2.1.3空间
2.1_3 空间操作的教学要求(1)

任务书——步骤一:九宫格抽象性空间的划分与限定
1.作业目的: 1)学习对抽象空间概念的基本认识; 2)加强对九宫格空间围合、分割、限定等基本方法
的学习与训练; 3)训练学生从三维实体模型去摸索抽象空间发展的
可能性; 2.作业内容:
分别制作两个9cmx9cmx9cm的九宫格立方体,利用空 间围合、分割、限定的基本方法形成几个不同的部分空 间,各空间须相互关联,有内在的秩序,成为一个整体。
通过秩序生成空间序列
建筑就像电影一样,离不开时间和运动的维度。 人们会按照序列性来理解和研究一幢建筑。建造一幢 建筑就是预测和寻求人们行经路线的连接和对比的效 果……从连续的镜头/序列来看,建筑就是建筑师通 过剪辑、定格和开场来完成的……
——尤哈尼·帕拉斯玛 “建筑和电影中的居住空间”
教学目标
课程尝试一种新的设计训练模式,从空间的形式 逻辑着手,而不是从功能分析着手开始推进设计,把 空间构成训练转化成建筑设计的有机组成。从“空间 /功能”这个建筑基本关系出发,通过一系列的训练, 把抽象的空间构成发展为丰富具体的空间序列;从抽 象的模型操作,进行空间组织的概念性推理,去寻求 空间发展的多样性和空间使用的可能性,达到对建筑 空间设计的方法与过程、理性与现实的统一。
空间的能力; 4)分析比较三种空间的转化成果
2.作业内容: 进行多种九宫格网格空间的演变组合,利用控制线等
基本处理方式:连接、接触、包容、相交、叠加,制作一个 较完整、复杂的空间组合模型,形成一个全新的有多种包容 和发展可能用途的空间秩序。
任务书——步骤二:九宫格可能性空间的转化与变形
3.作业步骤: 选择利用控制线进行多种网格空间的演变,寻求空间
任务书——步骤三:九宫格概念性功能空间设计
2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

探究( 探究(二):平面与平面之间的位置关系
思考1:拿出两本书,看作两个平面, 思考1:拿出两本书,看作两个平面,上 1:拿出两本书 左右移动和翻转, 下、左右移动和翻转,它们之间的位置 关系有几种变化? 关系有几种变化? 思考2:如图,围成长方体 思考2:如图, 2:如图 ABCD-A′B′C′D′的 ABCD-A′B′C′D′的 D′ 六个面, 六个面,两两之间 A′ 的位置关系有几种? 的位置关系有几种? D
课堂练习( ):过平面外一点可作多 课堂练习(一):过平面外一点可作多 少条直线与这个平面平行? 少条直线与这个平面平行?无数条 若直线l平行于平面α 则直线 与平面 若直线 平行于平面α,则直线l与平面 平行于平面 内的直线的位置关系如何? α内的直线的位置关系如何? 平行或异面
P
l
α
α
课堂练习( ):若两条平行直线中有 课堂练习(二):若两条平行直线中有 一条平行于一个平面, 一条平行于一个平面,那么另一条也平 行于这个平面吗? 行于这个平面吗?
课堂练习( ):已知平面α 课堂练习(三):已知平面α,β和直 已知平面 ,则直 线a,b,且α∥β,a ⊂ α , b ⊂ β,则直 与平面β的位置关系如何?直线a 线a与平面β的位置关系如何?直线a与 直线b的位置关系如何? 直线b的位置关系如何?
