立体几何-直线与平面的位置关系(习题)
数学一轮复习第七章立体几何第3讲空间点直线平面之间的位置关系学案含解析

第3讲空间点、直线、平面之间的位置关系[考纲解读]1。
理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理,并运用它们证明一些空间图形的位置关系的简单命题.(重点)2.主要考查平面的基本性质,空间两直线的位置关系及线面、面面的位置关系,能正确求出异面直线所成的角.(重点、难点) [考向预测]从近三年高考情况来看,尽管空间点、线、面的位置关系是立体几何的理论基础,但却很少独立命题.预测2021年高考会有以下两种命题方式:①以命题形式考查空间点、线、面的位置关系;②以几何体为载体考查线、面的位置关系或求异面直线所成的角.题型为客观题,难度一般不大,属中档题型.1.空间两条直线的位置关系(1)位置关系分类错误!错误!(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的□04锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:错误!(0°,90°].(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角错误!相等或互补.2.空间直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交错误!a∩α=A□021个平行错误!a∥α错误!0个在平面内错误!a⊂α错误!无数个续表图形语言符号语言公共点平面与平面平行错误!α∥β错误!0个相交错误!α∩β=l错误!无数个3.必记结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过一点有且只有一条直线与已知平面垂直.(2)异面直线的判定定理平面外一点A与平面内一点B的连线与平面内不经过B点的直线互为异面直线.1.概念辨析(1)两两相交的三条直线最少可以确定三个平面.()(2)如果两个平面有三个公共点,则这两个平面重合.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b 不可能是平行直线.()(4)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()答案(1)×(2)×(3)√(4)×2.小题热身(1)对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线答案C解析不论l∥α,l⊂α还是l与α相交,α内都存在直线m 使得m⊥l。
(完整版)高一必修二经典立体几何专项练习题

故四边形 BMNF 是平行四边形,∴ MN // BF ,…………8 分
而 BF 面 ABC1 , MN 平面 ABC1 ,∴ MN // 面 ABC1 ……10 分
18.(本题 12 分)已知四棱锥 P-ABCD,底面 ABCD 是 A 60 、边长为 a 的菱形,又
PD 底面ABCD,且 PD=CD,点 M、N 分别是棱 AD、PC 的中点.
P N
D
M
C
A
B
16.(本题 10 分) 如图所示,在直三棱柱 ABC A1B1C1 中, ABC 90 , BC CC1 , M 、 N 分别为 BB1 、 A1C1 的中点. (Ⅰ)求证: CB1 平面ABC1 ; (Ⅱ)求证: MN // 平面ABC1 .
解析:(Ⅰ)在直三棱柱 ABC A1B1C1 中,
aα
a∩α=A
2.2.直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
a∥α
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,
则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ
=> a∥α
a∥b
2.2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则
侧面 BB1C1C ⊥底面 ABC,且侧面 BB1C1C ∩底面 ABC= BC , ∵∠ ABC=90°,即 AB BC , ∴ AB 平面 BB1C1C
∵ CB1 平面 BB1C1C ,∴ CB1 AB . ……2 分
∵ BC CC1 , CC1 BC ,∴ BCC1B1 是正方形,
∴ CB1 BC1 ,∴ CB1 平面ABC1 . …………… 4 分
上海立体几何配套复习题(一)

