湘教版七年级数学上册测试卷
湘教版七年级上册数学期末考试试卷及答案
![湘教版七年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/2ac17e9e0d22590102020740be1e650e53eacf4e.png)
湘教版七年级上册数学期末考试试题一、单选题1.27的倒数是()A .27B .-27C .72D .-722.下列各数中,比12-小的数是()A .-1B .0C .1D .-133.下列各式是一元一次方程的是()A .41y +B .313x+=C .21x x+=D .3x y +=4.下列等式变形正确的是()A .如果ax =ay ,那么x =yB .如果a =b ,那么a ﹣5=5﹣bC .如果a =b ,那么2a =3bD .如果a+1=b+1,那么a =b 5.“a 与b 的差的5倍”用代数式表示为()A .5a b -B .5(a-b )C .5a-bD .a-5b6.如果(x ﹣3)2+|y+1|=0,那么x ﹣y 等于()A .﹣4B .﹣2C .2D .47.下列说法错误的是()A .2231x xy --是二次三项式B .1x -+不是单项式C .213xy π-的系数是-13D .222xab -的次数是48.如图是一个小正方体的展开图,把展开图折叠成小正方体后,与“数”这个汉字相对的面上的汉字是()A .我B .很C .喜D .欢9.如果12313a a x y++与2213b x y --是同类项,那么a ,b 的值分别是()A .1a =,2b =B .1a =,3b =C .2a =,3b =D .3a =,2b =10.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A .这种调查的方式是抽样调查B .800名学生是总体C .每名学生的期中数学成绩是个体D .100名学生的期中数学成绩是总体的一个样本11.已知点A 、B 、C 三个点在同一条直线上,若线段AB =7,BC =5,则线段AC 的长为()A .2B .5C .12D .2或1212.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A .-8B .-23C .-68D .-32二、填空题13.将数据850000000用科学记数法表示为___.14.若52x +与27-+x 互为相反数,则x 的值为______.15.要反映我市一周内每天的最高气温的变化情况,宜采用___统计图(填“条形”、“折线”或“扇形”).16.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.17.已知:122=,224=,328=,42的个位数是6,52的个位数是2,62的个位数是4,……,则20212的个位数是___.18.已知方程||(1)30a a x -+=是关于x 的一元一次方程,则=a ____________.三、解答题19.计算:(1)253-+--;(2)2323323⎡⎤⎛⎫-÷-⨯-- ⎪⎢⎥⎝⎭⎣⎦.20.解方程(1)4321x x +=-;(2)223146x x +--=.21.先化简,再求值:()22222)3223(y x x xy x xy y -+--++,其中1x =,2y =-.22.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来.23.按要求解题:(1)如图,已知A 、B 、M 、N 四点,读下列语句,按要求作出图形(不写作法);①作线段AB ,射线AN ,直线BM ,且射线AN 与直线BM 相交于点P ;②在线段AB 的延长线上取点C ,使2BC AB =;(2)在图中,若AB =2cm ,D 为AB 的中点,E 为AC 的中点,求DE 的长.24.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h ,当逆风飞行时则需3.2h .已知风速为30km/h ,求无风时飞机的航速和这两个城市之间的距离.25.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,并按成绩分为“优秀、良好、合格、不合格”四个等级,绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)随机抽取了多少名学生的成绩进行分析?(2)请将两幅统计图补充完整;(3)若合格及以上等级均视为达标,则这次随机抽取的学生中有多少人达标?26.如图,点O 为直线AB 上一点,过点O 作直线OC ,已知∠AOC≠90°,射线OD 平分∠AOC ,射线OE 平分∠BOC ,射线OF 平分∠DOE .(1)求∠DOE 和∠DOF 的度数;(2)若∠DOC=3∠COF ,求∠AOC 的度数;(3)求∠BOF+∠DOC 的度数.27.一建筑公司在一次施工中,需要从工地运出80吨土方,现出动大、小不同的两种类型汽车,其中大型汽车比小型汽车多8辆,大型汽车每次可以运土方5吨,小型汽车每次可以运土方3吨.如果把这些土方全部运完,问需要大、小不同的两种类型汽车各多少辆?28.已知直线AB 经过点,90,O COD OE ∠=︒是BOC ∠的平分线.(1)如图1,若50AOC ∠=︒,则DOE ∠=_;(2)如图1,若AOC a ∠=,则DOE ∠=__;(用含a 的代数式表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置,其它条件不变,()2中的结论是否还成立?试说明理由参考答案1.C【分析】根据倒数的定义:相乘等于1的两数互为倒数直接判断即可.【详解】解:27的倒数是72,故选C.【点睛】本题考查了倒数的定义,掌握倒数的定义是解题的关键.2.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵|−1|>|12-|>|-13|,∴−1<12-<-13<0<2,∴比12-小的数是−1.故选:A.【点睛】此题主要考查了有理数大小比较,掌握有理数大小比较法则是解答本题的关键.3.C【分析】根据一元一次方程的定义逐个判断即可.【详解】解:A.不是方程,不是一元一次方程,故本选项不符合题意;B.不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.不是一元一次方程,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.D 【分析】根据等式基本性质逐项分析即可.【详解】A.如果ax =ay ,且0a ≠,那么x =y ,故该选项不正确,不符合题意;B.如果a =b ,那么a ﹣5=b ﹣5,故该选项不正确,不符合题意;C.如果a =b ,那么2a =2b ,故该选项不正确,不符合题意;D.如果a+1=b+1,那么a =b ,故该选项正确,符合题意;故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.5.B 【分析】根据题意,先算a 与b 的差,再算差的5倍,列式即可.【详解】解:∵a 与b 的差的5倍,∴列式为:5(a-b ).故选:B .【点睛】本题考查了列代数式,做题的关键是认真读题,理解题意中的关键词.6.D 【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值进而得出答案.【详解】解:2(3)|1|0x y -++= ,30x ∴-=,10y +=,解得:3x =,1y =-,则3(1)4x y -=--=.故选:D .【点睛】本题主要考查了非负数的性质,解题的关键是正确得出x ,y 的值.7.C 【分析】根据单项式和多项式的系数和次数的确定方法,逐项判断即可求解.【详解】解:A 、2231x xy --是二次三项式,正确,不符合题意;B 、1x -+不是单项式,正确,不符合题意;C 、213xy π-的系数为13π-,选项错误,符合题意;D 、222xab -的次数是4,正确,不符合题意;故选:C .【点睛】本题主要考查了单项式和多项式,熟练掌握单项式和多项式的系数和次数的确定方法是解题的关键.8.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,与“很”字相对的面上的汉字是“欢”,与“喜”字相对的面上的汉字是“数”,与“学”字相对的面上的汉字是“我”,故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.9.B 10.B 11.D 12.D 13.8.5×10814.-315.折线【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要反映我市一周内每天的最高气温的变化情况,宜采用折线统计图.故答案为:折线.16.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.17.2【分析】通过观察发现个位数字每4个循环一次,则22022的个位数字与21相同.【详解】解:∵21=2,22=4,23=8,24的个位数是6,25的个位数是2,…,∴个位数字每4个循环一次,∵2021÷4=505…1,∴22021的个位数字与21相同,∴22021的个位数字是2,故答案为:2.18.-1【分析】根据一元一次方程的定义可知|a|=1且a−1≠0.【详解】∵方程||(1)30a a x -+=是关于x 的一元一次方程,∴|a|=1且a−1≠0.解得a =−1.故答案是:−1.1,一次项系数不是0,这是这类题目考查的重点.19.(1)0(2)12-【分析】(1)先去绝对值,再按照有理数的加减运算法则计算即可;(2)先计算乘方,再按照有理数的运算顺序进行计算.(1)解:(1)原式=253-+-=0(2)=12-20.(1)2x =-(2)0x =【分析】(1)先移项、合并同类项,再求解即可;(2)先去分母,再去括号,然后移项、合并同类项,即可求解方程.(1)解:移项得:424x x -=-,合并得:24x =-,两边都除以2,得:2x =-因此,原方程的解是2x =-;(2)去分母,得:3(2)2(23)12x x +--=去括号,得:364612x x +-+=合并,得:x 0-=两边都乘以-1,得:0x =因此,原方程的解是0x =.21.5xy -,10【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【详解】解:()22222)3223(y x x xy x xy y -+--++=22222342333y x x xy x xy y -+----=5xy -;当1x =,2y =-时,原式=()512-⨯⨯-=10.22.(1)见解析(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2(3)存在;-4和3;122-和142【分析】(1)将已知数表示在数轴上即可;(2)根据相反数的定义,找出互为相反数的两个数,并写出这两个数之间的所有整数即可;(3)根据数轴上两点的距离等于7,即可求得.(1)解:将-4,122-,142,-1,2.5,3表示在数轴上,如图所示:(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2.(3)存在;∵437--=,1124722--=,∴两点之间的距离等于7的有:-4和3,122-和142.23.(1)①见解析;②见解析;(2)2cm 【分析】(1)根据题意画出图形即可;(2)根据中点的定义与线段的和差即可求得DE 的长.【详解】解:(1)①如图,连接AB 即为线段AB ,连接AN 并延长即为射线AN ,连接BM 并双向延长,交点为P ,②如图所示,BC=2AB ;(2)如图所示,标注字母:因为D 为AB 的中点,AB =2cm ,所以AD =1cm ,又因为BC =2AB ,则BC =4cm ,AC =6cm ,由于E 为AC 的中点,得:AE =3cm ,所以DE =AE -AD =2cm .24.无风时飞机的航速为610km/h ,这两个城市之间的距离为1856km 【分析】设无风时飞机的航速为x km/h ,根据题意,列出方程,即可求解.【详解】解:设无风时飞机的航速为x km/h ,由题意可得:2.9(30)3.2(30)x x ⨯+=⨯-,去括号得:2.987 3.296x x +=-,x=,移项合并得:0.3183x=,所以:610⨯+=km,两个城市之间的距离为:2.9(61030)1856答:无风时飞机的航速为610km/h,这两个城市之间的距离为1856km.25.(1)120名(2)见解析(3)108人【分析】(1)用不合格人数除以它对应的比例10%即可得出随机抽取的人数;(2)用1分别减去其它所占比例,即可求出合格级所占的百分比;用总人数乘良好级所占比例,即可得出良好的人数,将两幅统计图中的空缺补充完整;(3)用总人数减去不合格人数即可.(1)÷=(人)1210%120答:随机抽取了120名学生的成绩进行分析.(2)---=合格占:145%25%10%20%⨯=(人)良好的人数有:12025%30如图所示:(3)-=(人)12012108答:该校被抽取的学生中有108人达标.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD平分∠AOC,射线OE平分∠BOC,即可求出∠DOE,再根据OF平分∠DOE,即可求出∠DOF的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.27.大型汽车13辆,小型汽车5辆.【分析】设小型汽车x 辆,则大型汽车()8x +辆,根据题意列出一元一次方程进行求解.【详解】设小型汽车x 辆,则大型汽车()8x +辆,根据题意得()58380x x ++=解得,5x =大型汽车5813+=(辆)答:大型汽车13辆,小型汽车5辆.28.(1)25o ;(2)12DOE a ∠=;(3)成立,见解析.【分析】(1)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得40BOD ∠=︒、130BOC ∠=︒,再由角平分线的性质解得65BOE ∠=︒,最后由角的和差解题即可;(2)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得90BOD α∠=︒-、180BOC α∠=︒-,再由角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOE BOD ∠=∠-∠解题即可;(3)由角的补角定义解得180BOC α∠=︒-,由角的和差得 =90BOD COD BOC α∠=∠-∠- ,根据角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOD BOE ∠=∠+∠解题即可.【详解】解:(1)90COD ∠=︒ 90AOC BOD ∴∠+∠=︒50AOC ∠=︒40BOD ∴∠=︒9040130BOC COD BOD ∴∠=∠+∠=︒+︒=︒OE 平分BOC ∠1652BOE BOC ∴∠==︒654025DOE BOE BOD ∴∠=∠-∠=︒-︒=o故答案为:25o ;(2)由(1)知90AOC BOD ∠+∠=︒AOC α∠= 90BOD α∴∠=︒-180BOC α∴∠=︒-119022BOE BOC α∴∠=∠=︒-1190(90)22DOE BOE BOD a αα∴∠=∠-∠=︒--︒-=故答案为:12a ;(3)成立,理由如下:AOC α∠=180,BOC α∴∠=︒- 90COD ∠=90()18090BOD COD BOC αα∴∠=∠-∠=-︒-=- OE 是BOC ∠的平分线119022BOE BOC a∴∠=∠=- 11909022DOE BOD BOE a a a ∴∠=∠+∠=-+-= .。
湘教版七年级数学试卷上册
![湘教版七年级数学试卷上册](https://img.taocdn.com/s3/m/6d71006830126edb6f1aff00bed5b9f3f90f7282.png)
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1/22. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 下列各组数中,成等差数列的是()A. 1, 4, 7, 10B. 3, 6, 9, 12C. 2, 5, 8, 11D. 1, 3, 6, 104. 若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为()A. 10cmB. 12cmC. 16cmD. 18cm5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x6. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)7. 下列各图中,表示一次函数y = kx + b图象的是()A.B.C.D.8. 一个长方体的长、宽、高分别为a、b、c,那么它的体积V等于()A. abcB. a + b + cC. a^2 + b^2 + c^2D. ab + bc + ca9. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若a、b、c是等边三角形的边长,那么下列各式中正确的是()A. a + b + c = 3aB. a + b + c = 3bC. a + b + c = 3cD. a + b + c = 3abc二、填空题(每题5分,共25分)11. 若|2x - 1| = 3,则x的值为______。
12. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为______cm。
最新湘教版七年级数学上册单元测试题及答案全套
![最新湘教版七年级数学上册单元测试题及答案全套](https://img.taocdn.com/s3/m/d4d4099971fe910ef12df8dd.png)