a α
b β
理论迁移
给出下列四个命题: 例1 给出下列四个命题: (1)若直线 上有无数个点不在平面α内,则 (1)若直线l上有无数个点不在平面α 若直线 上有无数个点不在平面 l∥α. (×) ∥α. (2)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (2)若直线 与平面α平行,则l与平面α内的 任意一条直线都平行. 任意一条直线都平行. (×) (3)如果两条平行直线中的一条与一个平面平 (3)如果两条平行直线中的一条与一个平面平 那么另一条也与这个平面平行. 行,那么另一条也与这个平面平行. (×) (4)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (4)若直线 与平面α平行,则l与平面α内的 任意一条直线都没有公共点. 任意一条直线都没有公共点. ( ) 其中正确命题的个数共有__ __个 其中正确命题的个数共有__个. 1
人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

2.1.3空间中直线与平面之间的位置关系教案教学目标:1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系。
2. 学会用图形语言、符号语言表示三种位置关系.教学重点:直线与平面的三种位置关系及其作用.教学难点:直线与平面的三种位置关系及其作用问题提出1. 空间点与直线,点与平面分别有哪几种位置关系?2. 空间两直线有哪几种位置关系?探究:直线与平面之间的位置关系思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系?思考2:如图,线段A ′B 所在直线与长方体ABCD-A ′B ′C ′D ′的六个面所在的平面各是什么位置关系?思考3:通过上面的观察和分析,直线与平面有三种位置关系有哪些?靠什么来划分呢?思考4:用图如何表示直线与平面的三种位置?如何用符号语言描述这三种位置关系?思考5:过平面外一点可作多少条直线与这个平面平行?若直线l 平行于平面α,则直线l 与平面α内的直线的位置关系如何?B A DCA' B'D' C'理论迁移例1 给出下列四个命题:(1)若直线l 上有无数个点不在平面α内,则l ∥α.(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.(3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(4)若直线l 在平面α内,且l 与平面β平行,则平面α与平面β平行.其中正确命题的个数共有 __个.随堂练习:判断正误1、若直线l 上有无数个点不在平面α内,则l ∥α( )2、若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行( )3、如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行( )4、如果平面外的两条平行直线中的一条直线与平面平行,那么另一条直线也与这个平面平行( )5、若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点( )巩固练习1.选择题(1)以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b其中正确命题的个数是 ( )(A )0个 (B )1个 (C )2个 (D )3个(2)已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有 ( )(A )2个 (B )3个 (C )4个 (D )5个(3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行 (B )相交 (C )平行或相交 (D )AB ⊂α(4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( )(A )与m ,n 都相交 (B )与m ,n 中至少一条相交(C )与m ,n 都不相交 (D )与m ,n 中一条相交(5)已知直线a 在平面α外,则 ( )(A )a ∥α (B )直线a 与平面α至少有一个公共点(C )a A α⋂= (D )直线a 与平面α至多有一个公共点课本49页练习课堂小结课外作业一、选择题: 1.下列命题中正确的是( )A .平行于同一个平面的两条直线平行B.垂直于同一条直线的两条直线平行C.若直线a与平面α内的无数条直线平行,则a∥αD.若一条直线平行于两个平面的交线,则这条直线至少平行于两个平面中的一个2.下列四个命题(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题是()A.(1),(3)B.(2),(4)C.(1),(3),(4)D.(2),(3),(4)3.已知平面α∥平面β,直线a∥α,直线b∥β那么,a与b的关系必定是()A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面二、填空题:4.已知直线a∥b,a、b 平面α,直线c与a异面,且b与c不相交,则c与α的位置关系是_______.5.给你四个命题:①过直线外一点,有且只有一条直线与该直线平行②过直线外一点,有且只有一个平面与该直线平行③过平面外一点,有且只有一条直线与该平面平行④过平面外一点,有无数多条直线与该平面平行其中真命题为_____________(写出序号即可)6.三个平面两两相交,有三条交线,则这三条交线的位置关系为_____________.自我评价:_______________________________________________________________________ _________________________________________________________________________________。
