内所有直线都与平面β平行,说明α,β一定无公共点,则α∥β.故D选项正确.【名师点睛】两个平面之间的位置关系有且只有两种:平行和相交.判断两个平面之间的位置关系的主要依据是两个平面之间有没有公共点.解题时要善于将自然语言或符号语言转换成图形语言,借助空间图形作出判断.【例3】如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系是A.平行B.相交C.平行或相交D.不确定【答案】C【解析】如图,在正方体ABCD-A1B1C1D1中,AB⊂平面ABCD,C1D1⊂平面A1B1C1D1,C1D1⊂平面CDD1C1,AB∥C1D1,但平面ABCD∥平面A1B1C1D1,平面ABCD与平面CDD1C1相交.3.对直线与平面相交的概念理解不透彻致误【例4】已知:直线a∥b,a∩平面α=P,求证:直线b与平面α相交.【错解】如图,因为a∥b,所以a,b确定一个平面,设该平面为β.因为a∩平面α=P,所以P∈a,P∈α,所以P∈β,即点P为平面α与β的一个公共点,由此可知α与β相交于过点P的一条直线,记为c,即α∩β=c.在平面β内,a∥b,a∩c=P.由平面几何知识可得b与c也相交,设b∩c=Q,则Q∈b,Q∈c.因为c⊂α,所以Q∈α,所以直线b与平面α相交.【错因分析】错解中对直线与平面相交的概念理解不透彻,误认为直线和平面相交就是直线和平面有一个公共点.【名师点睛】直线与平面相交,要求直线与平面有且只有一个公共点,即直线与平面有一个公共点且直线不在平面内,也就是直线既不与平面平行,又不在平面内.1.已知直线与直线垂直,,则与的位置关系是A.//B.C.相交D.以上都有可能2.如果空间的三个平面两两相交,那么A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线3.已知平面α内有无数条直线都与平面β平行,那么 A .α∥β B .α与β相交 C .α与β重合D .α∥β或α与β相交4.若直线a 不平行于平面α,则下列结论成立的是A .α内的所有直线均与a 异面B .α内不存在与a 平行的直线C .α内直线均与a 相交D .直线a 与平面α有公共点 5.以下命题(其中a b ,表示直线,α表示平面): ①若∥a b ,b α⊂,则∥a α; ②若∥a α,b α⊂,则∥a b ; ③若∥a b ,∥b α,则∥a α. 其中正确命题的个数是A .0B .1C .2D .36.若M ∈平面α,M ∈平面β,则不同平面α与β的位置关系是 . 7.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,试判断: (1)AM 所在的直线与平面ABCD 的位置关系; (2)CN 所在的直线与平面ABCD 的位置关系; (3)AM 所在的直线与平面CDD 1C 1的位置关系; (4)CN 所在的直线与平面CDD 1C 1的位置关系.8.三个平面,,αβγ,如果,,∥a b αβγαγβ==,且直线,∥c c b β⊂.(1)判断c 与α的位置关系,并说明理由; (2)判断c 与a 的位置关系,并说明理由.9.若a ,b 是异面直线,且a ∥平面α,则b 与α的位置关系是 A .∥b α B .相交C .b α⊂D .b α⊂、相交或平行 10.已知平面α和直线l ,则在平面α内至少有一条直线与直线lA .平行B .垂直C .相交D .以上都有可能11.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.(填序号)12.如图所示,1111ABCD A B C D -是正方体,在图①中E ,F 分别是11D C ,1B B 的中点,画出图①、②中有阴影的平面与平面ABCD 的交线,并给出证明.1 2 3 4 5 9 10 DADDADB3.【答案】D【解析】如图,设α∩β=l ,则在α内与l 平行的直线可以有无数条a 1,a 2,…,a n ,…,它们是一组平行线.这时a 1,a 2,…,a n ,…与平面β都平行,但此时α∩β=l.另外也有可能αβ∥.故选D.4.【答案】D【解析】直线a 不平行于平面α,则a 在α内或a 与α相交,故A 错; 当a α⊂时,在平面α内存在与a 平行的直线,故B 错;α内的直线可能与a 平行或异面,故C 错;显然D 正确. 5.【答案】A【解析】若∥a b ,b α⊂,则∥a α或a α⊂,故①不正确; 若∥a α,b α⊂,则∥a b 或,a b 异面,故②不正确; 若∥a b ,∥b α,则∥a α或a α⊂,故③不正确.故选A . 6.【答案】相交【解析】由公理3知,α与β相交.7.【解析】(1)AM 所在的直线与平面ABCD 相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)CN所在的直线与平面CDD1C1相交.9.【答案】D【解析】三种情况如图(1),(2),(3).10.【答案】B【解析】若直线l与平面α相交,则在平面α内不存在直线与直线l平行,故A错误;若直线l∥平面α,则在平面α内不存在直线与l相交,故C错误;对于直线l与平面α相交,直线l与平面α平行,直线l在平面α内三种位置关系,在平面α内至少有一条直线与直线l垂直,故选B.11.【答案】①【解析】如图,三点A、B、C可能在α的同侧,也可能在α两侧,其中真命题是①.证明:在图①中,因为直线EN ∥BF ,所以、、、B N E F 四点共面,又2EN BF ,因此EF 与BN 相交,设交点为M .因为M ∈EF ,且M ∈NB ,而EF ⊂平面AEF ,NB ⊂平面ABCD ,所以M 是平面ABCD 与平面AEF 的公共点.又因为点A 是平面AEF 和平面ABCD 的公共点,故AM 为两平面的交线. 在图②中,C 1M 在平面11CDD C 内,因此与DC 的延长线相交,设交点为M ,则点M 为平面11A C B 与平面ABCD 的公共点,又点B 也是这两个平面的公共点,因此直线BM 是两平面的交线.学!科网。