专题01空间点、直线、平面之间的位置关系综合题专练一、单选题1.(2021·上海市松江二中高二月考)已知直线a ,b 及平面 α,有下列命题:①//a b a b αα⊥⎧⇒⎨⊥⎩;②//a b a b αα⊥⎧⇒⊥⎨⎩;③//////a b a b αα⎧⇒⎨⎩;④//a b a b αα⎧⇒⊥⎨⊥⎩.则其中正确命题的个数为()A .0个B .1个C .2个D .4个2.(2021·上海杨浦·复旦附中高二期中)如图是正方体的平面展开图,在这个正方体中,①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60°;④DM 与BN 垂直.以上四个命题中,正确命题的序号是()A .①②③B .②④C .③④D .②③④3.(2021·长宁区·上海市延安中学高二期中)已知正方体1111ABCD A B C D -,P 为1CC 中点,对于下列两个命题:(1)过点P 有且只有一条直线与直线AB ,11A D 都相交;(2)过点P 有且只有一条直线与直线AB ,11A D 都成45°角.则以下判断正确的是()A .(1)为真命题;(2)为真命题B .(1)为真命题;(2)为假命题C .(1)为假命题;(2)为真命题D .(1)为假命题;(2)为假命题4.(2021·上海普陀·曹杨二中高二月考)下列图形中,一定可以确定一个平面的是()A .四边形B .空间三点C .两两相交且交点均不相同的四条直线D .交于同一点的三条直线5.(2021·上海市大同中学)已知a 和b 是成80 角的两条直面直线,则过空间一点且与a b 、都成50 角的直线共有()A .2条B .3条C .4条D .无数条6.(2021·上海市杨浦高级中学高二期末)已知直线a 、b 是两条不重合的直线,α、β是两个不重合的平面,则下列命题正确的是()A .若a α⊥,a β⊥,则//αβB .若//a α,//b β,//αβ,则//a bC .若a b ⊥r r ,b α⊥,//a β,则//αβD .若//αβ,a 与α所成角和b 与β所成角相等,则//a b7.(2021·上海市洋泾中学高二月考)关于直线l 、m 及平面α、β,下列命题中正确的是()A .若//l α,m αβ= ,则//l mB .若l α⊥,//m α,则l m ⊥C .若//l α,//m α,则//l mD .若//l α,m l ⊥,则m α⊥8.(2021·上海市建平中学高二月考)ABC 的三边长分别3、4、5,P 为ABC 所在平面外一点,令集合Q ={P P 为ABC 所在平面外一点,且到三边所在直线的距离都是3},则集合Q 的子集个数为()A .2B .4C .8D .169.(2021·上海市亭林中学高二期中)设直线,a b 与平面α所成的角相等,则直线,a b 的位置关系为()A .平行B .平行或异面C .平行或相交D .平行、相交或异面10.(2021·上海市进才中学高二期中)已知平面l αβ= ,B ,C l ∈,A α∈,且A l ∉,D β∈,且D l ∉,则下列叙述错误的是()A .直线AD 与BC 是异面直线B .直线CD 在α上的射影可能与AB 平行C .过AD 有且只有一个平面与BC 平行D .过AD 有且只有一个平面与BC 垂直二、填空题11.(2021·上海奉贤区·高二期末)在《九章算术》中定义“底面为直角三角形而有一侧棱垂直于底面的三棱锥为鳖臑”.如图,在鳖臑ABCD 中,侧棱AB ⊥底面BCD ,1AB =,2BC =,1CD =,则异面直线AC 与BD 所成角的大小为______.12.(2021·上海市建平中学高二期中)已知圆锥的轴截面PAB 是等边三角形,C 为底面弧AB 的中点,D 为母线PB 的中点,则异面直线PA 和CD 所成角的大小为________13.(2021·上海静安·高二期末)如图,三棱锥P -ABC 中,PA ⊥底面ABC ,底面ABC 是边长为2的正三角形,且23PA =,若M 是BC 的中点,则异面直线PM 与AC 所成角的大小是__________(结果用反三角函数值表示)14.(2021·上海市复兴高级中学)四面体ABCD 中,2AB CD ==,4AC AD BC BD ====,则异面直线AB 与CD 的距离为________15.(2021·上海普陀区·曹杨二中高二期末)已知空间四边形ABCD ,2AB CD ==,且AB 与CD 所成的角为3π,设E 、F 分别是BC 、AD 的中点,则EF 的长度为______.16.(2021·徐汇区·上海中学高二月考)下列判断中:①三点确定一个平面;②一条直线和一点确定一个平面;③两条直线确定一个平面;④三角形和梯形一定是平面图形;⑤四边形一定是平面图形;⑥六边形一定是平面图形;⑦两两相交的三条直线确定一个平面.其中正确的是___________.17.(2021·上海市中国中学高二月考)一个正方体的展开图如图所示,B 、C 、D 为原正方体的顶点,A 为原正方体一条棱的中点,在原来的正方体中,直线CD 与AB 所成角的余弦值为______.18.(2021·上海市洋泾中学高二月考)如图,1111ABCD A B C D -是棱长为1的正方体,一个质点从A 出发沿正方体的面对角线运动,每走完一条面对角线称为“走完一段”,质点的运动规则如下:运动第i 段与第2i +所在直线必须是异面直线(其中i 是正整数),质点走完的第99段与第1段所在的直线所成的角是___________.19.(2021·上海徐汇区·位育中学)在棱长为2的正方体1111ABCD A B C D -中,M N 、分别是111A B CC 、的中点,用过D M N 、、三点的平面截正方体,则截面图像的周长为__________20.