必修2-2.1.1-空间点、直线、平面之间的位置关系导学案3个课时

2.1《空间点、直线、平面之间的位置关系》导学案2.1.1平面第 ___ 周 高一 __________ 班 ____________ 合作小组姓名 ____________【学习目标】1•正确理解平面的概念;掌握平面的基本性质; 2•熟练掌握公理1、2、3的三种语言及相互转换; 3•会用三个公理证明简单的共点、共线、共面问题;【重点难点】教学重点:公理1、2、3 教学难点:三个公理的理解【学法指导】注意观察教室中的点、线、面,你会有很多的收获!预习案阅读课本P40-43,完成下面预习案一、知识梳理1. 平面概述 (1)平面的两个特征:①无限延展②没有厚度(2) 平面的画法: ________________________(3) 平面的表示: ______________________________________________________________________ 平面可以看成点的集合,点 A 在平面 内,记作 __________ ,点B 不在平面 内,记作 __________ 2. 三个公理公理1 : ___________________________________________________________________________ 用数学符号表示为: ___________________________________________________ 图形语言:公理2 : ___________________________________________________________________________ 用数学符号表示为: ___________________________________________________ 图形语言:公理3: _________________________________________________________________________________________________ 用数学符号表示为: ___________________________________________________ 图形语言:编写人:朱其山审核人:郭小艳 编写时间:2013-05-13. 公理2的三条推论:推论1经过一条直线和这条直线外的一点,有且只有一个平面;推论2经过两条相交直线,有且只有一个平面;推论3经过两条平行直线,有且只有一个平面二、问题导学为什么要学习三个公理?三个公理的作用是什么?三、预习自测1.卜列推断中,错误的是( ).A •A l,A ,B l,B l B. A,A ,B ,B I ABC.l , A l A D . A,B,C , A,B,C ,且A、B、C不共线,重合2. 下列结论中,错误的是( )A . 经过三点确定一个平面B. 经过一条直线和这条直线外一点确定一个平面C . 经过两条相交直线确定一个平面D. 经过两条平行直线确定一个平面3•用符号表示下列语句,并画出相应的图形:(1)直线a经过平面外的一点M;(2)直线a既在平面内,又在平面内;4•如图,试根据下列要求,把被遮挡的部分改为虚线:(1)AB没有被平面遮挡;(2)AB被平面遮挡【疑惑之处】探究案【例1】如图,用符号表示下图图形中点、直线、平面之间的位置关系【探究小结】【例2】在正方体ABCD-ABQQ,中,(1) AA与CC,是否在同一平面内?(2)点B,G,D是否在同一平面内?(3)画出平面AGC与平面BCQ的交线,平面ACD1与平面BDC1的交线.【探究小结】【探究小结】课堂检测1 .下列说法中正确的是().A.空间不同的三点确定一个平面 B.空间两两相交的三条直线确定一个平面C. 空间有三个角为直角的四边形一定是平面图形D. 和同一条直线相交的三条平行直线一定在同一平面内2. _______________________________________________ 给出下列说法,其中说法正确的序号依次是 ______________________________________________________ . ① 梯形的四个顶点共面; ② 三条平行直线共面;③ 有三个公共点的两个平面重合;④ 每两条都相交并且交点全部不同的四条直线共面 3.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是_________ .4. 下面四个叙述语(其中 A,B 表示点,a 表示直线, 表示平面) ①Q A ,B ,AB ;②Q A,B,AB ;变式:例2中,A i C 与面BC i D 相交于点M ,求证:G,M,0三点共线. 分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可【例3】已知 ABC 在平面 夕卜,它的三边所在的直线分别交面 一条直线上.于P,Q,R ,求证:P,Q,R 在同③Q A a,a,A ;④Q A,a,A a.其中叙述方式和推理都正确的序号是 ____________5•在棱长为a的正方体ABCD-A i B i C i D i中M,N分别是AA i, D1C1的中点,过点D, M , N三点的平面与正方体的下底面A i B i C i D i相交于直线I ,(i)画出直线I ;(2)设I I A j B, P,求PB i 的长;(3)求D i到|的距离.课后检测i .下列推断中,错误的是( ).A . A l,A,B l,B lB . A , A,B ,B I ABC . l ,A l AD . A, B,C,A,B,C,且A、B、C不共线,重合2. E、F、G、H是三棱锥A-BCD 棱AB、AD、CD、CB上的点,延长EF、HG交于P,则点P( ).A. —定在直线AC上B.