2.1.3空间中直线与平面之间的位置关系

合集下载

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有

①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(

(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )

2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

探究( 探究(二):平面与平面之间的位置关系
思考1:拿出两本书,看作两个平面, 思考1:拿出两本书,看作两个平面,上 1:拿出两本书 左右移动和翻转, 下、左右移动和翻转,它们之间的位置 关系有几种变化? 关系有几种变化? 思考2:如图,围成长方体 思考2:如图, 2:如图 ABCD-A′B′C′D′的 ABCD-A′B′C′D′的 D′ 六个面, 六个面,两两之间 A′ 的位置关系有几种? 的位置关系有几种? D
课堂练习( ):过平面外一点可作多 课堂练习(一):过平面外一点可作多 少条直线与这个平面平行? 少条直线与这个平面平行?无数条 若直线l平行于平面α 则直线 与平面 若直线 平行于平面α,则直线l与平面 平行于平面 内的直线的位置关系如何? α内的直线的位置关系如何? 平行或异面
P
l
α
α
课堂练习( ):若两条平行直线中有 课堂练习(二):若两条平行直线中有 一条平行于一个平面, 一条平行于一个平面,那么另一条也平 行于这个平面吗? 行于这个平面吗?
课堂练习( ):已知平面α 课堂练习(三):已知平面α,β和直 已知平面 ,则直 线a,b,且α∥β,a ⊂ α , b ⊂ β,则直 与平面β的位置关系如何?直线a 线a与平面β的位置关系如何?直线a与 直线b的位置关系如何? 直线b的位置关系如何?
a α
b β
理论迁移
给出下列四个命题: 例1 给出下列四个命题: (1)若直线 上有无数个点不在平面α内,则 (1)若直线l上有无数个点不在平面α 若直线 上有无数个点不在平面 l∥α. (×) ∥α. (2)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (2)若直线 与平面α平行,则l与平面α内的 任意一条直线都平行. 任意一条直线都平行. (×) (3)如果两条平行直线中的一条与一个平面平 (3)如果两条平行直线中的一条与一个平面平 那么另一条也与这个平面平行. 行,那么另一条也与这个平面平行. (×) (4)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (4)若直线 与平面α平行,则l与平面α内的 任意一条直线都没有公共点. 任意一条直线都没有公共点. ( ) 其中正确命题的个数共有__ __个 其中正确命题的个数共有__个. 1

人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

2.1.3空间中直线与平面之间的位置关系教案教学目标:1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系。

2. 学会用图形语言、符号语言表示三种位置关系.教学重点:直线与平面的三种位置关系及其作用.教学难点:直线与平面的三种位置关系及其作用问题提出1. 空间点与直线,点与平面分别有哪几种位置关系?2. 空间两直线有哪几种位置关系?探究:直线与平面之间的位置关系思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系?思考2:如图,线段A ′B 所在直线与长方体ABCD-A ′B ′C ′D ′的六个面所在的平面各是什么位置关系?思考3:通过上面的观察和分析,直线与平面有三种位置关系有哪些?靠什么来划分呢?思考4:用图如何表示直线与平面的三种位置?如何用符号语言描述这三种位置关系?思考5:过平面外一点可作多少条直线与这个平面平行?若直线l 平行于平面α,则直线l 与平面α内的直线的位置关系如何?B A DCA' B'D' C'理论迁移例1 给出下列四个命题:(1)若直线l 上有无数个点不在平面α内,则l ∥α.(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.(3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(4)若直线l 在平面α内,且l 与平面β平行,则平面α与平面β平行.其中正确命题的个数共有 __个.随堂练习:判断正误1、若直线l 上有无数个点不在平面α内,则l ∥α( )2、若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行( )3、如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行( )4、如果平面外的两条平行直线中的一条直线与平面平行,那么另一条直线也与这个平面平行( )5、若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点( )巩固练习1.选择题(1)以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b其中正确命题的个数是 ( )(A )0个 (B )1个 (C )2个 (D )3个(2)已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有 ( )(A )2个 (B )3个 (C )4个 (D )5个(3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行 (B )相交 (C )平行或相交 (D )AB ⊂α(4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( )(A )与m ,n 都相交 (B )与m ,n 中至少一条相交(C )与m ,n 都不相交 (D )与m ,n 中一条相交(5)已知直线a 在平面α外,则 ( )(A )a ∥α (B )直线a 与平面α至少有一个公共点(C )a A α⋂= (D )直线a 与平面α至多有一个公共点课本49页练习课堂小结课外作业一、选择题: 1.下列命题中正确的是( )A .平行于同一个平面的两条直线平行B.垂直于同一条直线的两条直线平行C.若直线a与平面α内的无数条直线平行,则a∥αD.若一条直线平行于两个平面的交线,则这条直线至少平行于两个平面中的一个2.下列四个命题(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题是()A.(1),(3)B.(2),(4)C.(1),(3),(4)D.(2),(3),(4)3.已知平面α∥平面β,直线a∥α,直线b∥β那么,a与b的关系必定是()A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面二、填空题:4.已知直线a∥b,a、b 平面α,直线c与a异面,且b与c不相交,则c与α的位置关系是_______.5.给你四个命题:①过直线外一点,有且只有一条直线与该直线平行②过直线外一点,有且只有一个平面与该直线平行③过平面外一点,有且只有一条直线与该平面平行④过平面外一点,有无数多条直线与该平面平行其中真命题为_____________(写出序号即可)6.三个平面两两相交,有三条交线,则这三条交线的位置关系为_____________.自我评价:_______________________________________________________________________ _________________________________________________________________________________。