(2021·上海市建平中学高二月考)已知异面直线,a b 所成角为3π,过空间一点P 有且仅有2条直线与,a b 所成角都是θ,则θ的取值范围是___________.三、解答题21.(2021·上海市松江二中高二月考)在正四棱柱1111ABCD A B C D -中,AB =2,过1A 、1C 、B 三点的平面截去正四棱柱的一个角后,得到如图所示的几何体111ABCD A C D -,且这个几何体的体积为203,点P ,Q 分别是1A D 和AC 的中点.(1)求异面直线1D P 与1C Q 所成角的大小;(2)求直线C 1D 与平面11A C B 所成角的大小.(用反三角函数表示)22.(2021·上海市西南位育中学高二期中)长方体1111ABCD A B C D -中,11,2AB AA AD ===,点E 是棱BC 的中点.(1)求异面直线1BB 与1D E 所成角的大小;(2)求点A 到平面1A DE 的距离.23.(2021·上海杨浦·复旦附中高二期中)已知正方体1111ABCD A B C D -的棱长为2,若M ,N 分別是111,CC A D 的中点,作出过M ,N ,B 三点的截面,并求出这截面的周长.24.(2021·上海市奉贤区奉城高级中学高二期中)如图所示,在长方体1111ABCD A B C D -中,1AB =,2BC =,15CC =,M 为棱1CC 上一点.(1)若132C M =,求异面直线1A M 和11CD 所成角的正切值;(2)若11C M =.试证明:BM ⊥平面11A B M .25.(2021·宝山区·上海交大附中高二期中)如图,正四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱长为1.(1)求直线1A C 与直线1AD 所成角的余弦值;(2)求二面角11D A C A --平面角大小的余弦值;(3)在直线1A C 上是否存在一个动点P ,使得P 在平面1D AC 的投影恰好为1D AC 的重心,若存在,求线段PC 的长度,若不存在,说明理由.26.(2021·上海市大同中学)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2,7AB BC AD CD ====,3,120,PA ABC G =∠=︒为线段PC 上的点.(1)证明:BD ⊥平面PAC ;(2)若G 是PC 的中点,求DG 与平面PAC 所成的角的正切值;(3)在(2)的条件下求异面直线BG 与PD 所成角的余弦值.27.(2021·上海市大同中学)已知长方体ABCD﹣A1B1C1D1中,M,N分别为AA1和AB的中点.求证:(1)D1,M,N,C四点共面;(2)D1M、DA、CN三线共点.28.(2021·上海市中国中学高二月考)已知空间四边形SABC各边及对角线的长都是1.(1)求边SA、BC的距离;(2)求异面直线SB与AC所成角大小.29.(2021·上海市建平中学高二月考)如图,已在正四棱锥P ABCD -,4PA =,底面边长为4,Q 为PB 的中点.(1)求作平面QAD 与正四棱锥P ABCD -的截面;(2)求二面角Q AD B --的大小.30.(2021·上海徐汇区·位育中学)如图所示,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠= ,12CA CB CC ===.点1D D ,分别是棱11AC A C ,的中点.(1)求证:11、、、D B B D 四点共面;(2)求直线1BC 与平面11DBB D 所成角的大小.。
高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。
北京市第四中学高考数学:解析几何、立体几何篇第7讲立体几何——直线与平面的位置关系(2)

直线与平面的位置关系(2)
~ 第1页 ~
直线与平面的位置关系(2)
一、常规解题思路方法的小结
两个重要计算
1、角(线面角、二面角)的计算
2、点到面的距离计算
二、例题分析与习题
例 1.如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。
求证:(1)EF ∥平面ABC ;
(2)平面1A FD ⊥平面11BB C C .
第2页例2.如图,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分
别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.
(1)求以E 为顶点,以四边形
FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;
(2)证明:直线⊥1FG 平面1FEE ;
(3)求异面直线11E G EA 与所成角的正弦值.
例3如图,平面PAC ⊥平面ABC ,ABC Δ是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.
(I )设G 是OC 的中点,证明:
//FG 平面BOE ;(II )证明:在ABO Δ内存在一点
M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.