—定在直线BD上C.只在平面BCD内D.只在平面ABD内3. 用一个平面截一个正方体,其截面是一个多边形,则这个多边形边数最多是( ).A. 三B.四C.六D.八4. 下列说法中正确的是( ).A. 空间不同的三点确定一个平面B. 空间两两相交的三条直线确定一个平面C. 空间有三个角为直角的四边形一定是平面图D. 和同一条直线相交的三条平行直线一定在同一平面内5. 两个平面若有三个公共点,则这两个平面____________6. 给出下列说法:① 梯形的四个顶点共面;② 三条平行直线共面;③有三个公共点的两个平面重合;④ 每两条都相交并且交点全部不同的四条直线共面.其中说法正确的序号依次是________ .7. 已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是________8. 求证:两两相交且不过同一个点的三条直线必在同一平面内已知:直线AB,BC,CA两两相交,交点分别为A,B,C,求证:直线AB,BC,CA共面.9.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EF和GH交于P点,求证:EF、GH、AC三线共点.2.1.2空间中直线与直线间的位置关系第 __ 周高一__________ 班_____________ 合作小组姓名 _____________【学习目标】1. 直线与直线之间的位置关系.2. 异面直线的定义、异面直线所成的角;【重点难点】教学重点:异面直线的定义;直线与直线之间的位置关系;教学难点:异面直线的定义【学法指导】多观察生活中事物,如建筑物、电线杆、马路、桥梁等并思考直线与直线的位置关系预习案阅读教材P44-50,完成下面填空一、知识梳理1 •空间两直线的位置关系相父直线:共面直线;异面直线:_____________ . ________________2.异面直线的概念与画法(1)异面直线的画法(注意:常用平面衬托法画两条异面直线)(2)异面直线所成的角:已知两条异面直线a,b ,经过空间任一点0作直线_________________ ,把a ,b 所成的锐角(或直角)叫异面直线a,b所成的角(或夹角)•注意:①a,b所成的角的大小与点0的选择无关,为了简便,点0通常取在异面直线的一条上;②异面直线所成的角的范围为 ___________ ,③如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作 a b.(3)_________________________________________________________________________________ 空间等角定理: _______________________________________________________________________________二、问题导学空间两条直线位置关系有几种?其中,哪一种关系是平面几何中没有学过?三、预习自测1 •分别在两个平面内的两条直线间的位置关系是().A.异面B.平行C.相交D.以上都有可能2 .直线I与平面不平行,则(A. l与相交B. IC. I与相交或ID.以上结论都不对3•若两个平面内分别有一条直线,这两条直线互相平行,则这两个平面的公共点个数()A.有限个B.无限个C.没有D.没有或无限个4•如果OA // O'A',OB // O'B',那么AOB与A O'B'_____________________ (大小关系)探究案【例1】空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形进一步探究1:若AC=BD,四边形EFGH是什么图形?探究2:在什么条件下,四边形EFGH是正方形?【探究小结】【例2】正方体ABCD ABGD,中,E,F分别为A1B11^C1的中点,求异面直线DB,与EF所成角的大小.【探究小结】【例3】如图,已知长方体 ABCD-A'B'C'D'中,AB ,3 , AD , AA '1.(1) BC 和AC '所成的角是多少度? (2) AA '和BC '所成的角是多少度?【探究小结】课堂检测B.某平面内的一条直线和这平面外的直线;D.不在同一平面内的两条直线;F.分别在两个不同平面内的两条直线;的一条直线;H.空间没有公共点的两条直线;I.既不相交,又不平行的两条直线 2•下图长方体中(1) 说出以下各对线段的位置关系 ①CA 1和BD 1是 __________________ 直线 ②BD 和B 1D 1是③BD 1和DC 是 ___________________ 直线(2) _________________________________ 与棱AB 所在直线异面的棱共有 _________________________________ 条? ⑶与对角线DB 1成异面直线的棱共有几条 ? (4)思考:这个长方体的棱中共有多少对异面直线?3•如图是一个正方体的展开图,如果将它还原为正方体,那么AB , CD , EF , GH 这四条线段 所在直线是异面直线的有 __________ 对?4•在平面内我们有 垂直于同一条直线的两条直线平行1.两条异面直线指:A.空间中不相交的两条直线; C.分别在不同平面内的两条直线; E.不同在任一平面内的两条直线;G.某一平面内的一条直线和这个平面外 ”在空间,这一结论是否一定成立?注:不是所有空间,若推广需证明其正确性5. “若直线a与直线b异面,直线b与直线C异面。
2.1.3--2.1.4 空间中直线与平面 平面与平面的位置关系

通过本节课的学习, 你有哪些收获? 1. 掌握了直线与平面的位置关系, 并会分析相关问题. 2. 掌握了平面与平面的位置关系, 并学会了解决相关问题. 3. 学会了用模型的方法判断直线与平面、平面与平面的位置关 系, 体会到了作图判断位置关系的重要性.