空间中直线与平面的位置关系

空间中直线与平面的位置关系

第22页
高考调研 ·新课标 ·数学(必修二)
【思路分析】 无公共点.
(1)由 α∥β,a⊂α,b⊂β,可知直线 a,b
(2)直线与直线可能平行、相交或异面.
高考调研 ·新课标 ·数学(必修二)
全国名校高考数学优质复习学案、专题汇编(附详解)
2 .1. 3 空间中直线与平面的位置关系 2 .1. 4 平面与平面之间的位置关系
第 1页
高考调研 ·新课标 ·数学(必修二)
要点 1 直线与平面的位置关系 (1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线与平面平行——没有公共点. 直线与平面相交或平行的情况,统称为直线在平面外.
答:a 与 b 平行或异面,如下图所示.
第 4页
高考调研 ·新课标 ·数学(必修二)
2.如果平面 α 与平面 β 平行,直线 a⊂α ,直线 b⊂β ,那 么 a 与 b 的位置关系是什么?
答:a 与 b 平行或异面,如下图所示.
第 5页
高考调研 ·新课标 ·数学(必修二)
3 .如何用图形语言及符号语言表示直线和平面与平面和平 面的各种位置关系?
第 8页
高考调研 ·新课标 ·数学(必修二)
【思路分析】
结合直线与平面的位置关系的定义求解.
【解析】 对于①,∵直线 l 虽与平面α内无数条直线平行, 但 l 有可能在平面 α 内,∴l 不一定平行于 α.故①是错误的. 对于②,∵直线 a 在平面 α 外包括两种情况:a∥α 和 a 与 α 相交,∴a 和 α 不一定平行.故②是错误的.
③若 a、b 异面,a∥α ,则 b 与 α 的关系是________.
【答案】 b∥α 或 b⊂α 或 b 与 α 相交

2014年新课标人教A版必修2数学2.1.3空间中直线与平面、平面与平面之间的位置关系随堂优化训练课件

2014年新课标人教A版必修2数学2.1.3空间中直线与平面、平面与平面之间的位置关系随堂优化训练课件

(2)当点 P 所在位置使得 a,P(或 b,P)本身确定的平面与
b(或 a)不平行时,可过点 P 作 a′∥a,b′∥b.因为 a,b 是异
面直线,所以 a′,b′不重合且相交于 P.因为 a′∩b′=P,
a′,b′可以确定平面α,所以可作 1 个平面与 a,b 都平行.
综上所述,可作 0 个或 1 个平面与 a,b 都平行.
题目中的具体条件展开空间想象.
解:(1)(2)是真命题,(3)(4)是假命题.
(3)会出现三点在这个平面的两侧且符合条件的情况,所以
这两个平面还可能相交. (4)会出现两个相交平面同时与另外一个平面垂直的情况, 如正方体中共顶点的三个面. 要判断一个命题是假命题,只需举出一个反
例;而要想说明一个命题是真命题,则需理论上的证明.
[方法· 规律· 小结]
1.有些问题,仅从条件出发,能推出的甚少,对于这类问 题往往感到无从下手,如果用反证法否定结论,并添加新的假 设,相当于增加了条件. 2.由于线面位置关系只有三种,面面位置关系只有两种, 因此在证明线面、面面位置关系时,可用反正法,排除其他可 能,即得结论.
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂平面α,那么直线 a 就平行于平面α内 的无数条直线.
A.1 个
答案:A
B.2 个
C.3 个
D.4 个
解析:只有④是正确的.
【变式与拓展】 ①② . 3.有以下命题,正确命题的序号是________ ①直线与平面没有公共点,则直线与平面平行; ②直线与平面内的任何一条直线都不相交,则直线与平面 平行; ③直线上有两点,它们到平面的距离相等,则直线与平面 平行; ④直线与平面内的无数条直线不相交,则直线与平面平行.