z
y x
E 1
G 1。
高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第2课

第一章 第2课时A 级——基础过关练1.若直线l 的方向向量为(2,1,m ),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,且l ⊥α,则m 的值为( )A .1B .2C .4D .-4【答案】C【解析】因为l ⊥α,所以直线l 的方向向量与平面α的法向量是共线向量,所以21=112=m2,解得m =4. 2.若平面α,β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确【答案】C【解析】因为n 1·n 2=(2,-3,5)·(-3,1,-4)=2×(-3)+(-3)×1+5×(-4)=-29≠0,所以n 1与n 2不垂直,显然n 1与n 2不平行,所以α,β相交但不垂直.3.已知点A (0,0,0),B (-1,0,-1),C (1,2,1),P (x ,y ,1),若PA ⊥平面ABC ,则点P 的坐标为( )A .(1,0,-1)B .(-1,0,1)C .(1,-1,1)D .(-1,0,0)【答案】B【解析】由已知得PA →=(-x ,-y ,-1),AB →=(-1,0,-1),AC →=(1,2,1).若PA ⊥平面ABC ,则⎩⎪⎨⎪⎧PA →·AB →=0,PA →·AC →=0,即⎩⎪⎨⎪⎧x +1=0,-x -2y -1=0,解得x =-1,y =0.故点P 的坐标为(-1,0,1).故选B . 4.在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1),则直线PA 与底面ABCD 的关系是( )A .平行B .垂直C .在平面内D .成60°角【答案】B【解析】因为AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1),所以AP →·AB →=(-1)×2+2×(-1)+(-1)×(-4)=0,AP →·AD →=(-1)×4+2×2+(-1)×0=0.所以AP →⊥AB →,AP →⊥AD →,即AP ⊥AB ,AP ⊥AD .又因为AB ∩AD =A ,所以直线PA ⊥平面ABCD .5.已知直线l 1的方向向量a =(2,-2,x ),直线l 2的方向向量b =(2,y ,-2),若|a |=3,且l 1⊥l 2,则x -y 的值是( )A .-4或0B .4或1C .-4D .0【答案】A【解析】因为|a |=22+(-2)2+x 2=3,所以x =±1.又因为l 1⊥l 2,所以a ⊥b ,所以a ·b =2×2-2y -2x =0,所以y =2-x .当x =1时,y =1;当x =-1时,y =3.所以x -y =0或x -y =-4.6.设u =(-2,2,t ),v =(6,-4,5)分别是平面α,β的法向量,若α⊥β,则实数t 的值是( )A .1B .2C .3D .4【答案】D【解析】因为α⊥β,所以u ⊥v ,则u ·v =-12-8+5t =0,解得t =4.故选D . 7.(多选)四边形ABCD 是菱形,PA ⊥平面ABCD ,则下列等式成立的是( ) A .PA →·AB →=0 B .PC →·BD →=0 C .PA →·CD →=0 D .PC →·AB →=0 【答案】ABC【解析】因为PA ⊥平面ABCD ,所以PA →·AB →=0,PA →·CD →=0成立.又因为PC →·BD →=(PA →+AB →+AD →)·(AD →-AB →)=PA →·(AD →-AB →)+AD →2-AB →2=0成立,PC →·AB →=(PA →+AB →+AD →)·AB →=PA →·AB→+AB →2+AD →·AB →≠0.故选项ABC 成立.8.已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =____________. 【答案】22【解析】由题意可得a ·b =1×1×cos45°=22,由向量垂直的充分必要条件可得(k a -b )·a =0,即k ×a 2-a ·b =k -22=0,解得k =22. 9.平面α与平面β的法向量分别是m ,n ,直线l 的方向向量是a ,给出下列论断: ①m ∥n ⇒α∥β;②m ⊥n ⇒α⊥β; ③a ⊥m ⇒l ∥α;④a ∥m ⇒l ⊥α.其中正确的论断为________(把正确论断的序号填在横线上). 【答案】①②④【解析】法向量平行的两个平面互相平行,①正确;法向量垂直的两个平面互相垂直,②正确;直线的方向向量与平面的法向量垂直时,直线与平面平行或在平面内,③错误;直线的方向向量与平面的法向量共线,则直线与平面垂直,④正确.10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P 使MD ⊥平面PAC?解:如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,a )满足条件, 则PA →=(1,0,-a ),AC →=(-1,1,0), 设平面PAC 的法向量n =(x 1,y 1,z 1). 由⎩⎪⎨⎪⎧PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧x 1-az 1=0,-x 1+y 1=0,令x 1=1,得y 1=1,z 1=1a,所以n =⎝ ⎛⎭⎪⎫1,1,1a .若MD ⊥平面PAC ,则MD →∥n .因为MD →=⎝⎛⎭⎪⎫-1,-1,-12,所以a =2.又因为0≤a ≤1,所以不存在点P 使MD ⊥平面PAC .B 级——能力提升练11.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点,则△APM 的面积为( )A . 2B .3C .2 2D .2 3【答案】B【解析】以D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .依题意得D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0),所以PM →=(2,1,-3),AM →=(-2,2,0).所以PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,所以AM ⊥PM .又因为|AM →|=(-2)2+22+02=6,|PM →|=22+12+(-3)2=6.所以S △APM =12|AM →|·|PM →|=12×6×6=3.12.(多选)(2022年淄博期末)在空间直角坐标系Oxyz 中,平面α的法向量为n =(1,1,1),直线l 的方向向量为m ,则下列说法错误的是( )A .