最新湘教版七年级数学上册单元测试题及答案全套第一章有理数单元检测一、选择题(共10题;共30分)1.在-(-2),,0,(-2)3这四个数中,是正数的共有()A.4个B.3个C.2个D.1个2.|-2|的相反数是()A. B. C.2 D. -23.非负数是()A.正数B.零C.正数和零D.自然数4.式子﹣4﹣2﹣1+2的正确读法是()A.减4减2减1加2B.负4减2减1加2C.﹣4,﹣2,﹣1加2D.4,2,1,2的和5.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()A.﹣3℃B.7℃C.3℃D.﹣7℃6.-4的相反数为()A.0B.-4C.4D.-4或+47.现定义一种新运算“*”,规定a*b=ab+a﹣b,如1*3=1×3+1﹣3,则(﹣2*5)*6等于()A.120B.125C. -120D. -1258.下列数中与﹣2互为倒数的是()A.﹣2B.﹣C.D.29.绝对值大于2而小于5的所有正整数之和为()A.7B.8C.9D.1010.的绝对值是()A. -B. -3C.3D.二、填空题(共8题;共24分)11.绝对值大于1而不大于3的整数有________,它们的积是________.12.计算1+(﹣2)+3+(﹣4)+…+2015+(﹣2016)=________.13.如果把收入30元记作+30元,那么支出20元可记作________.14.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是________.15.在数轴上,表示-7的点在原点的________侧.16.在一条数轴上有A、B两点,点A表示数﹣4,点B表示数6,点P是该数轴上的一个动点(不与A、B 重合)表示数x.点M、N分别是线段AP、BP的中点(1)如果点P在线段AB上,则点M表示的数是________,则点N表示的数是________(用含x的代数式表示),并计算线段MN的长;(2)如果点P在点B右侧,请你计算线段MN的长________.17.已知,99999×11=1099989,99999×12=1199988,99999×13=1299987,99999×14=1399986,那么,99999×20=________.18.写出一个比﹣2小的有理数________三、解答题(共7题;共46分)19.矿井下A,B,C三处的标高分别是﹣37.4m,﹣129.8m,﹣71.3m,点A比点B高多少米?点B比C高多少米?20.化简:(1)+(﹣0.5)(2)﹣(+10.1)(3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)](6)﹣[﹣(﹣)].21.某集团公司对所属甲,乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲,乙两个工厂平均每月盈利或亏损多少亿元?22.已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,+0.6,0,﹣0.1,+0.3,﹣0.2(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为15±0.5(千克),则这10箱有几箱不符合标准的?23.小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):已知买入股票与卖出股票均需支付成交金额的0.15%的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?24.若甲、乙两数之和为﹣2015,其中甲数是﹣20,求乙数.25.若有理数a、b满足:|a+2|+|a+b|=0,求(a+b)﹣ab的值.参考答案一、选择题1.C2.D3.C4.B5.B6.C7.D8.B9.A10.D二、填空题11.±2,±3;3612.﹣100813.﹣20元14.1或﹣515.左16.;;517.199998018.-3三、解答题19.解:则A处比B处高﹣37.4﹣(﹣129.8)=92.4(米),点B比C高:﹣129.8﹣(﹣71.3)=﹣58.5(米).20.解:(1)+(﹣0.5)=﹣0.5;(2)﹣(+10.1)=﹣10.1;(3)+(+7)=7;(4)﹣(﹣20)=20;(5)+[﹣(﹣10)]=10;(6)﹣[﹣(﹣)]=﹣.21.解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,℃可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.℃甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元22.解(1)(+0.2)+(﹣0.2)+(+0.7)+(﹣0.3)+(﹣0.4)+(+0.6)+0+(﹣0.1)+(+0.3)+(﹣0.2)=0.6(千克)因此,这10箱苹果的总质量为15×10+0.6=150.6(千克)答:10箱苹果的总质量为150.6千克;(2)℃与标准质量的差值的10个数据中只有:+0.7>+0.5,+0.6>+0.5,且没有一个小于﹣0.5的,℃这10箱有2箱不符合标准.23.解周五收盘格:25+2﹣0.5+1.5﹣1.8+0.8=27(元),27×1000﹣25×1000﹣25×1000×0.15%﹣27×1000×0.15%=27000﹣25000﹣37.5﹣40.5=1922(元)答:小王在本周五以收盘价将全部股票卖出,他的收益1922元24.解:乙数=﹣2015﹣(20)=﹣2015+20=﹣1995.25.解:由题意得,a+2=0,a+b=0,解得,a=﹣2,b=2,则(a+b)﹣ab=4.第二章代数式单元检测一、选择题(共10题;共30分)1.下列各式中,代数式的个数是()①②26+a③b=ba④⑤2a﹣1⑥a⑦(a2﹣b2)⑧5n+2A.5B.6C.7D.82.下列运算正确的是()A.3a2﹣a=2aB.a﹣(1﹣2a)=a﹣1C.﹣5(1﹣a2)=﹣5﹣5a2D.a3+7a3﹣5a3=3a33.下列各组中的两个项,不属于同类项的是().A.2x2y与B.1与C.与D.与n2m4.按如图所示的程序计算,若开始输入n的值为1,则最后输出的结果是()A.3B.15C.42D.635.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3xD.﹣0.25ab+ ba=06.小亮从一列火车的第m节车厢数起,一直数到第n节车厢(n>m),他数过的车厢节数是()A.m+nB.n-mC.n-m-1D.n-m+17.某商场的营业额2009年比2008年上升10%,2010年比2009年上升10%,而2011年和2012年连续两年平均每年比上一年降低10%,那么2012年的营业额比2008年的营业额()A.降低了2%B.没有变化C.上升了2%D.降低了1.99%8.张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,则全部水蜜桃共卖()A.70a+30(a-b)B.70×(1+20%)×a+30C.100×(1+20%)×a-30(a-b)D.70×(1+20%)×a+30(a-b)9.下列各组单项式中,是同类项的是()A.3a与-2bB.与C.与D.与10.下列说法中不正确的有()①单项式﹣2πR2(π是圆周率)的系数是﹣2②23x5是8次单项式③xy ﹣1是一次二项式.A.1个B.2个C.3个D.4个二、填空题(共8题;共24分)11.代数式a2﹣用文字语言表示为________ .12.若单项式3ab m和﹣4a n b是同类项,则m+n=________13.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是________.14.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是________.15.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为________元.16.若n为整数,则=________.17.观察下列砌钢管的横截面图:则第n个图的钢管数是________(用含n的式子表示).18.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是________元.三、解答题(共6题;共46分)19.如图,当x=5.5,y=4时,求阴影部分的周长和面积.20.先化简再求值:(ab+3a2)﹣2b2﹣5ab﹣2(a2﹣2ab),其中:a=1,b=﹣2.21.5a-{-3b+[6c-2a-(a-c)]}-[9a-(7b+c)]22.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…﹣37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数的符号,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,请写出第2014个,第2015个单项式.23.已知a与b互为倒数,m与n互为相反数,x的绝对值等于1,求:2014(m+n)﹣2015x2+2016ab的值.24.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.参考答案一、选择题1. C2.D3.D4.C5.D6.D7.D8.D9.B 10. C二、填空题11.a的平方与b的倒数的差12. 2 13.4n+1 14.1 15.0.8a16.0 17.18.(a+1.25b)三、解答题19.解:阴影部分的周长=2(2x+2y)+2y=4x+6y,℃x=5.5,y=4,℃周长=4×5.5+6×4=22+24=46;阴影部分的面积=2x•2y﹣y(2x﹣0.5x﹣x)=4xy﹣0.5xy=3.5xy,℃x=5.5,y=4,℃面积=3.5×5.5×4=7720.解:原式=ab+3a2﹣2b2﹣5ab﹣2a2+4ab=a2﹣2b2,当a=1,b=﹣2时,原式=1﹣8=﹣721.解:原式=5a-[-3b+(6c-2a-a+c)]-(9a-7b-c)=5a-(-3b+6c-2a-a+c)-(9a-7b-c)=5a+3b-6c+2a+a-c-9a+7b+c=(5a+2a+a-9a)+(3b+7b)+(-6c-c+c)=-a+10b-6c22.解:(1)数字为﹣1,3,﹣5,7,﹣9,11,…,为奇数且奇次项为负数,可得规律:(﹣1)n(2n﹣1);字母因数为x,x2,x3,x4,x5,x6,…,可得规律:x n,故单项式的系数的符号是:(﹣1)n(或:负号正号依次出现;),绝对值规律是:2n﹣1(或:从1开始的连续奇数);(2)易得,这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(﹣1)n(2n﹣1)x n.(4)把n=2014、n=2015直接代入解析式即可得到:第2014个单项式是4027x2014;第2015个单项式是﹣4029x2015.23.解:℃a与b互为倒数,m与n互为相反数,x的绝对值等于1,℃ab=1,m+n=0,x2=1,℃2014(m+n)﹣2015x2+2016ab,=2016×0﹣2015×1+2016×1,=﹣2015+2016,=1.24.解:℃A=x2+ax,B=2bx2﹣4x﹣1,℃2A+B=2(x2+ax)+(2bx2﹣4x﹣1)=2x2+2ax+2bx2﹣4x﹣1=(2+2b)x2+(2a﹣4)x﹣1,由结果与x取值无关,得到2+2b=0,2a﹣4=0,解得:a=2,b=﹣1第三章一元一次方程单元检测一、选择题(共10题;共30分)1.解方程时,去分母正确的是()A. B. C. D.2.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场3.下列各种变形中,不正确的是()A.从2+x=5可得到x=5﹣2B.从3x=2x﹣1可得到3x﹣2x=﹣1C.从5x=4x+1可得到4x﹣5x=1D.从6x﹣2x=﹣3可得到6x=2x﹣34.下列方程中变形正确的是()①4x+8=0变形为x+2=0;②x+6=5﹣2x变形为3x=﹣1;③ =3变形为4x=15;④4x=2变形为x=2.A.①④B.①②③C.③④D.①②④5.右边给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.406.某品牌不同种类的文具均按相同折数打折销售,如果原价300元的文具,打折后售价为240元,那么原价75元的文具,打折后售价为()A.50元B.55元C.60元D.65元7.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.设该企业捐给乙校矿泉水x件,则下列相等关系成立的是()A.2x﹣400=2000B.2x+400=2000C.2x﹣400=2000﹣xD.2x+400=2000﹣x8.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A.104B.108C.24D.289.小刘用84米长的铁丝围成一个长方形,要使长比宽多4米,则长方形的长为()A.29B.27C.25D.2310.小新比小颖多5本书,小新是小颖的2倍,小新有书()A.10本B.12本C.8本D.7本二、填空题(共8题;共24分)11.已知等式是关于x的一元一次方程,则m=________。
湘教版七年级上册数学期末考试试卷及答案
![湘教版七年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/b9acf18d81eb6294dd88d0d233d4b14e84243e4c.png)
湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数是()A .13B .-13C .±13D .32.下面说法错误的是()A .M 是线段AB 的中点,则AB=2AM B .直线上的两点和它们之间的部分叫做线段C .一条射线把一个角分成两个角,这条射线叫做这个角的平分线D .同角的补角相等3.已知-25a 2mb 和7b 3-na 4是同类项,则m +n 的值是()A .2B .3C .4D .64.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种6.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°7.已知0<x <1,则2x 、x 、1x大小关系是()A .2x <x<1xB .x<2x <1xC .x<1x <2x D .1x<x <2x 8.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()A .6折B .7折C .8折D .9折9.下列几何图形中,是棱锥的是()A .B .C .D .10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上随意画出一条长2021cm 长的线段AB ,则线段AB 盖住的的整点有()个A .2018或2019B .2019或2020C .2022或2023D .2021或202211.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°12.解方程2(3)3(4)5x x ---=时,下列去括号正确的是()A .23345x x --+=B .26345x x --+=C .263125x x ---=D .263125x x --+=二、填空题13.据报道,我国因环境问题造成的经济损失每年高达680000000元,这个数用科学记数法可表示为______________________元.14.若方程3511x +=与6318x a +=的解相同,则=a ____________.15.已知∠α=72°36′,则∠α的余角的补角是________度.16.若22x x +的值是5-,则2365x x +-的值是________________.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2021次输出的结果为___________.18.1∠与2∠互为余角,若13420∠=︒',则2∠=_______.三、解答题19.计算(1)()232223|3|----÷-(2)1234602345⎛⎫⨯-+-+ ⎪⎝⎭20.解下列方程(1)52(32)3x x --=-(2)11232x x x +--=-21.先化简,再求值:()()22522367ab ab a ab a +---,其中a b 、满足()21103a b ++-=22.如图,线段AD=8cm ,线段AC=BD=6cm ,点E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.23.李明针对自行车和长跑项目进行专项训练某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.25.若0>>>a b c ,且||||||a b c <<,化简||||||||a c a b c a b b c ++++---+.26.如图,将一副直角三角形的直角顶点C 叠放一起(1)如图1,若CE 恰好是∠ACD 的角平分线,请你猜想此时CD 是不是的∠ECB 的角平分线?并简述理由;(2)如图1,若∠ECD =α,CD 在∠ECB 的内部,请猜想∠ACE 与∠DCB 是否相等?并简述理由;(3)在如图2的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.27.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.参考答案1.B 【分析】根据倒数的定义求解即可.【详解】解:∵-3×(-13)=1,∴-3的倒数是-13,故选:B .