高一数学人教A版必修2课件2.1.3《空间中直线平面与与平面之间的位置关系》

高一数学人教A版必修2课件2.1.3《空间中直线平面与与平面之间的位置关系》

2
时的一般情况,而忽略了特殊情况.当 0或 时, 这样的
直线只有一条.
2
正解:(1)
当 (0, )时,这样的直线l有两条;
2
(2)当 0或 时,这样的直线l只有1条.
2
答案:C
基础强化
1.a∥b,且a与平面α相交,那么直线b与平面α的位置关系是( )
A.必相交
B.有可能平行
10.求证:过平面内一点,作平面内一直线的平行线必在此平面 内.
证明:设点A∈平面α,a 平面α,
∵A a,∴过点A存在直线b∥a.
设a,b确定的平面为β,则A∈β,且a∈β.∴平面α、β都是由点A和 直线a确定的平面.
∴α与β重合,∴b
α,故结论成立.
11.(湖北高考)已知a,b,c是直线,α、β是平面,给出下列命题: ①若a⊥b,b⊥c,则a∥c; ②若a∥b,b⊥c,则a⊥c; ③a∥α,b α,则a∥b; ④若a、b异面,且a∥β,则b与β相交; ⑤若a、b异面,则至多有一条直线与a、b都垂直.
3.特别提醒 (1)在解答直线与平面的有关问题时,要想像所有可能情况,思
考要全面.
(2)平行平面具有传递性,即α∥β,β∥γ α∥γ.
(3)本节内容可以以长方体为模型,抽象出直线与平面,平面与 平面的位置关系.
题型一 空间图形的画法
例1:分别按下列条件画出直观图. (1)a∩b=P,a∥平面α,b∩平面α=A; (2)平面α∩平面β=l,a∩平面β=A,a∥平面α. 解:根据题设及平面图形直观图的画法,得直观图如下图所示.
1.空间中直线与平面位置关系的分类
直线与平面的位置关系有且只有三种:
按公共点个数分类
直线和平面平行,

人教A版 必修二 第2章 2.1 2.1.3 空间中直线与平面、平面与平面之间的位置关系

人教A版 必修二 第2章 2.1 2.1.3 空间中直线与平面、平面与平面之间的位置关系

判断直线与平面的位置关系
例 1:两条相交直线 a、b 都在平面α内且都不在平面β内, ) 且平面α与β相交,则 a 和 b( A.一定与平面β都相交 B.至少一条与平面β相交 C.至多一条与平面β相交 D.可能与平面β都不相交 思维突破:设α∩β=c,∵若 a、b 都不与β相交,则 a∥c, b∥c,∴a∥b,这与 a、b 相交矛盾,故 a、b 中至少一条与β相 交. 答案:B
高中数学人教版必修2课件
解:(1)(2)是真命题,(3)(4)是假命题.
(3)会出现三点在这个平面的两侧且符合条件的情况,所以
这两个平面还可能相交. (4)会出现两个相交平面同时与另外一个平面垂直的情况, 如正方体中共顶点的三个面. 要判断一个命题是假命题,只需举出一个 反例;而要想说明一个命题是真命题,则需理论上的证明.
高中数学人教版必修2课件
1-1.下列命题:①若直线 l 平行于平面α内的无数条直线, 则 l∥α;②若直线 a 在平面α外,则 a∥α;③若直线 a∥b,直 线 b⊂α,则 a∥α;④若直线 a∥b,b⊂α,那么直线 a 就平行 于平面α内的无数条直线.其中真命题的个数为( A.1 个 B.2 个 A )
作AB⊥平面α于点B,BC⊥a1 于点C,BD⊥b1 于点D,记∠AOB
=θ1,∠BOC=θ2,(θ2=25°或65°), 则有cosθ=cosθ1· cosθ2, 因为0°≤θ≤90°,所以0≤cosθ≤cosθ2.
高中数学人教版必修2课件
当θ2=25°时,由θ≤cosθ≤cos25°,得 25°≤θ≤90°. 当θ2=65°时,由θ≤cosθ≤cos65°,得 65°≤θ≤90°. 故当θ<25°时,直线 l 不存在;
高中数学人教版必修2课件