若m =⎝ ⎛⎭⎪⎫-12,-12,1,则l ∥αB .若m =(1,0,-1),则l ⊥αC .平面α与所有坐标轴相交D .原点O 一定不在平面α内 【答案】ABD【解析】对于A 选项,m ·n =-12-12+1=0,所以m ⊥n ,故l ∥α或l ⊂α,故A 错误;对于B 选项,m ·n =1+0-1=0,所以m ⊥n ,故l ∥α或l ⊂α,故B 错误;对于C 选项,由于法向量的横、纵、竖坐标均不取零,故平面不与坐标轴确定的平面平行,所以平面α与所有坐标轴相交,故C 正确;对于D 选项,由于法向量不能确定平面的具体位置,故不能确定原点O 与平面α的关系,故D 错误.故选ABD .13.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________.【答案】407,-157,4【解析】由题意可知BP →⊥AB →,BP →⊥BC →,所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+(-2)×z =0,(x -1)+5y +(-3)×(-2)=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4.14.(2021年北京期中)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,则A 1C 与平面C 1BD ________(填“垂直”或“不垂直”);A 1C 的长为________.【答案】垂直6【解析】设CB →=a ,CD →=b ,CC 1→=c ,由题意可得CA 1→=a +b +c ,则CA 1→·BD →=CA 1→·(CD →-CB →)=(a +b +c )·(b -a )=b 2-a 2+c ·b -c ·a =||c ·||b cos60°-||c ·||a cos60°=0,∴CA 1⊥BD ,同理可证CA 1⊥BC 1,∵BD ∩BC 1=B ,故CA 1⊥平面C 1BD .∵∠C 1CB =∠C 1CD =∠BCD =60°,CD =CC 1=1,∴CD =CB =CC 1=1,∴CA 1→2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +a ·c )=1+1+1+2⎝ ⎛⎭⎪⎫12+12+12=6,∴CA 1→=6,即A 1C 的长为6.15.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.在线段AN 上是否存在点S ,使得ES ⊥平面AMN?解:如图,以D 为坐标原点,建立空间直角坐标系.依题意,易得A (1,0,0),M (0,0,1),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0. 假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ). 又因为EA →=⎝ ⎛⎭⎪⎫12,-1,0,所以ES →=EA →+AS →=⎝ ⎛⎭⎪⎫12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,故λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22.经检验,当AS =22时,ES ⊥平面AMN .故线段AN上存在点S,使得ES⊥平面AMN.。
立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)

第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为错误!()A.5B.4C.9D.1[答案] D[解析]由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线错误!()A.平行B.垂直C.相交D.异面[答案] B[解析]当直尺垂直于地面时,A不对;当直尺平行于地面时,C不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是错误!()A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行...与β平行的直线...,则在α内不存在D.若m、n不平行...垂直于同一平面...,则m与n不可能[答案] D[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有错误!()A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[答案] A[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m.又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③.5.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,若过C1作C1H⊥平面ABC,垂足为H,则点H一定在导学号 92180601()A.直线AC上B.直线AB上C.直线BC上D.△ABC的内部[答案] B[解析]∵∠BAC=90°,∴BA⊥AC.又∵BC1⊥AC,∴AC⊥平面ABC1,∴平面ABC⊥平面ABC1.∵平面ABC∩平面ABC1=AB,∴C1在面ABC上的射影在直线AB上.6.设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有错误!() A.1条B.2条C.3条D.4条[答案] B[解析]如图,和α成30°角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°且BC∥l时,直线AC,AB都满足条件,故选B.7.(2016·浙江文)已知互相垂直的平面α、β交于直线l.若直线m、n满足m∥α,n⊥β,则错误!()A.m∥l B.m∥nC.n⊥l D.m⊥n[答案] C[解析]选项A,只有当m∥β或m⊂β时,m∥l;选项B,只有当m⊥β时,m∥n;选项C,由于l⊂β,∴n⊥l;选项D,只有当m∥β或m⊂β时,m⊥n,故选C.8.(2016·南安一中高一检测)如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱BC 和棱CC1的中点,则异面直线AC与MN所成的角为错误!()A.30°B.45°C.60°D.90°[答案] C[解析]如图,连接A1C1、BC1、A1B.∵M、N分别为棱BC和棱CC1的中点,∴MN∥BC1。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。