【点睛】本题考查求一个数的倒数,乘积等于1的两个数互为倒数.2.C 【分析】由题意根据中点的性质,线段、角平分线的定义,分别对各选项进行判断即可.【详解】解:A 、M 是AB 的中点,则AB=2AM ,正确,故本选项错误;B 、直线上的两点和它们之间的部分叫作线段,正确,故本选项错误;C 、从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,原说法错误,故本选项正确;D 、同角的补角相等,正确,故本选项错误;故选:C .【点睛】本题考查角平分线的定义、余角和补角的知识,熟练掌握各知识点的内容是解题的关键.3.C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B 【分析】直接利用多项式的有关定义分析得出答案.【详解】A 、多项式23230.3271x y x y xy --+,是五次四项式,故此选项正确;B 、四次项的系数是-7,故此选项错误;C 、它的常数项是1,故此选项正确;D 、按y 降幂排列为3322720.31xy x y x y --++,故此选项正确;故选:B .【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.5.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.C【详解】解:因为∠AOC=80°,∠BOC=30°,所以∠AOB=∠AOC-∠BOC=80°-30°=50°,又因为∠BOD=80°,所以∠AOD=∠AOB+∠BOD=50°+80°=130°.故选C.7.A【分析】根据0<x<1,可得:0<x2<x<1,1x>1,据此判断即可.【详解】解:∵0<x<1,∴0<x2<x<<1,1x>1,∴x2<x<1 x.故选:A.【点睛】此题主要考查了有理数的大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负数绝对值大的反而小.8.C【分析】设打x折时,利润率为20%,则利用利润的两种不同的表示方法得相等关系,再列方程,解方程即可.【详解】解:设打x折时,利润率为20%,则解得:8,x=答:要保证利润率不低于20%,则至少可以打八折.故选C【点睛】本题考查的是一元一次方程的应用,掌握“利润=售价-成本或利润=进价⨯利润率”是解本题的关键.易错点是不按照题干的要求作答.9.D 【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A 是圆柱,不符合题意;B 是圆锥,不符合题意;C 是正方体,不符合题意;D 是棱锥,符合题意,故选D .【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.10.D 【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB 盖住2021或2022个整点.故选:D【点睛】本题考查了数轴,解题的关键是根据题意得到找出长度为n (n 为正整数)的线段盖住n 或n+1个整点并注意利用分类讨论思想解答.11.C 【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【详解】∵OC 平分∠DOB ,∠COB=35°∴∠BOD=2∠COB=2×35°=70°∴∠AOD=180°-70°=110°故选:C .【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.12.D 【分析】根据去括号法则运算即可.【详解】解:方程2(3)3(4)5x x ---=去括号得:263125x x --+=,故答案为:D .【点睛】本题考查了去括号法则,括号前面为“+”时,去掉括号及括号前的符号,括号里每一项都不变号;括号前面为“-”时,去掉括号及括号前的符号,括号里每一项都要变号;掌握基本法则是解题的关键.13.6.8×108【详解】按照科学记数法的表示形式是10n a⨯,其中110a ≤<,n 为整数.题中 6.8a =,小数点从右至左移动了8位,所以这个数用科学记数法表示为6.8×108.故答案为:6.8×108.14.2【详解】解:3511x +=,36,x ∴=解得2,x = 方程3511x +=与6318x a+=的解相同,解得:2a =故答案为:2【点睛】本题考查的是同解方程,掌握“同解方程的含义”是解本题的关键.15.162.6【详解】解: ∠α=72°36′,故答案为162.6.【点睛】本题主要考查余补角的定义,熟练掌握求一个角的余补角是解题的关键.16.-20【分析】化简所求的式子,根据整体代入计算即可;【详解】由题可得()22365325+-=+-x x x x ,∵225+=-x x ,∴原式()35520=⨯--=-;故答案是20-.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.17.6【分析】将开始的值48代入进行计算,求出多次输出的值后,找到数值之间的规律即可作答.【详解】根据运算程序可知,当输入的值为48时,输出:当输入的值为24时,输出:124122⨯=,当输入的值为12时,输出:11262⨯=,当输入的值为6时,输出:1632⨯=,当输入的值为3时,输出:336+=,由前面的规律可知,依次输出的结果为24,12,6,3,6,3,……发现从第三次开始,输出结果以6和3为一个循环组依次循环,第奇数次为6,第偶数次为3,由于2021是奇数,所以第2021次输出的结果为6.故答案为:6【点睛】本题考查了代数式求值当中的流程图问题,解题关键是计算出前几次输出的结果,找到规律,即可总结出第n 次计算的结果.18.5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.19.(1)-15;(2)13【分析】(1)根据有理数的乘方混合运算求解即可;(2)利用乘法分配律进行有理数的混合运算即可.【详解】解:(1)原式=84315---=-;(2)原式=123460606060=30404548132345⎛⎫⨯-+⨯-⨯+⨯-+-+= ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)13;(2)13-【分析】(1)本题首先去括号,继而合并同类项与移项,最后未知项系数化为1即可.(2)本题首先去分母,继而去括号、移项、合并同类项即可求解.【详解】(1)∵52(32)3x x --=-,∴5643x x -+=-,∴93x =,∴13x =.(2)∵11232x x x +--=-,∴2(1)1263(1)x x x +-=--,∴2212633x x x +-=-+,∴6322123x x x --=--,∴13x=-.【点睛】本题考查一元一次方程的求解,熟练掌握去分母、移项、合并同类项等运算手段,其次注意计算仔细即可.21.原式=a 2+3ab ;0.【分析】先去括号、合并同类项化简原式,再根据非负数性质得出a 、b 的值,代入计算可得.【详解】解:原式=5ab+4ab-6a 2-6ab+7a 2=a 2+3ab ,∵()21103a b ++-=∴a=-1、b=13,则原式=1-3×1×13=1-1=0.【点睛】本题考查整式的加减,解题关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.22.6cm 【分析】根据题意、结合图形分别求出AB 、CD 的长,根据线段中点的性质求出EA 、DF ,计算即可.【详解】∵8AD =,6AC BD ==∴862AB AD BD =-=-=,862CD AD AC =-=-=∵点E 、F 分别是线段AB 、CD 的中点∴112122AE AB ==⨯=,112122DF CD ==⨯=∴8116EF AD AE DF =--=--=cm 答:线段EF 的长是6cm .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.23.自行车路段的长度为3000米,长跑路段的长度为2000米.【分析】设自行车路段的长度为x 米,则长跑路段的长度为()5000x -米,结合题意,通过列方程并求解,即可得到答案.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x -+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际问题中,即可完成求解.24.(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】解:(1)设一个暖瓶x 元,则一个水杯(38-x )元,根据题意得:2x+3(38-x )=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.25.3a b c-+-【详解】解:∵0>>>a b c ,且||||||a b c <<∴0a c +<,0a b c ++<,0a b ->,0b c +<∴||||||||a c abc a b b c ++++---+()()()()a c a b c a b b c =-++-++----+⎡⎤⎡⎤⎣⎦⎣⎦a c abc a b b c=------+++3a b c =-+-.26.(1)CD 是∠ECB 的角平分线,见解析;(2)∠ACE =∠DCB ,见解析;(3)∠DCE+∠ACB =180°,见解析.【分析】(1)CD 是∠ECB 的角平分线,求出∠ECD =∠BCD =45°即可证明;(2)∠ACE =∠DCB ,求出∠ACE =∠DCB =90°﹣α即可;(3)∠DCE+∠ACB =180°,根据∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE 即可进行求解证明.【详解】解:(1)CD 是∠ECB 的角平分线,理由是:∵∠ACD =90°,CE 是∠ACD 的角平分线,∴∠ECD =12∠ACD =45°,∴∠BCD =90°﹣∠ECD =45°=∠ECD ,即CD 是∠ECB 的角平分线;(2)∠ACE =∠DCB ,理由是:∵∠ACD =∠BCE =90°,∠ECD =α,∴∠ACE =90°﹣α,∠DCB =90°﹣α,∴∠ACE =∠DCB ;(3)∠DCE+∠ACB =180°,理由是:∵∠ACD =∠BCE =90°,∴∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE =90°+90°=180°,即∠DCE+∠ACB =180°.27.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).。
湘教版七年级上册数学期末考试试卷含答案
![湘教版七年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/a73ea1d882d049649b6648d7c1c708a1284a0add.png)
湘教版七年级上册数学期末考试试题一、单选题1.如果向右走5步记为+5,那么向左走3步记为()A .+3B .-3C .+13D .-132.月球白天的温度可达127℃,夜晚可降到-183℃,那么月球表面白天气温比晚上高()A .310℃B .-310℃C .56℃D .-56℃3.下列说法中,正确的是()A .单项式x 没有系数B .35x y 的次数是3C .2mn 与22n m -是同类项D .多项式31x -的项是3x 和14.下列运算中,结果正确的是()A .55x x -=B .235224x x x +=C .220a b ab -=D .43b b b-+=-5.下列方程中,解为3x =-的是()A .23x x +=B .30x -=C .103x +=D .31x -=6.如图所示几何图形中,是棱柱的是()A .B .C .D .7.在如图所示四幅图中,符合“射线PA 与射线PB 表示同一条射线”的图形是()A .B .C .D .8.下列调查中,适合采用全面调查(普查)方式的是()A .了解湖南卫视“快乐大本营”的收视率B .了解洪山竹海中竹蝗的数量C .了解全国快递包裹产生包装垃圾的数量D .了解某班同学“跳绳”的成绩9.如图,线段AB =22cm ,C 是AB 上一点,且AC =14cm ,O 是AB 的中点,线段OC 的长度是()A .2cmB .3cmC .4cmD .5cm10.按照如图所示的计算程序,若x=3,则输出的结果是()A .1B .9C .71-D .81-二、填空题11.2021的倒数是___________.12.数据4400000000人,这个数用科学记数法表示为_________.13.若一个多项式与m n -的和等于2m ,则这个多项式是_______.14.当x =________时,代数式122x -的值为0.15.为了做一个试管架,在长为a (cm )(a >6)的木板上钻3个小孔(如图)每个小孔的直径为2cm ,则x 等于_____cm .16.如图是根据某市2017年至2021年的各年工业生产总值绘制而成的折线统计图,则比上年增长额最大的年份是___________年.17.关于m 、n 的单项式﹣2manb 与32(1)a m -n 的和仍为单项式,则这两个单项式的和为___.18.如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.三、解答题19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.计算:3221(3)(2)[(2)(1)]12⎛⎫-⨯-+-⨯-+÷- ⎪⎝⎭21.先化简,再求值:()()254222.510xy x xy xy -+-+,其中1x =,2y =-.22.解方程:(1)3(x+1)=2(4x ﹣1);(2)32225x xx ---=.23.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强就某日午餐浪费饭菜情况进行了调查,随机抽取了若干名学生,将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图:回答下列问题:(1)这次调查的样本容量是________﹔(2)已知该中学共有学生2500人,请估计这日午餐饭和菜都有剩的学生人数;若按平均每人剩10克米饭计算.这日午餐将浪费多少千克米饭?24.5名老师带领若干名学生旅游(旅游费统一支付)他们联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?AB BC,AB长为1200米,BC长为1600米,一个人骑摩托25.如图,现有两条乡村公路,AB BC向C处行驶;另一人骑自行车从B处以5米/车从A处以20米/秒的速度匀速沿公路,秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.直线AB与CD相交于点O,OE平分70BOD AOC OF CD∠∠=⊥,,于O.∠互余的角是________.(1)图中与EOF∠的度数.(2)求EOF27.阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图,点M表示数1-,点N 表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、-3时,b 的值分别是多少?②利用(1)中的结论,探索a 与b 的关系,并用含a 的式子表示b ;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.参考答案1.B 2.A 3.C 4.D 5.A 6.B 7.C 8.D 9.B 10.C 11.12021【详解】2021的倒数是12021故答案为:12021.12.94.410⨯【详解】解:4400000000=94.410⨯,故答案为:94.410⨯.13.m n+【分析】已知一个加式与和求另一个加式,用减法,所以可得这个多项式是()2m m n --,再去括号,合并同类项即可得到答案.【详解】解: 一个多项式与m n -的和等于2m ,∴这个多项式是()22,m m n m m n m n --=-+=+故答案为:.m n +14.14【分析】根据题意可得1202x -=,解出即可.【详解】解:根据题意得:1202x -=,解得:14x =.故答案为:1415.64a -.【分析】根据题意可知4x 加上三个圆的直径(6cm )的和是acm ,列方程得到4x+3×2=a ,然后解关于x 的一元一次方程即可.【详解】根据题意得4x+3×2=a ,解得x =64a -,故答案为64a -.16.2021【分析】折线统计图中越陡说明增长的幅度越大,从图中看出2021年的折线最陡,所以增长额最大,进而知道增长额最大年份.【详解】解:从图中看出2021年的折线最陡,所以增长额最大,∴2021年比上年增长额最大故答案为:2021.【点睛】本题考查折线统计图的综合运用,读懂统计图,了解图形的变化情况是解决问题的关键.17.m 2n .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值,再代入代数式计算即可.【详解】∵﹣2manb 与3m 2(a ﹣1)n 的和仍为单项式,∴﹣2manb 与3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴﹣2manb+3m 2(a ﹣1)n =﹣2m 2n+3m 2n =m 2n .故答案为:m 2n .18.1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解: 点C 为线段AB 的中点,且10AB =,152BC AB ∴==,4DB = ,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.19.()13 2.50232-<-<<<--<【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.