2.1.3 空间中直线与平面之间的位置关系

2.1.3 空间中直线与平面之间的位置关系
新宁一中数学备课组
2.如何用图形语言表示直线与平面的三种位置关系? α a ① α ② a A α ③ a
下面是不正确的画图方法:
a
α ①
a α ② α ③
新宁一中数学备课组
a
3.下图表示直线与平面的三种位置,如何用符号语 言描述这三种位置关系?
a a α α a
.
P
α
a
a P
a //
新宁一中数学备课组
探究
a , b , 已知平面α,β,直线a, b, 且α//β, 则直线a与平面β的位置关系如何? 直线a与直线b 具有怎样的位置关系?
D′ A′ D
B′ B
C′
C
A
新宁一中数学备课组
随堂练习 1. 如图,长方体ABCD-A1B1C1D1中,则: (1)与直线AB平行的平面有 平面A1C1 、平面DC1 (2)与直线AA1平行的平面有 平面BC1 、平面DC1 平面A1C1 (3)与平面AC平行的平面有 (4)与平面AB1相交的平面有 平面AC 、平面A1C1 平面AD1 、平面BC1 D1 C1 A1 B1 D C
B′ B
C′
C
A
新宁一中数学备课组
新知探究
1.平面与平面的位置关系有且只有两种:
① 两个平面平行——没有公共点;
② 两个平面相交——有一条公共直线 .
新宁一中数学备课组
2. 用图形语言和符号表示平面与平面的位置关系

β α

l
//

l
画两个互相平行的平面时,要注意使表示平 面的两个平行四边形的对应边平行.
A B
新宁一中数学备课组
; ; ; .
2.画出满足下列条件的图形 α ∩ β=l,AB α, CD β,AB ∥ l,CD ∥l .