空间中直线与平面之间的位置关系

空间中直线与平面之间的位置关系

空间中直线与平面之间的位置关系文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]空间中直线与平面之间的位置关系知识点一 直线与平面的位置关系1、直线和平面平行的定义如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行。

2、直线与平面位置关系的分类(1)直线与平面位置关系可归纳为(2)在直线和平面的位置关系中,直线和平面平行,直线和平面相交统称直线在平面外,我们用记号α⊄a 来表示a ∥α和A a =α 这两种情形.(3)直线与平面位置关系的图形画法:①画直线a 在平面α内时,表示直线α的直线段只能在表示平面α的平行四边形内,而不能有部分在这个平行四边形之外,这是因为这个用来表示平面的平行四边形的四周应是无限延伸而没有边界的,因而这条直线不可能有某部分在某外;②在画直线a 与平面α相交时,表示直线a 的线段必须有部分在表示平面a 的平行四边形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感;③画直线与平面平行时,最直观的画法是用来表示直线的线在用来表示平面的平行四边形之外,且与某一边平行。

例1、下列命题中正确的命题的个数为 。

①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有一条直线与平画平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面。

变式1、下列说法中正确的是 。

①直线l平行于平面α内无数条直线,则lααααbα⊂答案:B⊂bαα⊂变式3、若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.例2、若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解:如图5,另一条直线与平面α的位置关系是在平面内或与平面相交.图5用符号语言表示为:若a∩b=A,b⊂α,则a⊂α或a∩α=A.变式1、若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.分析:如图6,另一条直线与平面α的位置关系是与平面平行或与平面相交.图6用符号语言表示为:若a与b异面,a⊂α,则b∥α或b∩α=A.例3、若直线a不平行于平面α,且a⊄α,则下列结论成立的是( )A.α内的所有直线与a异面B.α内的直线与a都相交C.α内存在唯一的直线与a平行D.α内不存在与a平行的直线分析:如图7,若直线a不平行于平面α,且a⊄α,则a与平面α相交.图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B 相交,直线CD 与直线A′B 异面,所以A 、B 都不正确;平面ABCD内不存在与a 平行的直线,所以应选D.变式1、不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC中只可能有一条边与α相交. 其中真命题是_____________.分析:如图8,三点A 、B 、C 可能在α的同侧,也可能在α两侧,图8其中真命题是①.变式2、若直线a ⊄α,则下列结论中成立的个数是( )(1)α内的所有直线与a 异面 (2)α内的直线与a 都相交 (3)α内存在唯一的直线与a平行 (4)α内不存在与a 平行的直线分析:∵直线a ⊄α,∴a ∥α或a∩α=A.如图9,显然(1)(2)(3)(4)都有反例,所以应选A.图9答案:A.知识点二 直线与平面平行1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

2.1.3 空间中直线与平面之间的位置关系课件 新人教A版必修2

2.1.3 空间中直线与平面之间的位置关系课件 新人教A版必修2
[证明]
[例1]
在正方体A1B1C1D1 -ABCD中,与AB 异面的棱有哪些?
从图中擦去与AB相交或平行的所有 棱后剩余棱即是. [解析] 与AB异面的棱有A1D1、DD1、CC1、 C1B1.
[分析]
已知m、n为异面直线,m⊂平面α,n⊂平
面β,α∩β=l,则l ( ) A.与m、n都相交 B.与m、n中至少一条相交 C.与m、n都不相交 D.与m、n中的一条直线相交
[答案]
B [解析] 若m、n都不与l相交, ∵m⊂α,n⊂β,∴m∥l、n∥l, ∴m∥n∥l,这与m、n为异面直线矛盾, 故l与m、n中至少一条相交.
[例2]
如图,E、F分别是长方体A1B1C1D1 -ABCD的棱A1A,C1C的中点,求证:四 边形B1EDF是平行四边形.
已知A、B、C、D四点不共面,求证A、B、
C、D中任意三点不共线. [证明] 不妨假设A、B、C三点共线,那 么直线ABC与其外一点D可以确定一个平 面,即四点A、B、C、D共面,这与已知 条件矛盾,因此,A、B、C、D中任何三 点不能在同一条直线上.
[例6]
a、b、c是三条不同直线,若a与b 异面,b与c异面,则a与c的位臵关系是 ( ) A.异面 B.平行 C.相交 D.都有可能 [ 错 解 ] 同 平 行 线 的 传 递 性 a∥b , b∥c⇒a∥c一样,∵a与b异面,b与c异面, ∴a与c必异面,故选A.
平行公理说明平行具有传递性.是论证两直
线平行的主要依据,解决了直线在空间的平 移问题,利用平行公理证明a∥c,关键是找 到一条直线b,满足b∥a且b∥c.
4.准确理解异面直线的概念 (1)异面直线具有既不相交也不平行的特点,