【详解】解:33--=-,(2)2--=,∵13 2.50232-<-<<<<,∴13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.-22【分析】根据有理数的四则混合运算顺序,先算乘方,再算乘除,最后算加减,有括号的要先算括号.【详解】原式219(2)21(8=÷-++-⨯()1848=-++-22=-【点睛】本题考查了有理数的四则混合运算,掌握四则运算顺序是解题的关键.21.24220x xy ---,20-【分析】把整式去括号、合并同类项后,然后把x 和y 的值代入计算即可得出结果.【详解】解:原式()2542520=---+xy x xy xy 2542520=----xy x xy xy 24220=---x xy ,当1x =,2y =-时,原式()24121220=-⨯-⨯⨯--()4420=----20=-.【点睛】本题考查了整式的加减—化简求值.去括号、合并同类项把整式正确化简是解题的关键.22.(1)x =1;(2)x =2.【分析】(1)先去括号,然后移项合并,再系数化为1,即可得到答案;(2)先去分母、去括号,然后移项合并,再系数化为1,即可得到答案;【详解】解:(1)3(x+1)=2(4x ﹣1),去括号,得3x+3=8x ﹣2,移项,得3x ﹣8x =﹣2﹣3,合并同类项,得﹣5x =﹣5,系数化为1,得x =1;(2)32225x xx ---=,去分母,得5(3x ﹣2)﹣2(2﹣x )=10x ,去括号,得15x ﹣10﹣4+2x =10x ,移项,得15x+2x ﹣10x =10+4,合并同类项,得7x =14,系数化为1,得x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法.23.(1)120(2)这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭【分析】(1)用A 组人数除以它所占的百分比即可得到调查的总人数;(2)先求出这日午饭有剩饭的学生人数为:2500×(1-60%-10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.(1)解:这次调查的样本容量=72÷60%=120(人),故答案为120;(2)解:122500250120⨯=(人);()250020%250107500⨯+⨯=(克)=7.5千克,答:这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.24.(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+⨯=,B 旅行社的费用为:()0.852020a a ⨯+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.25.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x 秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y 秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x 秒摩托车追上自行车,列方程得20x=1200+5x ,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y 秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.26.(1)∠DOE 和∠BOE ;(2)55︒【分析】(1)根据余角定义:如果两个角的和等于90︒(直角),就说这两个角互为余角可得答案;(2)首先计算出∠BOE 的度数,再计算出∠BOF 的度数,再求和即可.(1)∵OE 平分∠BOD ,∴∠BOE=∠DOE ,∵OF ⊥CD ,∴∠DOF=90︒,∴∠EOF+∠DOE=90︒,∠EOF+∠BOE=90︒,∴图中与EOF ∠互余的角是∠DOE 和∠BOE ;故答案为:∠DOE 和∠BOE ;(2)∵直线AB 、CD 相交于点O ,∠AOC=70︒,∴∠BOD=70︒,∵OE 平分∠BOD ,∴∠BOE=35︒,∵OF ⊥CD ,∴∠BOF=180709020︒-︒-︒=︒,∴∠EOF=∠BOE+∠BOF=55︒.【点睛】此题主要考查了角的计算,以及余角,关键是掌握余角定义,理清图形中角的关系.27.(1)①画图见解析,2,-2,5;②2b a =-;③-2019;(2)107.【分析】(1)①根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;②根据2a b +=,变换后即可得出结论;③根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;(2)设点A 表示的数为x ,根据点A 的运动找出点B ,结合互为基准变换点的定义即可得出关于x 的一元一次方程,解之即可得出结论;(1)解:画图略,① 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当0a =时,2b =,当4a =时,2b =-,当3a =-时,5b =,故答案为:2;2-;5;②2a b += ,2b a ∴=-,故答案为:2a -;③ 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当2021a =时,2019b =-;(2)解:设点A 表示的数为x ,根据题意得:5422x x -+=,解得:107x =.。
湘教版七年级上册数学期末考试试卷含答案
![湘教版七年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/824edb28ff4733687e21af45b307e87101f6f8e9.png)
湘教版七年级上册数学期末考试试题一、单选题1.下列几何体中,是圆柱的为()A .B .C .D .2.若a b =,则下列等式变形不正确...的是()A .33a b=B .22a b -=-C .a bm m=D .55a b +=+3.将6.38亿这个数用科学记数法可表示为()A .76.3810⨯B .86.3810⨯C .763.810⨯D .96.3810⨯4.若221a a +=-,则2487a a ++的值为()A .3B .4C .5D .65.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元6.如图,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若AC =6cm ,MN =5cm ,则线段MB 的长度是()A .7cmB .6cmC .8cmD .10cm7.如图,∠BOD =118°,∠COD 是直角,OC 平分∠AOB ,则∠AOB 的度数是()A .48°B .56°C .60°D .32°8.下列运算中正确的是()A .4x ﹣3x =1B .2x 2+3x 2=5x 2C .3x +4y =7xyD .x 2+x 2=2x 49.下列多项式不是同类项的是()A .22a b 与23a b-B .13x 与4xC .23ab 与5abD .22a b 与23ab 10.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是A .我B .中C .国D .梦二、填空题11.如果收入800元表示为800+元,那么支出300元可表示为_______元.12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.13.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费________元(用含,a b 的代数式表示).14.若单项式22m xy 与313n x y -为同类项,则n m 的值为____________.15.若x =2是关于x 的一元一次方程2(x ﹣m )=32x+m 的解,则m 的值是__.16.若a b ,互为相反数,c d ,互为倒数,m 的绝对值是2,则代数式25220221a b m cdm ++-+的值为__________.17.小明和妈妈今年的年龄之和为36岁,再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,则今年小明的年龄为______________岁.18.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.三、解答题19.计算:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦.20.先化简,再求值:()()22225335x y xyxyx y --+,其中2,1x y ==-.21.解方程:43252x x x ---=.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,110BOC ∠=°.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数.23.某校为了解七年级学生对“阳光跑操”活动的喜欢程度,学校随机抽取部分学生进行调查,被调查的每位学生从A :非常喜欢,B :比较喜欢,C :一般,D :不喜欢,四个选项中任选一项(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据图中信息,解答下列问题:(1)求本次调查学生的总人数及扇形统计图中D 部分的圆心角的度数;(2)请补全条形统计图;(3)若该校七年级共有750名学生,根据调查结果,估计对阳光跑操活动“比较喜欢”学生共有多少人?24.已知多项式()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭的值与字母x 的取值无关.(1)求m n ,的值;(2)先化简多项式()()2222442mmn n m mn n +--+-,再求其值.25.如图,数轴上两个动点A ,B 开始时所表示的数分别为-10,5,A B ,两点都在数轴上运动,且A 点的运动速度为3个单位长度/秒,B 点的运动速度为2个单位长度/秒.(1)如果AB 、两点同时出发,相向而行,那么它们经过几秒相遇?(2)如果AB 、两点同时出发,都向数轴正方向运动,那么几秒时两点相距6个单位长度?26.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+的成立的一对有理数,a b 为“共生有理数对”,记为:(),a b .例如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)判断数对()2,1-,13,2⎛⎫⎪⎝⎭是否为“共生有理数对”,并说明理由;(2)若(),3a 是“共生有理数对”,求a 的值;(3)若(),m n 是“共生有理数对”,试判断(),n m --是否为“共生有理数对”,并说明理由.27.如图,点O 是直线AB 上一点,OD 平分∠BOC ,∠COE=90°,若∠AOC=46°,求∠DOE 的度数.参考答案1.A【分析】根据几何体的特征进行判断即可.【详解】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥.故选:A .【点睛】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.2.C【分析】根据等式性质1,等式两都加上或减去同一数或整式等式应成立可判断B ,D ;根据等式性质2,等式两边都乘以或除以同一个不为0的数或整式,等式应成立可判断A 、C 即可.【详解】解:A.33a b =,根据等式性质2等式两边都乘以3,应成立,故选项A 不合题意;B.22a b -=-,根据等式性质1,等式两边都减2,应成立,故选项B 不合题意;C.a bm m=,根据等式性质2,等式两边都除以不为零的数,等式应成立,但m 要求不为0,故选项C 符合题意;D.55a b +=+,根据等式性质1,等式两边都加5,应成立,故选项D 不合题意.故选C .【点睛】本题考查等式的性质,掌握等式性质和应用条件是解题关键.3.B【详解】整数6.38亿共计9位,采用10n a⨯表达,则有 6.38a =,918n =-=,即:6.38亿用科学记数法表示为86.3810⨯,故选:B .4.A【详解】解:∵a 2+2a=-1,∴4a 2+8a+7=4(a 2+2a )+7=4×(-1)+7=-4+7=3,故选:A.5.B【分析】根据题意,可以用含x的代数式表示出6月份的产值.【详解】由题意可得,6月份的产值是x(1+30%)=130%x(万元),故选:B.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.A【分析】根据线段中点的定义可求解MC,结合MN=5cm可求解CN=BN=2cm,进而可求解.【详解】解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=12AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN-MC=5-3=2cm,∴MB=MN+BN=5+2=7cm,故选:A.【点睛】本题主要考查线段中点的定义,两点间的距离,根据线段的和差求解释解体的关键.7.B【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.【点睛】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.8.B【分析】根据合并同类项的计算,在合并同类项时,系数相加减,字母及其指数不变,进行计算,然后进行判断.【详解】解:A.4x ﹣3x =x ,故此选项不符合题意;B.2x 2+3x 2=5x 2,正确;C.3x 、4y 不是同类项,不能合并计算,故此选项不符合题意;D.x 2+x 2=2x 2,故此选项不符合题意故选:B .【点睛】本题考查合并同类项,正确理解同类项的概念和合并同类项的计算法则正确计算是解题关键.9.D【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可作出判断.【详解】解:A.22a b 与23a b -是同类项;B.13x 与4x 是同类项;C.23ab 与5ab 是同类项;D.22a b 与23ab ,a 的指数不同,b 的指数也不同,故不是同类项.故选:D .【点睛】本题考查了同类项的定义,熟练掌握同类项定义中的两个“相同”并能利用其进行准确判断是解题的关键,注意同类项的判别与系数和字母的顺序无关.10.D【详解】这是一个正方体的平面展开图,共有六个面,根据正方体侧面展开图的特点,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.故选:D .【点睛】考点:正方体的展开图11.300-【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可【详解】解:若规定收入为正,则支出为负,即:收入800元表示为+800元,那么他每月支出300元表示为-300元.故答案为:-300.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.-3【分析】数轴上的点能表示实数,从点在数轴上位置可得出A 表示的数.只有符号不同的两个数互为相反数,求一个数的相反数,直接在前面添上“-”号即可,由此可得出本题答案.【详解】从图上可知点A 表示的数是3,而3的相反数是-3.故答案为:-3.【点睛】本题考察了数轴上的点表示实数和相反数的定义,能正确求已知数的相反数是做出本题的关键.13.()610a b +或者(10b+6a)【分析】根据单价×数量=总费用进行解答.【详解】解:依题意得:小明共花费(6a+10b )元,故答案是:(6a+10b ).【点睛】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.14.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m ,n 的值,继而可求得mn 的值.【详解】解:∵单项式22m x y 与313n x y -是同类项,∴n=2,m=3,则mn=32=9.故答案为:9.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.13.【分析】把x=2代入方程,得到关于m 的一元一次方程,解方程即可.【详解】把x =2代入方程得:2(2﹣m )=3+m ,∴4﹣2m =3+m ,∴﹣3m =﹣1,∴m =13,故答案为:13.【点睛】本题考查了一元一次方程的解,掌握一元一次方程的解的定义是解题的关键,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.18【分析】根据题意,可得:a+b=0,cd=1,m=±2,据此求出代数式25220221a b m cd m ++-+的值即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,252a b m cd++-+=0+5×22-2×1=5×4-2=20-2=18;当m=-2时,25220221a b m cd m ++-+=0+5×(-2)2-2×1=5×4-2=20-2=18.故答案为:18.【点睛】此题主要考查了有理数的混合运算,互为相反数、互为倒数的两个数的性质和应用,以及绝对值的含义和求法,注意运算顺序.17.4【分析】设今年小明的年龄为x 岁,则妈妈为()36x -岁,根据再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,列方程为()365451,x x -+=++解方程可得答案.【详解】解:设今年小明的年龄为x 岁,则妈妈为()36x -岁,()365451,x x -+=++41421,x x ∴-=+520,x ∴=4.x ∴=所以今年小明的年龄为4岁.