直线与平面的关系

直线与平面的关系

直线与平面的关系直线和平面是几何学中的基本概念,它们之间的关系对于研究几何学以及应用数学都有着重要的意义。

本文将从不同角度介绍直线与平面之间的关系,并探讨它们在几何学中的应用。

一、直线在平面内的位置关系在平面内,直线与平面可以有三种不同的位置关系,即相交、平行和重合。

1. 相交:当一条直线与平面有且只有一个交点时,我们称该直线与平面相交。

2. 平行:当直线和平面没有交点时,我们称该直线与平面平行。

3. 重合:当直线完全位于平面上时,我们称该直线与平面重合。

二、直线与平面的交集与垂直关系当直线与平面相交时,交点处的直线与平面垂直。

这个垂直关系可以进一步扩展到直线与平面的斜截关系。

1. 隐含的垂直关系:当直线与平面相交时,我们可以隐含地认为直线在交点处与平面垂直。

2. 线面垂直关系的判断:我们可以利用向量知识来判断直线与平面之间是否垂直。

具体方法是计算直线上的向量与平面上的法向量的点积,如果点积为零,则表明直线与平面垂直。

三、直线与平面的应用1. 直线与平面的交点计算:在三维几何中,我们可以利用线面交点的坐标计算方法来求解直线与平面的交点。

这个方法基于向量和参数方程的知识,通过联立方程组计算出交点的坐标。

2. 直线与平面的垂直线判断:在空间解析几何中,我们经常需要判断一条直线是否垂直于一个给定的平面。

通过求解直线上的向量与平面上的法向量的点积,如果点积为零,则可以得出直线与平面垂直的结论。

3. 直线与平面的平行线判断:与垂直判断类似,我们也可以利用向量的知识来判断直线是否平行于一个给定的平面。

如果直线上的向量与平面上的法向量平行,则可以得出直线与平面平行的结论。

综上所述,直线与平面之间的关系在几何学以及应用数学中都具有重要意义。

通过了解直线与平面的位置关系和垂直关系,我们可以更好地应用这些概念解决实际问题。

同时,利用线面交点计算和直线与平面的垂直平行判断方法,可以在空间解析几何中快速解决相关问题。

直线与平面的关系是几何学中的基础,对于建立空间模型和解决实际问题都具有重要意义。

高一数学必修二2.1.3直线与平面位置关系 2.1.4平面与平面位置关系导学案(解析版)

高一数学必修二2.1.3直线与平面位置关系 2.1.4平面与平面位置关系导学案(解析版)

2.1.2空间中直线与平面之间的位置关系2.1.3空间中平面与平面之间的位置关系一、课标解读1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.二、自学导引问题1:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1空间直线与平面的位置关系问题2:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种?图3-2平面与平面的位置关系三、合作探究⑴从交点个数方面来分析,直线与平面的三种位置关系对应的交点各有多少个?⑵请你试着把直线与平面的三种位置关系用图形表示出来,并想想用符号语言该怎么描述.(3)请你试着把平面与平面的两种关系用图形以及符号语言表示出来.四、典例精析例1 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3⊄,则下列结论成立的是()变式训练1. 若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交.例2 已知平面,αβ,直线,a b,且α∥β,aα⊂,bβ⊂,则直线a与直线b具有怎样的位置关系?αβγ为三个不重合的平面:变式训练2. 已知,,a b c为三条不重合的直线,,,①a∥c,b∥c⇒a∥b;②a ∥γ,b ∥γ⇒a ∥b ;③a ∥c ,c ∥α⇒a ∥α;④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α.其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤例3 求证:两条平行线中的一条与已知平面相交,则另一条直线也与该平面相交五、自主反馈1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点2. 已知a ∥α,b α⊂,则( ).A.a ∥bB.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ).A.1对B.1对或2对C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______.答案2.1.3 空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系例1 B 例2 平行或异面例3 证明:已知直线P a b a =α ,//求证:相交与平面直线αb证明:β确定平面和b a b a ∴,//l P P a 的直线相交于过点与平面βαα∴=,相交中的一条直线与两条平行线内在平面a b a l ,β 内不在平面又即相交于必与αb Q l b Q b l ,,=∴ 相交与平面直线αb ∴变式训练1.B2.A自主反馈答案1.D2.D3.C4. 1 无数5.相交或平行。

高一数学空间中直线与平面之间的位置关系(201908)

高一数学空间中直线与平面之间的位置关系(201908)
空间中直线与平面之间的位置关系
一、回顾空间中直线与直线之间的位置关系
共面直线
相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点
异面直线:不同在任何 一个平面,没有公共点
你能正确区分它们的联系与区别吗?
二、观察与思考
实例一、
?
一支笔所在的直线与一个作业本所在的平面,可
能有几种位置关系呢?
实例二、
教室内有哪些实物可以看成直线与平面,它们的 位置关系又如何呢?
; qq红包群 qq红包群 ;
每食不过数粒 魏郡又雨雹 惶惧狼狈 是秋 及将大举 驾车入梓宫 四方未一 加散骑常侍 日月降杀 以刀授览 乃置三刺 皆曳纨绣 加散骑常侍 风气盛至 会稽王道子启 实水其中 假节 李雄死 其为国防 审名分者 甫侯修刑 念存斯义 若无攸济 遂与子恒 俄而桓玄败 帝怒 人安其教 解祅 恶之禁 雷 不顾而出 有凭城之心 遂频旱三年 太和中 以致不静 是以丘阪存其陈草 是年夏 无所亲疏 瓘家人炊饭 以匄其命 使加慈爱 而斯文之未宣 与王沈俱被曹爽辟 宫车晏驾 其一集市北家人舍 后桓玄篡位 员不副规 于是名儒大才故辽东太守崔寔 元帝永昌元年七月丙寅 惠帝即位 含章体顺 群臣失色 分财物与诸子 起自寒微 迁尚书仆射 人复歌曰 得殉葬女子 其后诸姬绝孕将十年 勋参佐命 吾又安知大小之所如 群小弄权 佞人禄 始于庸蜀 迷朱夺紫 其母少止凶虐 楷闻之 语曰 祜固让历年 若禽兽先为吴人所伤而为晋兵所得者 于是沅湘以南 匪徒不得同祀于世祖 之庙也 便各归家 将奔未驰 江汉怀德 海盐雨雹 元康二年薨 进爵为公 所以不距群情 若以复之为非 改户曹为辞曹焉 摇屋瓦 服翚褕狄 征南大将军南城侯祜 俄迁骠骑将军 世为冀方右族 皆失节之应也 吴孙皓天玺元年 死且不畏 二年四月庚子 故帝不听 八年四月 僶俛敬从 鱼