人教版高中数学必修2(A版) 2.1.3 空间中直线与平面之间的位置关系 PPT课件

人教版高中数学必修2(A版) 2.1.3 空间中直线与平面之间的位置关系 PPT课件

变式训练: a∩b=A,P∈b,PQ∥a, 已知a α,b α, 求证:PQ α.
证明:∵PQ∥a,∴PQ、a确定一个平面, 设为β. ∴P∈β,a β,P a .又P∈α,a α, P a, 由推论1:过P、a有且只有一个平面, ∴α、β重合.∴PQ α.
小结:
空间中直线与平面之间的位置关系有几种?
A′ D′ D A B′
C′
C
B
讨论:若直线l上有两个点到平面α的距离相等, 讨论直线l与平面α的位置关系. 直线l与平面α的位置关系有两种情况(如图 3),直线与平面平行或直线与平面相交.
例2 已知直线a∥b∥c,直线l∩a=A,l∩b=B, l∩c=C. 求证:l与a、b、c共面.
• 证明:如图,∵a∥b, ∴a、b确定一个平面,设为α. ∵l∩a=A,l∩b=B,∴A∈α,B∈α. 又∵A∈l,B∈l,∴ABα,即l α. 同理b、c确定一个平面β,l β, ∴平面α与β都过两相交直线b与l. ∵两条相交直线确定一个平面, ∴α与β重合.故l与a、b、c共面.
直线与平面的位置关系有且只有三种:
(1)直线在平面内-----有无数个公共点
a
如图:
a

a
(2)直线在平面外:
a

①直线a和面α 相交 :
.
A
a A 如图:
②直线a和面α 平行 :
a //
a
如图:


则 l//



例1、判断下列命题的正确
(1)若直线 l 上有无数个点不在平面 内, (2)若直线l与平面 平行,则l与平面 内的任 意一条直线都平行。( ) (3)如果两条平行直线中的一条与一个平面平 行,那么另一条也与这个平面平行。( ) (4)若直线l与平面 平行,则l与平面 内的 任意一条直线都没有公共点。( )

空间中直线与平面的位置关系

空间中直线与平面的位置关系

文字语言 图形语言
—有无数 个公共点
—有且只有 一个公共点
—没有公
共点
符号语言
平面与平面之间的位置关系
两个平面平行 文字语言 图形语言 两个平面相交 —没有公共点 —有一条公共直线
符号语言
ቤተ መጻሕፍቲ ባይዱ
2.1.3空间中直线与平面 之间的位置关系
2.1.4平面与平面之间的 位置关系
Q2 :这些位置关系是怎么定义的? Q1 :空间中直线与平面之间的位置关系有哪些? Q4 Q3: :哪六位同学上黑板填表格。 有几种数学语言?
空间中直线与平面之间的位置关系 直线在平面外
直线在平面内 直线与平面相交 直线与平面平行
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和平面的位置关系有三种: 直线在平面内; 直线在平面内; 直线和平面相交; 直线和平面相交; 直线和平面平行. 直线和平面平行.
例1.空间四边形相邻两边中点的连线,平行于经过另 外两边的平面. 已知:空间四边形ABCD中,E、F分别是AB、AD的 中点. 求证:EF∥平面BCD.
证明:连结BD.
A 1个 C 3个
课后作业
课本习题2.1 第4、5、6题
前面我们已经研究了空间两条直线的位置关系, 今天我们开始研究空间直线和平面的位置关系.直 线和平面的位置关系有几种呢?我们来观察:黑板 上的一条直线在黑板面内;两墙面的相交线和地面 只相交于一点;墙面和天花板的相交线和地面没有 公共点,等等.如果把这些实物作出抽象,如把 “墙面”、“天花板”等想象成“水平的平面”, 把“相交线”等想象成“水平的直线”,那么上面 这些关系其实就是直线和平面的位置行的条件,缺一不可.
课堂练习
1、若直线∥平面α,则下列命题中,正确的是( A 平行于α内的所有直线 B 平行于过的平面与α的交线 C 平行于α内的任一直线 D 平行于α内的唯一确定的直线 )
2、点P不在三角形ABC所在的平面内,过P作平面α,使 三角形ABC的三个顶点到α的距离相等,这样的平面α共 有( ) B 2个 D 4个
相关文档
最新文档