故答案为:4.【点睛】本题考查的是一元一次方程的应用,掌握利用一元一次方程解决年龄问题是解题的关键.18.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.19.43【分析】先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【详解】解:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦()1911324⎛⎫=--+÷+ ⎪⎝⎭341329=--⨯+2133=--+43=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.28xy -,16-【分析】先去括号,合并同类项,然后将,x y 的值代入代数式计算即可得.【详解】解:()()22225335x y xy xy x y --+,2222155315x y xy xy x y =---,28xy =-,当2x =,1y =-时,原式282(1)16=-⨯⨯-=-.21.23x =【分析】方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:43252x x x ---=去分母,得()()1024532x x x --=-,去括号,得10821510x x x -+=-移项,合并同类项,得32x =,方程两边同除以3,得23x =.因此原方程的解为23x =.22.(1)70AOC ∠=︒(2)55MOD ∠=︒【分析】(1)利用邻补角的定义计算∠AOC 的度数;(2)先根据角平分线的定义得到∠COM=35°,然后利用互余计算∠MOD 的度数.(1)∵∠AOC+∠BOC=180°,∴∠AOC=180°-110°=70°,即∠AOC 的度数为70°;(2)∵OM平分∠AOC,∴∠COM=12∠AOC=12×70°=35°,∵∠COD=90°,∴∠MOD=90°-∠COM=55°,即∠MOD的度数为55°.23.(1)200人,D部分的圆心角的度数为54(2)图见解析(3)300人【分析】(1)从两个统计图中可以得到A组的有40人,占调查人数的20%,可求出调查人数,用360°乘D部分所占比例可得D部分的圆心角的度数;(2)求出C组的人数即可补全条形统计图,(3)样本估计总体,样本中B组的占40%,因此估计总体中也有40%的学生属于B组.(1)调查人数为:40÷20%=200(人),D部分的圆心角的度数为:360°×(1-20%-25%-40%)=54°;(2)C组的人数为:200-40-80-30=50(人),补全条形统计图如图所示:(3)估计对阳光跑操活动“比较喜欢”学生共有:750×40%=300(人).所以,估计对阳光跑操活动“比较喜欢”学生共有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.(1)1n =-,3m=(2)223mn n -,-9【分析】(1)原式去括号合并得到最简结果,由题意多项式的值与字母x 的取值无关,确定出m 与n 的值即可;(2)原式去括号合并同类项化简后,把m 与n 的值代入计算即可求出值.(1)解:()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭22133212x mx y x y nx =+-+-+-+()()231322n x m x y =++-++∵多项式的值与字母x 的值无关∴10n +=,30m -=解得:1n =-,3m =;(2)解:()()2222442m mn n m mn n +--+-222244442m mn n m mn n =+---+223mn n =-当3m =,1n =-时,原式()()223131=⨯⨯--⨯-63=--9=-25.(1)3秒(2)9秒或21秒【分析】(1)设它们经过m 秒相遇,根据两点相遇时表示的数相同,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设运动的时间为t 秒,则点A 表示的数为3t-10,点B 表示的数为2t+5,根据两点相距6个单位长度,根据绝对值的性质列出关于t 的一元一次方程,解之即可得出结论.(1)解:由题意可知A ,B 两点间的距离为:()51015--=(单位长度)设它们经过m 秒后相遇,则根据等量关系,得3215m m +=解得3m =;(2)解:设经过t 秒后,A ,B 两点相距6个单位长度.经过t 秒后,点A 的位置所表示的数为:103t -+.经过t 秒后,点B 的位置所表示的数为:52t +.此时,A ,B 两点间的距离为()5210315t t t +--+=-则根据等量关系,得:156t -=则:156t -=或156t -=-解得:9t =或21【点睛】本题考查了一元一次方程的应用以及数量,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)分点A 在点B 的左侧及点A 在点B 的右侧两种情况,找出关于t 的一元一次方程.26.(1)()2,1-不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”,理由见解析(2)2a =-(3)是“共生有理数对”,理由见解析【分析】(1)先计算,然后根据题目中的新定义,可以判断(-2,1),13,2⎛⎫ ⎪⎝⎭是否为“共生有理数对”;(2)根据新定义可得关于a 的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(-n ,-m )变形即可判断.(1)因为213--=-,()2111-⨯+=-所以()21211--≠-⨯+,即()2,1-不是“共生有理数对”又因为15322-=,153122⨯+=所以1133122-=⨯+即13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”(2)由题意得:331a a -=⨯+,即331a a -=+解得:2a =-.(3)是.理由:因为()n m n m ---=-+,()()11n m mn -⨯-+=+①又因为(),m n 是“共生有理数对”,所以1m n m n -=⨯+即1m n mn -=+而m n n m -=-+所以1n m mn -+=+由①式可知:()()()1n m n m ---=-⨯-+所以(),n m --是“共生有理数对”.27.23°.【分析】根据平角的定义得到134BOC ∠=︒,在根据角平分线的定义得到,然后利用90DOE COD ∠+∠=︒,即可求出DOE ∠.【详解】解:∵46AOC ∠=︒,180BOC AOC ∠+∠=︒,∴134BOC ∠=︒,∵OD 平分BOC ∠,∴1672COD BOC ∠=∠=︒,又90DOE COD ∠+∠=︒,∴23DOE ∠=︒.。
湘教版七年级上册数学期末考试试卷附答案
![湘教版七年级上册数学期末考试试卷附答案](https://img.taocdn.com/s3/m/dc67159a59f5f61fb7360b4c2e3f5727a5e924ba.png)
湘教版七年级上册数学期末考试试题一、单选题1.下列各数中,比﹣3小的数是()A .﹣5B .﹣1C .0D .12.﹣12的倒数的相反数等于()A .﹣2B .12C .﹣12D .23.下列变形不一定正确的是()A .若a b =,0m ≠,则a b m m=B .若a b =,则22a b =C .若a b =,则22a c b c +=+D .若ac bc =,则a b=4.下列各式中运算正确的是()A .32a a -=B .22532x y xy xy-=C .257a b ab+=D .330ab ba -=5.如图,点O 在直线AE 上,OC 平分AOE ∠,DOB ∠是直角.若∠1=25°,那么AOB ∠的度数是()A .65°B .25°C .90°D .115°6.下列说法中,正确的是()A .连接两点之间的线段,叫做这两点之间的距离B .0没有相反数C .单项式243r π-的系数为43π-D .直线、射线、线段中直线最长7.要反映华容县近五年来财政收入变化趋势,应绘制()A .条形统计图B .折线统计图C .扇形统计图D .复式统计图8.观察下列等式:177=,2749=,37343=,472401=,5716807=,……根据其中的规律可得20217的结果的个位数字是()A .0B .1C .7D .89.单项式12b xy +-与2313a x y -是同类项,则下列单项式与它们属于同类项的是()A .35x y-B .33xyC .332xy D .xy10.如图所示,已知AOB ∠与BOD ∠互为余角,OC 是BOD ∠的平分线,20AOB ∠=︒,则COD ∠的度数为()A .70︒B .35︒C .50︒D .20︒二、填空题11.数轴上表示3-的点到原点的距离是_____.12.将21000000用科学记数法表示为______.13.已知()2230a b -++=,则()2021a b +=________.14.如图,线段3AB cm =,延长AB 至点C ,使得3BC AB =,D 为BC 的中点,则BD =_____cm .15.某商店购进每双a 元的旅游鞋100双,每双b 元的皮鞋50双,那么该商店一共要付货款____元.16.已知224x x -=,则代数式2428x x --=______.17.单项式21314m a b -与513n a b +是同类项,求3m-2n=_______.18.用“☆”定义一种新的运算:对于任意有理数a 和b ,规定a ☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16,则(-2)☆3的值为_______.19.任意给一个非零数m ,按下列程序进行计算,则输出结果为______;三、解答题20.计算:(1)()()202021121234-⨯--⨯+-(2)23°22'52"+45°38'20″21.解方程:31225t tt ---=22.先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.23.若a 与b 互为相反数,x 与y 互为倒数,|m|=2,则式子2a b m m x xy+-+的值为多少?24.某市国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A ,B ,C ,D ,E 五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次简单随机抽样调查,并根据调查结果制作了如下两幅不完整的统计图:(1)m =_______,并请补全条形统计图;(2)求扇形统计图中“A”部分的圆心角;(3)若该小区有居民1200人,请估计去E 地旅游的居民的人数.25.有这样一道题:“先化简,再求值:(3x 2﹣2x+4)﹣2(x 2﹣x)﹣x 2,其中x =100”甲同学做题时把x =100错抄成了x =10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车.()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?27.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE (1)请你数一数,图中共有____________个角;(2)求BOD ∠的度数;(3)如果30BOC ∠=︒,求COD ∠的度数.参考答案1.A 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】-5<-3<-1<0<1,所以比-3小的数是-5,故选A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D 【详解】试题分析:若两个数的乘积是1,我们就称这两个数互为倒数.相反数是指只有符号不同的两个数.-12的倒数为-2,-2的相反数为2.考点:倒数;相反数3.D 【分析】根据等式的性质逐一判断即可.【详解】解:A .根据等式性质2,若a=b ,m≠0,则a bm m=,结论正确,故选项A 不符合题意;B .根据等式性质2,若a=b ,则a 2=b 2,结论正确,故选项B 不符合题意;C .根据等式性质1,若a=b ,则a+2c=b+2c ,结论正确,故选项C 不符合题意;D .当c=0时,若ac=bc ,则a 不一定等于b ,故选项D 符合题意.故选:D .【点睛】本题考查等式的性质,解题关键是熟知等式的性质,并注意在等式性质2中,同时除以的时候不能除以0.4.D 【分析】利用同类项定义和合并同类项法则即可解答.【详解】解:A 、∵32a a a -=,∴此选项错误,不合题意;B 、∵25xy 和23xy 不是同类项,不能合并,∴此选项错误,不合题意;C 、∵2a 和5b 不是同类项,不能合并,∴此选项错误,不合题意;D 、∵330ab ba -=,∴此选项正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项,合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,注意不是同类项不能进行合并,熟练掌握法则是做题的关键.5.B 【分析】根据题意,得90AOC ∠= ,再由DOB ∠是直角,∠1=25°,得COB ∠;最后通过AOB AOC COB ∠=∠-∠计算,即可得到答案.【详解】∵OC 平分AOE∠∴90AOC ∠= ∵90DOB ∠=∴901902565COB ∠=-∠=-=∴906525AOB AOC COB ∠=∠-∠=-= 故选:B .【点睛】本题考查了角平分线、角的运算的知识;解题的关键是熟练掌握角平分线、角的和差的性质,从而完成求解.6.C 【分析】单项式的系数就是字母前面的数字因数部分,包含符号,由此可判断C 正确,注意π是圆周率,不是字母.【详解】解:A 、连接两点之间的线段的长度叫做两点之间的距离,故A 错误,不合题意;B 、0的相反数是0,故B 错误,不合题意;C 、单项式243r π-的系数为43π-,故C 正确,符合题意;D 、直线不能度量,故D 错误,不合题意;故选:C .【点睛】本题主要考查基础概念性质,熟记概念性质是解题的关键.7.B 【分析】根据统计图的特点进行分析可得:折线统计图表示的是事物的变化情况.【详解】解:根据统计图的特点可得,反映华容县近五年来财政收入变化趋势的统计图最合适的是折线统计图;故选:B .【点睛】此题考查了统计图的选择,掌握扇形统计图、折线统计图、条形统计图各自的特点是解题的关键.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.C【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴个位数字是7,9,3,1循环,∵2021÷4=505余1,∴20217的结果的个位数字是7.故选:C .【点睛】本题考查了规律型尾数特征,解题关键是分析给出的等式规律,判定出尾数规律.9.B 10.B 11.3【详解】在数轴上表示3-的点与原点的距离是33-=.故答案为3.12.2.1×108【详解】解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.1-【分析】根据非负数的性质列出算式,分别求出a 、b 的值,然后代入()2021a b +进行计算即可.【详解】解:根据题意得:20a -=,30b +=,解得2a =,3b =-,∴()20212021(23)1a b +=-=-故答案为:1-.【点睛】本题主要考查非负数的性质,解题的关键是掌握非负数的性质;几个非负数相加和为0,则每一个式子都为0.14.92【分析】先根据题目的等量关系得到BC ,再根据中点的性质即可求出BD .【详解】解:∵AB=3cm ,∴BC=3AB=9cm ,∵D 为BC 的中点,∴BD=12BC=92cm .故答案为:92.【点睛】本题考查线段的和差倍分问题和线段的中点性质,结合图象分析线段之间的等量关系即可.15.100a +50b 【分析】根据题意列出代数式解答即可.【详解】解:根据题意,该商店一共要付货款100a +50b 元.故答案为:100a +50b .16.0【分析】把要求的式子变形后整体代入求值即可.【详解】∵224x x -=∴224282()82480xx x x --=--=⨯-=.故答案为:017.5【分析】根据同类项的定义列出式子计算出m 、n 的值,再代入3m-2n 中计算即可解答.【详解】解:由同类项定义得:215m -=,13n +=,解得3,2m n ==,故答案为:5.18.-32【分析】读懂题意,理解“☆”运算的含义,发现-2与a 对应,3与b 对应,把a=-2,b=3代入ab 2+2ab+a 求值即可.【详解】比较a ☆b 、(-2)☆3得a=-2,b=3,把之代入得a ☆b=ab 2+2ab+a=2(2)32(2)3(2)-⨯+⨯-⨯+-=-32.故答案为:-32.19.m 【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:(m 2+m )÷m-1=m+1-1=m ,故答案为:m 20.(1)4(2)69112'''︒【分析】(1)先计算乘方,乘法,绝对值;然后计算加减法;(2)按角度运算方法计算即可解答,注意单位换算:1度=60分,即1°=60',1分=60秒,即160'=".(1)解:原式1433=⨯-+433=-+4=;(2)解:原式686072'''=︒686112'''=︒69112'''=︒.21.97t =【分析】方程去分母,去括号,移项,合并同类项,系数化为1即可.【详解】解:去分母,得()()5312210t t t ---=,去括号,得1554210t t t --+=,移项,得1521054t t t +-=+,合并同类项,得79t =,系数化为1,得97t =;因此,原方程的解是97t =.22.2214x xy y +-;-2【分析】整式的化简求值,先去括号合并同类项即可得到最简结果,再把x 和y 的值代入计算即可求出值.