点击进入课时训练
)
直线与平面的位置关系
【例 1】 下列命题中正确命题的个数是( ) ①如果 a、 b是两条直线, a∥b, 那么 a平行于经过 b的任何一个平面; ②如果直线 a和平面α满足 a∥α, 那么 a平行于平面α内的任何一 条直线; ③如果直线 a、b满足 a∥α, b∥α, a∥b; 则 ④如果直线 a、b和平面α满足 a∥b, a∥α, α, b⊄ 那么 b∥α; ⑤如果平面α的同侧有两点 A, 到平面α的距离相等, AB∥α. B 则 ( ) () () ( ) A 0 B2 C1 D 3
解析: 易知①正确, ②正确. ③中两条相交直线中一条与平面平 行, 另一条可能平行于平面, 也可能与平面相交, 故③错误. C . 选
平面与平面位置关系
【例 2】 已知下列说法: ①两平面α∥β, α, β, a∥b; a⊂ b⊂ 则 ②若两个平面α∥β, α, β, a与 b是异面直线; a⊂ b⊂ 则 ③若两个平面α∥β, α, β, a与 b一定不相交; a⊂ b⊂ 则 ④若两个平面α∥β, α, β, a与 b平行或异面; a⊂ b⊂ 则 ⑤若两个平面α∩β=b, α, a与β一定相交. a⊂ 则 其中正确的序号是 ( 将你认为正确的序号都填上) .
处理这类平面与平面位置关系的技巧是什么?(牢牢 抓住其特征和定义, 把文字语言或符号语言转化, 结合 空间想象全方位、多角度思考, 特别是特殊情况, 要学 会举反例否定)
§2.1.2-3空间中直线与直线之间的位置关系(三)

2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
17
D
A B
C
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
13
§2.1.2-3空间中直线与直线之间的位置关系(三)
求异面直线间的距离的方法:
——找异面直线的公垂线段(既垂直,又相交) 求异面直线间的距离的步骤: (1)找(作)异面直线的公垂线段——作; (2)证(说)此即为所求的距离——证; (3)求距离——算.
(1)求证:MN⊥AC
(2)当AB=CD=a,BD=b,
B M α
2013-1-29 重庆市万州高级中学 曾国荣 wzzxzgr@
A N C
16
AC=c时,求MN的长.
D
§2.1.2-3空间中直线与直线之间的位置关系(三)
课堂练习 <<教材>> P.5
练习1.2
书面作业
<<教材>> P.20 习题1.1 A组1
§2.1.2-3空间中直线与直线之间的位置关系(三)
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.1.2-3空间中直线与直线之间的位置关系(三)
教学目的:
1. 理解两条异面直线垂直的概念; 2.了解两条异面直线的公垂线、公垂线段 3.会求两条异面直线间的距离及主要方法。
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
2
§2.1.2-3空间中直线与直线之间的位置关系(三)
教学重点:
异面直线间的距离。
教学难点:
两条异面直线的距离的求法.
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
2.1.3空间中直线与直线之间的位置关系

H
所以 EH//FG,且EH=FG.
所以,四边形EFGH是平行四边形.
A
AA1 AD A 1B1 B1C1 CC1 CD
同一平面内,平行于第三条直线的两条直线互相平行
公理4 平行于同一条直线的两条直线互相平行
D1 A1 D A B B1 C1
C
空间四边形ABCD中,E,F,G,H分别是AB,BC,CD ,DA 的中点。求证,四边形EFGH是平行四边形.
证明:连接BD, 因为 EH是△ABD的中位线, 所以 EH//BD,且EH=1/2BD. 同理,FG//BD,且FG=1/2BD.
人教版必修二
第二章 点、直线、平面之间的位置关系 2.1.3空间中直线与直线之间的位置关系
问题:平面几何中,两条直线的位置关系:
平行或相交
在空间中是否还是如此呢?