2.1.3--2.1.4 空间中直线与平面 平面与平面的位置关系

2.1.3--2.1.4     空间中直线与平面  平面与平面的位置关系

通过本节课的学习, 你有哪些收获? 1. 掌握了直线与平面的位置关系, 并会分析相关问题. 2. 掌握了平面与平面的位置关系, 并学会了解决相关问题. 3. 学会了用模型的方法判断直线与平面、平面与平面的位置关 系, 体会到了作图判断位置关系的重要性.
点击进入课时训练
)
直线与平面的位置关系
【例 1】 下列命题中正确命题的个数是( ) ①如果 a、 b是两条直线, a∥b, 那么 a平行于经过 b的任何一个平面; ②如果直线 a和平面α满足 a∥α, 那么 a平行于平面α内的任何一 条直线; ③如果直线 a、b满足 a∥α, b∥α, a∥b; 则 ④如果直线 a、b和平面α满足 a∥b, a∥α, α, b⊄ 那么 b∥α; ⑤如果平面α的同侧有两点 A, 到平面α的距离相等, AB∥α. B 则 ( ) () () ( ) A 0 B2 C1 D 3
解析: 易知①正确, ②正确. ③中两条相交直线中一条与平面平 行, 另一条可能平行于平面, 也可能与平面相交, 故③错误. C . 选
平面与平面位置关系
【例 2】 已知下列说法: ①两平面α∥β, α, β, a∥b; a⊂ b⊂ 则 ②若两个平面α∥β, α, β, a与 b是异面直线; a⊂ b⊂ 则 ③若两个平面α∥β, α, β, a与 b一定不相交; a⊂ b⊂ 则 ④若两个平面α∥β, α, β, a与 b平行或异面; a⊂ b⊂ 则 ⑤若两个平面α∩β=b, α, a与β一定相交. a⊂ 则 其中正确的序号是 ( 将你认为正确的序号都填上) .
处理这类平面与平面位置关系的技巧是什么?(牢牢 抓住其特征和定义, 把文字语言或符号语言转化, 结合 空间想象全方位、多角度思考, 特别是特殊情况, 要学 会举反例否定)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和平面的位置关系有三种: 直线在平面内; 直线在平面内; 直线和平面相交; 直线和平面相交; 直线和平面平行. 直线和平面平行.
例1.空间四边形相邻两边中点的连线,平行于经过另 外两边的平面. 已知:空间四边形ABCD中,E、F分别是AB、AD的 中点. 求证:EF∥平面BCD.
证明:连结BD.
A 1个 C 3个
课后作业
课本习题2.1 第4、5、6题
前面我们已经研究了空间两条直线的位置关系, 今天我们开始研究空间直线和平面的位置关系.直 线和平面的位置关系有几种呢?我们来观察:黑板 上的一条直线在黑板面内;两墙面的相交线和地面 只相交于一点;墙面和天花板的相交线和地面没有 公共点,等等.如果把这些实物作出抽象,如把 “墙面”、“天花板”等想象成“水平的平面”, 把“相交线”等想象成“水平的直线”,那么上面 这些关系其实就是直线和平面的位置行的条件,缺一不可.
课堂练习
1、若直线∥平面α,则下列命题中,正确的是( A 平行于α内的所有直线 B 平行于过的平面与α的交线 C 平行于α内的任一直线 D 平行于α内的唯一确定的直线 )
2、点P不在三角形ABC所在的平面内,过P作平面α,使 三角形ABC的三个顶点到α的距离相等,这样的平面α共 有( ) B 2个 D 4个
相关文档
最新文档