【详解】()2222(42)35x xy y x xy y-+--+2222423315x xy y x xy y =-+-+-2214x xy y =+-当1x =-,12y =-时()()222214111411222x xy y ⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭+-=-+--=-.23.6或2【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a+b =0,xy =1,因为|m|=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可.【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m|=2,∴a+b =0,xy =1,m =±2,当m =2时,原式=2﹣0+4=6,当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2.24.(1)35,补全条形统计图见解析(2)扇形统计图中“A”部分的圆心角是36°(3)估计去E地旅游的居民的人数为300人【分析】(1)先由D景区人数及其所占百分比求出总人数,再用B景区人数除以被调查的总人数即可求出m的值,继而求出C景区人数即可补全图形;(2)用360°乘以A景区人数所占比例即可;(3)用总人数乘以样本中E景区人数所占比例即可.(1)解:∵被调查的总人数为20÷10%=200(人),∴m%=70200×100%=35%,即m=35,C景区人数为200-(20+70+20+50)=40(人),补全图形如下:故答案为:35;(2)∵360°×20200=36°,∴扇形统计图中“A”部分的圆心角是36°;(3)∵1200×50200=300(人),∴估计去E地旅游的居民的人数为300人.【点睛】此题考查了扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.25.4【分析】原式去括号合并得到结果,即可做出判断.【详解】∵原式=3x2﹣2x+4﹣2x2+2x﹣x2=4,∴无论x=100,还是x=10,代数式的值都为4.【点睛】本题考查了整式的加减运算,解题的关键是熟练的掌握整式的加减运算法则.26.(1)12时;(2)60km.【分析】(1)设小颖追上队伍用了x小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【详解】(1)设小颖追上队伍用了x小时.依题意得111060()8060x x +=解得12x =答:小颖追上队伍用了12小时(2)小颖追上队伍时.距离雷锋纪念馆:100-80×12=60(km )【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.27.(1)10(2)75°(3)45°【分析】(1)根据角的定义数出角的个数即可;(2)利用角平分线得出∠AOB=∠BOC ,∠COD=∠DOE ,结合图形求解即可;(3)根据题意得出60AOC ∠= ,结合图形及角平分线求解即可.(1)图中共有10个角,分别为∠AOB ,∠BOC ,∠COD ,∠DOE ,∠AOC ,∠AOD ,∠AOE ,∠BOD ,∠BOE ,∠COE 故答案为:10;(2) OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE ∴∠AOB=∠BOC ,∠COD=∠DOE ,∴∠BOD=∠BOC+∠COD ,∴1150752BOD ∠=⨯= ;(3) 223060AOC BOC ∠=∠=⨯︒= ,∴111()(15060)9045222COD AOE AOC ∠=∠-∠=-=⨯= .。
湘教版初一上册数学全册单元测试卷
![湘教版初一上册数学全册单元测试卷](https://img.taocdn.com/s3/m/6a503e0cf01dc281e53af0e2.png)
湘教版七年级上册初中数学全册试卷(5套单元试卷+1套期末测试卷)第1章测试卷一、选择题(每题3分,共30分)1.冰箱冷藏室的温度零上5 ℃记做+5 ℃,保鲜室的温度零下7 ℃记做( )A .7 ℃B .-7 ℃C .2 ℃D .-12 ℃ 2.如图,在数轴上点A 表示的数可能是( )A .-1.5B .1.5C .-2.4D .2.43.在-1,-2,0,1这四个数中,最小的数是( )A .-1B .-2C .0D .1 4.-12 022的相反数的倒数是( )A .1B .-1C .2 022D .-2 022 5.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把3 120 000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1077.有理数a ,b 在数轴上对应点的位置如图所示,则下列式子中正确的是( )①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .A .①②B .①④C .②③D .③④ 8.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a |=5,b =-3,则a -b 的值为( )A .2或8B .-2或8C .2或-8D .-2或-810.定义一种新运算:a *b =⎩⎨⎧a -b (a ≥b ),3b (a <b ),则3*(-1)*5的结果是( )A .1B .-1C .15D .12 二、填空题(每题3分,共24分)11.-3的相反数是________,-2 023的倒数是________.12.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________g. 13.比较大小:-(-2)2______-32.14.在数轴上与表示-1的点相距4个单位长度的点表示的数是____________. 15.一架直升机从高度为500米的位置开始,先以20米/秒的速度垂直上升60秒后以12米/秒的速度垂直下降100秒,这时直升机所在的高度是________米.16.若x ,y 为有理数,且(5-x )4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 022的值为________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.18.若数轴上表示2的点为M ,则在数轴上与点M 相距4个单位长度的点所对应的数是____________.三、解答题(19~21题每题8分,22,23题每题10分,其余每题11分,共66分) 19.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).20.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +ba +b +c+m 2-cd 的值.21.某检修小组乘一辆汽车沿东西走向的公路检修线路,规定向东走为正,某天从A地出发到收工时,行走记录如下(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油0.1升,已知汽车出发时油箱有10升汽油,问收工前是否需要在中途加油?若加,应加多少?若不加,还剩下多少升汽油?22.已知点A在数轴上表示的数是a,点B在数轴上表示的数是b,且|a+4|+(b -1)2=0.现将点A,B之间的距离记做|AB|,定义|AB|=|a-b|.(1)|AB|=________;(2)设点P在数轴上表示的数是x,当|P A|-|PB|=2时,求x的值.23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a |=2,|b |=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.观察下列各式:-1×12=-1+12;-12×13=-12+13; -13×14=-13+14;….(1)你发现的规律是____________________________;(用含n 的式子表示) (2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 021×12 022.25.在学习完“有理数”后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“*”,规则如下:a *b =ab +2a . (1)求2*(-1)的值;(2)求(-3)*⎣⎢⎡⎦⎥⎤(-4)*12的值;(3)试用学习有理数的经验和方法来探究新运算“*”是否具有交换律,请写出你的探究过程.答案一、1.B 2.C 3.B 4.C 5.D 6.B 7.B 8.C 9.B 10.C 二、11.3;-12 023 12.0.6 13.> 14.3或-5 15.500 16.1 17.7 18.6或-2三、19.解:(1)原式=-5+3-4-2=-8.(2)原式=-1+⎝ ⎛⎭⎪⎫-32×(-24)+⎝ ⎛⎭⎪⎫-38×(-24)+712×(-24)=-1+36+9-14=30.(3)原式=-36×94-9×⎝ ⎛⎭⎪⎫-827×3=-81+8=-73. (4)原式=⎪⎪⎪⎪⎪⎪-49-59-1+(-2.45)×8+(-2.55)×8=1-1+(-2.45-2.55)×8=-40.20.解:由题意,得a +b =0,cd =1,m =±2,所以m 2=4.所以a +b a +b +c +m 2-cd =00+c+4-1=0+4-1=3.21.解:(1)+15+(-2)+5+(-1)+10+(-3)+(-2)+12+4+(-5)+6=39(千米),故收工时,检修小组在A 地东边,距A 地39千米.(2)(15+2+5+1+10+3+2+12+4+5+6)×0.1=6.5(升),10-6.5=3.5(升),故收工前不需要在中途加油,还剩下3.5升汽油. 22.解:(1)5(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2;当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2;当点P 在A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x ,因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12,即x 的值为-12.23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a |=2,|b |=3, 所以a =-2,b =3.所以|a -13|+(b -1)2=|-2-13|+(3-1)2=73+4=613.24.解:(1)-1n ×1n +1=-1n +1n +1(2)原式=-1+12-12+13-13+14-…-12 021+12 022=-1+12 022=-2 0212 022. 25.解:(1)2*(-1)=2×(-1)+2×2=-2+4=2.(2)(-3)*⎣⎢⎡⎦⎥⎤(-4)*12=(-3)*⎣⎢⎡⎦⎥⎤(-4)×12+2×(-4) =(-3)*(-2-8) =(-3)*(-10)=(-3)×(-10)+2×(-3) =30-6 =24.(3)不具有交换律.例如:2*(-1)=2×(-1)+2×2=-2+4=2, (-1)*2=(-1)×2+2×(-1)=-2-2=-4, 所以2*(-1)≠(-1)*2,所以不具有交换律.第2章测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1 B .a 2b C.πa +bD.x -y 32.单项式-π3a 2b 的系数和次数分别是( )A.π3,3 B .-π3,3 C .-13,4 D.13,4 3.在下列单项式中,与2xy 是同类项的是( )A.2x2y2B.3y C.xy D.4x4.已知一个三角形的周长是3m-n,其中两边长的和为m+n-4,则这个三角形的第三边的长为()A.2m-4 B.2m-2n-4 C.2m-2n+4 D.4m-2n+45.下列去括号错误的是()A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b6.已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是() A.99 B.101 C.-99 D.-1017.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元8.如图,阴影部分的面积是()A.112xy B.132xy C.6xy D.3xy9.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-310.已知一列数:1,-2,3,-4,5,-6,7,-8,…,将这列数排成下列形式:第1行 1第2行-2 3第3行-45-6第4行7-89-10第5行11-1213-1415……按照上述规律排下去,那么第100行从左边数第5个数是( ) A .-4 955 B .4 955 C .-4 950 D .4 950 二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.多项式4x 2y -5x 3y 2+7xy 3-67是________次________项式.13.按照如图所示的操作步骤,若输入x 的值为-4,则输出的值为________.14.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为_______________________________________.15.若a -2b =3,则9-2a +4b 的值为________.16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m等于________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分钟降低a 元,再下调25%;乙公司推出的优惠措施是每分钟下调25%,再降低a 元.若甲、乙两公司原来每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一组按规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是______________________________________(n 是正整数). 三、解答题(19~21题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3(m 2n +mn )-4(mn -2m 2n )+mn .20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5x y +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知2x a y +bx 2y =-x 2y ,若A =a 2-2ab +b 2,B =2a 2-3ab -b 2,试求3A -2B 的值.22.如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m.(1)求窗户的面积;(2)求窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).23.某中学七年级(4)班的3位教师决定带领本班a名学生(学生人数不少于3人)在“十一”期间去北京旅游.A旅行社的收费标准为教师全价,学生半价;而B旅行社不分教师、学生,一律八折优惠.这两家旅行社的全价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别参加这两家旅行社的总费用;(2)如果这个班的学生有55人,他们选择哪一家旅行社较为合算?24.如图是由非负偶数排成的数阵.(1)写出图中“H”形框中七个数的和与中间数的关系.(2)在数阵中任意作一个这样的“H”形框,(1)中的关系仍然成立吗?并写出理由.(3)用这样的“H”形框能框出和为2 023的七个数吗?如果能,求出七个数的中间数;如果不能,请写出理由.答案一、1.B2.B3.C4.C5.B 6.D7.A8.A9.B10.B:因为第n行有n个数,此行第一个数的绝对值为n(n-1)2+1,且奇数为正,偶数为负,所以第100行从左边数第1个数的绝对值为4 951,符号为正号,所以第100行从左边数第5个数是4 955.二、11.12a2-112.五;四13.-614.2b-2c:由题图可知a+c<0,c-b>0,a+b<0.所以原式=-(a+c)-(c-b)-[-(a+b)]=-a-c-c+b+a+b=2b-2c.15.316.4:(2x3-8x2+x-1)+(3x3+2mx2-5x+3)=5x3+(2m-8)x2-4x+2.因为和不含二次项,所以2m-8=0,即m=4.17.乙:设甲、乙两公司原来的收费为每分钟b元(0.75b>a),则推出优惠措施后,甲公司每分钟的收费为(b-a)×75%=0.75b-0.75a(元),乙公司每分钟的收费为(0.75b-a)元,而0.75b-a<0.75b-0.75a,所以乙公司收费较便宜.18.(-1)n a3n-1 n三、19.解:(1)2a-(5a-3b)+(4a-b)=2a-5a+3b+4a-b=a+2b.(2)3(m2n+mn)-4(mn-2m2n)+mn=3m2n+3mn-4mn+8m2n+mn=11m2n.20.解:(1)-a2+(-4a+3a2)-(5a2+2a-1) =-a2-4a+3a2-5a2-2a+1=-3a2-6a+1.当a=-23时,原式=-3×⎝⎛⎭⎪⎫-232-6×⎝⎛⎭⎪⎫-23+1=113.