在正方体A1B1C1D1-ABCD中,说出下列各对线段的位置关系
D1 (1)AB和C1D1; (2)A1C1和AC; (3)A1C和D1B: A1
C1
B1
(4)AB和CC1;
(5)BD1和A1C1; A
D
C
B
异面直线:
不同在任何一个平面内的两条直线。 (即既不平行也不相交)
异面直线的画法: b
b a
α
aαaFra bibliotek1、平行b
没有公共点
共面 2、相交 A α
a b 有且只有一个公共点
ab A
a
3、异面 α
A
b
没有公共点
练习1:判断下列说法的对错
1、分别在两个平面内的两条直线一定是异面直线;
F F
2、a , b , 则a、b一定异面;
空间理论

对于空间一词的解释,开始它是一个地理概念,一般词典上解释为物质存在的一种客观形式,是由长度、宽度、高度等因素表现出来,是物质存在的广延性和伸张性的表现。
它是我们经验可以感知的具体存在的本体。
空间观念在社会学上的意义则是处于历史性的变化之中。
一般认为空间既有具体的物质形式,同时也有精神的建构。
空间既有物质属性,也有它的精神属性,如我们所知道的社会空间、国家空间、日常生活空间、城市空间、经济空间、政治空间等等概念。
比如对城市空间的理解,既可以表达为被物理与经验地意识为形式和过程,意识为都市生活可衡量可标识的形状和实践;同时它也是一种思想性和观念性的领域,在形象性、自足性的思想和符号化的表象中概念化,是一种想象的构想性空间。
即便在日常生活中,不同的群体和人们也是根据不同的社会纽带组成不同的空间联系,这种空间联系既有文化的,又有社会的,也有宗教的。
空间结构的联系显现在人们日常生活的各个层面。
在西方学者空间理论分析中,空间通常分为第一空间、第二空间和第三空间。
所谓第一空间指的是空间形式具象的物质性,它是由经验来描述的事物,而第二空间指的是人类认知形式中的空间性,它是由空间的观念进行再表征的。
第三空间则结合了第一空间和第二空间视角,同时又开展了地理性和空间性想象的范围。
在这一空间中,是既真实又想象化的。
而通常第一空间被认为是真实的,而第二空间被认为是想象的。
西方大多数社会学研究者多将空间作社会文化意义上的设释。
在列斐伏尔看来,空间不仅是物质的存在,也是形式的存在。
主张从政治经济角度对待空间,认为空间是社会的产物,“空间就是(社会)产品”,“它真正是一种充斥着各种意识形态的产物”。
福柯则从观念史的角度来对待空间。
认为空间是权力实施的手段和媒介,权力是借助空间的物理性发挥作用。
一般空间理论家都认为,空间知识的生产主要是通过话语建构式的空间再现、通过精神性的空间活动来完成的。
认为,在日常生活里我们每一个人心目中都会有关于空间的想象,这便是“心目中的地图”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2填空 ①如果一条直线和一个平面_没__有__公__共__点____,那么我 们就说这条直线和这个平面平行。
②直线a在平面α外,是指直线a和平面α___相__交__或 ___平__行___。
③直线与平面的位置关系按三种分为平__行___或 __相__交____或 ___直__线__在__平__面__外___。 按两种分为__直__线__在__平__面__内___或_直__线__在__平__面__外_。
一条直线都平行。
(3)若直线 l与平面 平行,则l与平面 内的任意
一条直线都没有公共点。
(4)若直线 l在平面 内,且l 与平面β平行,
则平面 与平面β平行。
其中正确命题的是(_3_)。
如果两条平行直线中的一条与一个平面平行,那
么另一条也与这个平面平行( × )
如果平面外的两条平行直线中的一条直线与平面
与各面关系?
D
C
A
B
D
A
C
B
直线与位置平面的关系
位置
关系
a在 内
公共点
有无数个公 共点
符号表示 a
a与 相交
有且仅一个 公共点 a∩=A
a与 平行
没有公共点 a∥
图形
.A
表示
例: 给出下列四个命题:
(1)若直线 l上有无数个点不在平面 内,则l∥ 。 (2)若直线l 与平面 平行,则l与平面 内的任意
课堂小结
空间中直线与平面的三种位置关系:
直线在平面内——有无数个公共点
相交——有且只有一个公共点 直线在平面外
平行——没有公共点
a α a
a α a∩=A
a α
a∥
1.看教材49页 2.作业:教材51页---53页
思 考
一支笔所在的直线与桌面所在的平面, 有哪几种位置关系?
2.1.3 空间中直线与平面之间的①直线在平面内
a
有无数个公共点;
a
②直线与平面相交
a
有a且∩只=有一A个公共点;
.A
a
③直线与平面平行
没有公共点。
a∥
直线 在平 面外
a
观察下面长方体,说出AB