(2)(32x 2-5xy +y 2)-[-3xy +2⎝ ⎛⎦⎥⎤14x 2-xy )+23y 2=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0, 所以x =1,y =-2. 所以原式=12+13×(-2)2=73.21.解:根据题意,得a =2,2+b =-1,所以b =-3,则3A -2B =3(a 2-2ab+b 2)-2(2a 2-3ab -b 2)=5b 2-a 2=5×(-3)2-22=41. 22.解:(1)窗户的面积为⎝ ⎛⎭⎪⎫4+π2a 2 m 2.(2)窗框的总长为(15+π)a m.(3)⎝ ⎛⎭⎪⎫4+π2a 2×25+(15+π)a ×20=⎝ ⎛⎭⎪⎫100+252π×12+(300+20π)×1=400+652π≈502(元).答:制作这种窗户需要的费用约是502元.23.解:(1)参加A 旅行社的总费用为3×500+250a =250a +1 500(元);参加B 旅行社的总费用为(3+a)×500×0.8=400a +1 200(元).(2)当a =55时,参加A 旅行社的总费用为250×55+1 500=15 250(元);参加B 旅行社的总费用为400×55+1 200=23 200(元),因为15 250<23 200,所以选择A 旅行社较为合算.24.解:(1)因为22+40+58+42+26+44+62=294=7×42,所以“H”形框中七个数的和是中间数的7倍.(2)成立.设中间数为x ,则其余六个数分别为x -2,x +2,x -20,x +20,x -16,x +16,所以(x -2)+(x +2)+(x -20)+(x +20)+(x -16)+(x +16)+x =7x ,所以“H”形框中七个数的和是中间数的7倍.(3)不能.理由:2 023÷7=289,因为数阵是由非负偶数排成的,而289为奇数,所以不能框出和为2 023的七个数.第3章测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x +1=0 C .3x +y =2 D .x 2-1=5x 2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =-ya C .若a =b ,则ac =bc D .若b a =dc ,则b =d 3.方程2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =24.解方程2x +13-x +16=2,有下列四步,其中最开始发生错误的是( )A .2(2x +1)-(x +1)=12B .4x +2-x +1=12C .3x =9D .x =35.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23 D .26.若x =-3是方程2(x -m )=6的解,则m 的值为( )A .6B .-6C .12D .-127.小明准备为希望工程捐款,他现在有20元,以后每个月打算存10元,若设x 个月后他能捐出100元,则下列方程中能正确计算出x 的是( ) A .10x +20=100 B .10x -20=100 C .20-10x =100 D .20x +10=100 8.甲、乙两个足球队连续进行对抗赛,规定:胜一场得3分,平一场得1分,负一场得0分,共赛10场.甲队保持不败,得22分,甲队胜( ) A .5场 B .6场 C .7场 D .8场9.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( )A .①②B .②④C .②③D .③④10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元 二、填空题(每题3分,共24分)11.方程(a -2)x |a |-1+3=0是关于x 的一元一次方程,则a =________. 12.已知x -2y +3=0,则-2x +4y +2 022的值为________. 13.若3x 3y m -1与-12x n +2y 4是同类项,则m +n =________.14.若关于x 的方程3x +4k =18与方程3x +4=0是同解方程,则k =________. 15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有________幅. 16.规定一种运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________. 17.在如图所示的运算流程中,若输出的数y =7,则输入的数x =____________.18.如图①,天平处于平衡状态,其中左盘中有一袋玻璃球,右盘中有一小袋玻璃球,还有2个各20 g 的砝码.现将左盘袋中一颗玻璃球移至右盘,并拿走右盘中的1个砝码,天平仍处于平衡状态,如图②,则移动的玻璃球的质量为________.三、解答题(19~21题每题8分,其余每题14分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)1-x3-x=3-x+24;(4)x0.7-0.17-0.2x0.03=1.20.已知方程2-3(x+1)=0的解与关于x的方程k+x2-3k-2=2x的解互为倒数,求k的值.21.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,求图中阴影部分的面积之和.22.阅读下面一段文字.[问题]0.7能化为分数形式吗?[探求]步骤①:设x=0.7,步骤②:10x=10×0.7,步骤③:10x=7.7,则10x=7+0.7,步骤④:10x=7+x,解得x=7 9.根据你对这段文字的理解,回答下列问题.(1)步骤①到步骤②的依据是.(2)依照上述探求过程,请你尝试把0.37化为分数形式.步骤①:设y=0.37,步骤②:100y=100×0.37,步骤③:__________________________________,步骤④:________________________,解得y=__________.(3)请你将0.38化为分数形式.23.为举办校园文化艺术节,甲、乙两班准备给参加合唱的同学购买演出服装(一人一套),两班共92人参加(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两班单独购买,那么一共应付5 020元.(1)甲、乙两班联合起来购买,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学参加合唱?24.如图,已知A,B两地相距6千米,甲骑自行车从A地出发前往C地,同时乙从B地出发步行前往C地.(1)已知甲的速度为16千米/时,乙的速度为4千米/时,求两人出发几小时后甲追上乙;(2)甲追上乙后,两人都提高了速度,但甲每小时仍然比乙多行12千米,甲到达C地后立即返回,两人在B,C两地的中点处相遇,此时离甲追上乙又经过了2小时,求A,C两地相距多少千米.答案一、1.A 2.C 3.D 4.B 5.B 6.B7.A 8.B 9.D 10.C 二、11.-2 12.2 02813.6 :由题意得m -1=4,n +2=3,解得m =5,n =1.所以m +n =6. 14.5.5 :解方程3x +4=0得x =-43,把x =-43代入方程3x +4k =18,得3×⎝ ⎛⎭⎪⎫-43+4k =18,解得k =5.5. 15.69 16.x =107 17.27或28 18.10 g三、19.解:(1)移项,得5y -2y =6+3.合并同类项,得3y =9. 系数化为1,得y =3. (2)去括号,得5x =3x -12. 移项,得5x -3x =-12. 合并同类项,得2x =-12. 系数化为1,得x =-6.(3)去分母,得4(1-x )-12x =36-3(x +2). 去括号,得4-4x -12x =36-3x -6. 移项,得3x -4x -12x =36-6-4. 合并同类项,得-13x =26. 系数化为1,得x =-2.(4)原方程可化为10x 7-17-20x3=1. 去分母,得30x -7(17-20x )=21. 去括号,得30x -119+140x =21. 移项、合并同类项,得170x =140. 系数化为1,得x =1417.20.解:解方程2-3(x +1)=0,得x =-13,所以关于x 的方程k +x 2-3k -2=2x的解为x =-3,所以k -32-3k -2=-6,解得k =1.21.解:设小长方形的长为x cm ,则宽为14-x3cm ,由题意得,2×14-x 3+6=x +14-x3,解得x =8,所以14-x3=2,所以阴影部分的面积之和为(6+2×2)×14-2×8×6=44(cm 2). 22.解:(1)等式的性质2(2)100y =37.37,则100y =37+0.37; 100y =37+y ;3799(3)设a =0.8,10a =10×0.8, 10a =8.8,则10a =8+0.8, 10a =8+a ,解得a =89. 设m =0.38,10m =3.8=3+89, 故m =718.23.解:(1)由题意,得5 020-92×40=1 340(元).答:甲、乙两班联合起来购买,比单独购买可以节省1 340元.(2)设甲班有x 名同学参加合唱(46<x <90),则乙班有(92-x )名同学参加合唱.依题意得50x +60(92-x )=5 020, 解得x =50,所以92-x =42.答:甲班有50名同学参加合唱,乙班有42名同学参加合唱. 24.解:(1)设两人出发t 小时后甲追上乙,根据题意得16t -4t =6, 解得t =12.答:两人出发12小时后甲追上乙.(2)设两人的速度都提高了a千米/时,B,C两地相距x千米,根据题意得2(16+a)-2(4+a)=x,解得x=24.6+24=30(千米).答:A,C两地相距30千米.第4章测试卷一、选择题(每题3分,共30分)1.下面几种图形是平面图形的是()2.下图中射线AB或线段MN能和直线PQ相交的是()3.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.如图,下列说法:①∠1就是∠ABC;②∠2就是∠DBC;③以B为顶点的角有3个,它们是∠1,∠2,∠ABC;④∠ADB也可以表示成∠D;⑤∠BCD 也可以表示成∠ACB,还可以表示成∠C.其中说法正确的有()A.2个B.3个C.4个D.5个5.∠α与∠β互余,∠α与∠γ互补,则∠γ-∠β的度数是() A.30°B.60°C.90°D.180°6.如图,已知点C是线段AB的中点,点D是线段BC的中点,下列各式不正确的是()A.CD=AC-DB B.CD=AD-BC C.CD=12AB-BD D.CD=13AB7.如图所示,已知∠1=∠2,∠3=∠4,则下列结论中正确的有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个8.钟表在8:25时,时针与分针的夹角是()A.101.5°B.102.5°C.120°D.125°9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD =DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为__________________.12.已知∠α=13°,则∠α的余角的大小是__________.13.三条直线两两相交,最少有________个交点,最多有________个交点.14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD=________.15.如图,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB=________.16.比较:28°15′________28.15°(填“>”“<”或“=”).17.如图,将长方形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE ,BF ,则∠EBF =________.18.用棱长是1 cm 的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色的面积之和是________cm 2. 三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分) 19.计算:(1)90°-77°54′36″-1°23″; (2)21°17′×4+176°52′÷3.20.如图,有A ,B ,C ,D 四点,请根据下列语句作图并填空:(1)作直线AD ,并过点B 作一条直线与直线AD 相交于点O ,且使点C 在直线BO 外;(2)作线段AB ,并延长线段AB 到E ,使B 为AE 的中点;(3)作射线CA 和射线CD ,量出∠ACD 的度数为________,并作∠ACD 的平分线CG ;(4)C ,D 两点间的距离为________厘米,作线段CD 的中点M ,并作射线AM .21.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,点E 是AC 的中点,点D 是AB 的中点,求DE 的长.22.如图,已知直线AB与CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.23.如图是一张裁剪后的铁皮.(1)计算该铁皮的面积;(2)该铁皮能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.24.已知OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,∠MON与α的数量关系是什么?(3)如图③,当∠AOB=α,∠BOC=β时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.A2.D3.A4.B5.C6.D7.B8.B9.B10.B:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED,共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA 和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD =40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;易知当F在线段CD上时,点F到点B,C,D,E的距离之和最小,为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时,点F到点B,C,D,E的距离之和最大,为FB +FE+FD+FC=8+0+3+6=17,故④错误.故选B.二、11.两点确定一条直线12.77°13.1;314.115.100°16.>17.45°:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角相等.18.30三、19.解:(1)原式=12°5′24″-1°23″=11°5′1″.(2)原式=85°8′+58°57′20″=144°5′20″.:度、分、秒的换算是60进制,不同于10进制.在运算中满60向高位进1,而借1则表示低位的60.在进行度、分、秒的加减法或乘除法的运算时,要分别按度、分、秒计算,不够减的要借位.从高位借的,单位要化为低位的单位后才能进行运算.20.解:(1)如图所示.(2)如图所示.(3)如图所示.105°(4)1.5如图所示.21.解:因为AB=24 cm,所以BC=38AB=38×24=9(cm),所以AC=AB+BC=24+9=33(cm).因为点E是AC的中点,所以AE=12AC=12×33=16.5(cm).因为点D是AB的中点,所以AD=12AB=12×24=12(cm),所以DE=AE-AD=16.5-12=4.5(cm).22.解:因为∠COE是直角,∠COF=34°,所以∠EOF=56°,又因为OF平分∠AOE,所以∠AOF=∠EOF=56°.因为∠COF=34°,所以∠AOC=∠AOF-∠COF=22°,因为∠AOC,∠BOD都是∠COB的补角,所以∠BOD=∠AOC=22°.23.解:(1)(3×1+1×2+3×2)×2=11×2=22(平方米),即铁皮的面积为22平方米.(2)能,如图所示.长方体盒子的体积为1×2×3=6(立方米).24.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45°.(2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α.(3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.第5章测试卷一、选择题(每题3分,共30分)1.下列调查适合采用抽样调查的是()A.某班学生1分钟跳绳的个数B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.在反映某种股票的涨跌情况时,应选择()A.条形统计图B.折线统计图C.扇形统计图D.以上都可以3.要调查某市中学生了解禁毒知识的情况,下列抽样调查最适合的是() A.在本市某中学抽取200名女生B.在本市中学生中抽取200名学生C.在本市某中学抽取200名学生D.在本市中学生中抽取200名男生4.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是()A.没有经过专家鉴定B.应调查四位游戏迷C.样本不具有代表性D.以上都不是5.为了解某校2 000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是()A.该调查的方式是抽样调查B.该调查的方式是普查C.2 000名学生是样本D.样本容量是400名学生6.某公司的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌7.小明对九(1)班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球8.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的百分比为()棉花纤维长度0≤x<8 8≤x<16 16≤x<24 24≤x<32 32≤x x/mm根数 1 2 6 3A.80%B.70%C.40%D.20%9.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名10.某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况,如图①②是根据调查结果制作的统计图的一部分,根据统计图分析下列结论:①月人均用水量为3 t的有50户;②其中用淘米水浇花的占15%;③选用“洗衣用水冲马桶”这种节水措施的家庭最多.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,妈妈取了一点品尝,这应该属于____________.(填“普查”或“抽样调查”)12.对某校九年级的480名学生的身高情况进行了解,从中抽取100名学生的身高,则这个问题中的样本为____________________________________.13.某站正在就“中小学生对老师上课拖堂现象的态度”进行在线调查,你认为调查结果________(填“具有”或“不具有”)代表性.14.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.15.如图是某农场里三种蔬菜种植面积的扇形统计图,若西红柿种植面积为4.2公顷,则这三种蔬菜种植总面积是________公顷,表示黄瓜的扇形圆心角的度数为________.16.下表为100粒种子的发芽情况:天数 1 2 3 4 5发芽率/% 10 65 15 5 0 反映种子的发芽规律,可选择________统计图.17.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是________(填“小明”或“小华”).18.在“校园读书节”期间,学生会组织了一次图书义卖活动,提供了四种类别的图书,如图是本次义卖情况的统计图,则这次活动共卖出文学类图书的本数占所有卖出本数的百分比是________.三、解答题(19~21题每题16分,22题18分,共66分)19.根据下表解答下列问题.果树名面积/万m2果树名面积/万m2梨树30 杏树15苹果树60 桃树15(1)计算各种果树面积占总面积的百分比;(2)计算各种果树对应的扇形的圆心角度数,并制作扇形统计图.20.杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天共收到厨余垃圾约200 t,请计算其中混杂着的玻璃类垃圾的质量.21.如图所示的两幅统计图反映了某市甲、乙两校学生参加课外活动的情况,请你通过图中信息回答下面的问题.(1)通过对图①的分析,写出一条你认为正确的结论;(2)通过对图②的分析,写出一条你认为正确的结论;(3)2019年甲、乙两校参加科技活动的学生共有多少人?22.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图.(2)若该校共有初中生2 300人,请估计该校“不重视阅读数学教科书”的初中生人数.(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?答案一、1.D 2.B3.B4.C5.A6.D7.D8.A9.B10.D二、11.抽样调查12.抽取的100名学生的身高13.不具有14.1 20015.7.5;108°16.折线17.小华18.45%三、19.解:(1)总面积为30+60+15+15=120(万m2).梨树:30120×100%=25%;苹果树:60120×100%=50%;杏树:15120×100%=12.5%;桃树:15120×100%=12.5%.(2)梨树:360°×25%=90°;苹果树:360°×50%=180°;杏树:360°×12.5%=45°;桃树:360°×12.5%=45°.制作扇形统计图如图所示.20.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,所以m=69.01.(2)200×0.9%=1.8(t).即其中混杂着的玻璃类垃圾的质量约为1.8 t.21.解:(1)2017~2019年甲、乙两校参加课外活动的学生人数都随着年份的增加而增加.(答案不唯一)(2)2019年乙校参加科技活动的学生人数最多.(答案不唯一)(3)2 000×38%+1 100×60%=1 420(人).答:2019年甲、乙两校参加科技活动的学生共有1 420人.22.解:(1)由统计表可知,样本容量为57÷0.38=150.所以a=150×0.3=45.又由统计表可知c=1-0.3-0.38-0.06=0.26,所以b=150×0.26=39.补全统计图如图所示.(2)2 300×0.26=598(人),所以估计该校“不重视阅读数学教科书”的初中生约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生的数学阅读能力,重视数学教科书在数学学习过程中的作用.②考虑到样本要具有随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.:(3)答案不唯一,合理即可.期末提高测评卷一、选择题(每题3分,共30分)1.下列各数中,不是负数的是()A.-2 B.3 C.-58D.-0.102.下列计算正确的是()A.-1-1=0B.a3-a=a2C.3(a-2b)=3a-2bD.-32=-93.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命采用全面调查方式B.了解衢州市每天的流动人口数,采用抽样调查方式C.了解衢州市居民日平均用水量,采用全面调查方式D.了解汽车通过某一路口的车流情况,采用全面调查方式4.已知ax=bx,下列结论错误的是()A.a=b B.ax+c=bx+c C.(a-b)x=0 D.axπ=bxπ5.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<16.如图,两个三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°7.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()A.0 B.2 C.0或2 D.-2。
湘教版七年级上册数学期末考试试卷含答案
![湘教版七年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/ac2a10aadb38376baf1ffc4ffe4733687e21fce0.png)
湘教版七年级上册数学期末考试试题一、单选题1.如果||a a =-,下列成立的是()A .0a >B .0a <C .0a ≥D .0a ≤2.若盈余60万元记作+60万元,则﹣60万元表示()A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损3.把202400000记成科学记数法正确的是()A .82.02410⨯B .720.2410⨯C .80.202410⨯D .52.02410⨯4.下列方程中是一元一次方程的是()A .536x y -=B .132x -=C .321x x+=D .2625x =5.下列各题中去括号正确的是()A .()531531x x -+=--B .1242414x x ⎛⎫-+=-+ ⎪⎝⎭C .1241244x x ⎛⎫-+=-- ⎪⎝⎭D .()()22312433x y x y ---=---6.当3x =时,整式31ax bx +-的值等于﹣100,那么当3x =-时,整式31ax bx +-的值为()A .100B .﹣100C .98D .﹣987.下列说法正确的是()A .25x y π的系数是5B .233x y π的次数是6C .323xy -的系数是23-D .223xy -的次数是28.实数a 、b 在数轴上的位置如图所示,则a -与b 的大小关系是()A .a b ->B .a b -=C .a b-<D .不能判断9.下列几何体中,其侧面展开图为扇形的是()A .B .C .D .10.一个角的补角加上30°后,等于这个角的余角的3倍,则这个角是()A .10°B .15°C .30°D .25°11.规定一种新运算:23a b a b ⊗=-,若()2110x ⊗⊗-=⎡⎤⎣⎦,则x 的值为()A .2B .﹣2C .1D .﹣112.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°二、填空题13.已知x=-2是关于x 的方程ax+3x-6=0的解,则a 的值为______.14.单项式2415m x y +-与423m n x y -是同类项,则m n =______.15.规定一种运算:()()22a b a b a b *=-+,那么()432**=______.16.某企业2018年9月份产值为x 万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是______万元(用含x 的代数式表示)17.按如图所示的运算程序,当2x =,4y =输出的结果为_______.三、解答题18.计算:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦19.解方程:(1)()322050x x --+=;(2)5415313412y y y ++--=+.20.先化简再求值:已知()22310a b -++=,求代数式()()22262234a ab a ab b --+-的值.21.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是15cm ,求AB ,CD 的长.22.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?23.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?24.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.25.对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()()a,b c,d ac bd ⊗=-.例如:()()()2,41,3214314⊗-=⨯--⨯=-.根据上述规定,解决下列问题:(1)有理数对()()2,45,6-⊗-=______;(2)若有理数对()()3,2,418x ⊗--=,则x =______;(3)当满足等式()()11229,x x y,y -⊗-=中的x 是整数时,求整数y 的值.26.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若30AOB ∠=︒,20DOE ∠=︒,那么BOD ∠是多少度?(2)若150∠=︒AOE ,40AOB ∠=︒,那么COD ∠是多少度?参考答案1.D 2.B 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.C 11.D12.C13.-6【分析】把x=-2代入方程ax+3x-6=0得出-2a-6-6=0,再求出方程的解即可.【详解】解:把x=-2代入方程ax+3x-6=0,得-2a-6-6=0,解得:a=-6,故答案为:-6.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左右两边相等的未知数的值,叫方程的解.14.1【分析】两个单项式中,所含的字母相同,相同字母的指数也相等,则成为同类项,据此解题.【详解】解析:∵单项式2415m x y +-与423m n x y -是同类项,∴2424m m n +=⎧⎨-=⎩,解得21m n =⎧⎨=-⎩,∴()211mn=-=,故答案为:1.【点睛】本题考查同类项定义,难度较易,掌握相关知识是解题关键.15.﹣180【分析】根据a ∗b=(a−2b)(2a+b)先求出3∗2=-7,然后求出4∗(-7)即可.【详解】解:由题意:()()()()()323223223434177*=-⨯⨯+⨯=-⨯+=-⨯=-;∴()()()()()432474144141810180**=*-=+⨯-=⨯-=-.故答案为:﹣180.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够熟练掌握平方差公式.16.(1﹣10%)(1+10%)x 【分析】根据题目中的数量关系.10月份比9月份减少了10%.则10月份为(1﹣10%)x 万元.11月份比10月份增加了10%.则11月份的产值为(1﹣10%)(1+10%)x 万元.【详解】∵某企业今年9月份产值为x 万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x 万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x 万元.故答案为:(1﹣10%)(1+10%)x .【点睛】本题结合百分比考查列代数式解决问题,理解题意,找准数量关系是解答关键.17.12【分析】根据运算程序,把2x =,4y =代入代数式,求值,即可求解.【详解】解:∵41y =≥,∴当2x =,4y =时,22x y +=222412+⨯=,故答案是:12.【点睛】本题主要考查按程序图求代数式的值,掌握含乘方的有理数的混合运算法则是解题的关键.18.6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算.【详解】解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭()4166=-+-410=-+6=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)7x =(2)13y =-【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,可得:3x-40+2x+5=0,移项,可得:3x+2x=40-5,合并同类项,可得:5x=35,系数化为1,可得:x=7;(2)解:去分母,可得:4(5y+4)-3(y+1)=12+5y-3,去括号,可得:20y+16-3y-3=12+5y-3,移项,可得:20y-3y-5y=12-3-16+3,合并同类项,可得:12y=-4,系数化为1,可得:y=-13.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.2102ab b -+,32【分析】化简代数式,先去括号,然后合并同类项,根据绝对值和乘方的非负性求得a ,b 的值,代入求值即可.【详解】解:()()22262234a ab a ab b--+-22262682a ab a ab b =---+2102ab b =-+∵()22310a b -++=,∴30a -=,10b +=,即3a =,1b =-,∴原式()()210312130232=-⨯⨯-+⨯-=+=【点睛】本题考查整式的化简求值,掌握去括号及有理数的混合运算法则正确化简计算是本题的解题关键.21.18cm AB =,2cm CD =【分析】根据线段中点的性质,可得12AE AB =,12CF CD =,根据线段的和差,可得AC 的长、EF 的长,根据解方程,可得x 的值.【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =.∵点E 、点F 分别为AB 、CD 的中点,∴1 1.52AE AB xcm ==,122CF CD xcm ==.∴6 1.52 2.5EFAC AE CF x x x xcm =--=--=.∵15EF cm =,∴2.515x =,解得:6x =.∴18AB cm =,24CD cm =.【点睛】本题考查与线段中点有关的计算、解一元一次方程,利用方程思想解决线段之间的数量关系是解答的关键.22.(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米(2)这天上午出租车共耗油36.4升【分析】(1)根据有理数的加法运算,将所有数据相加即可;(2)求出这天上午行驶的路程,再乘每千米耗油量,即可得答案.(1)31813151012131729-++----=-,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米.(2)3813151012131791++-+++++-+-+-+-=,910.436.4⨯=(升).答:这天上午出租车共耗油36.4升.【点睛】本题考查了正数和负数,掌握有理数的加法运算是解题关键.23.安排20人加工汤料包.【分析】设安排x 人加工汤料包,根据每袋包装臭豆腐里有1个汤料包和4个配料包得:4×100x=200(60-x ),即可解得x 答案.【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x=200(60-x ),解得x=20,答:安排20人加工汤料包.【点睛】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.24.(1)7(2)3或5【分析】(1)由2AC BC =,18AB =,可求出6BC =,12AC =.再根据E 为BC 中点,即得出3CE =,从而可求出CD 的长,进而可求出AD 的长;(2)分类讨论:当点E 在点F 的左侧时和当点E 在点F 的右侧时,画出图形,根据线段的倍数关系和和差关系,利用数形结合的思想即可解题.(1)∵2AC BC =,18AB =,8DE =,∴163BC AB ==,2123AC AB ==,如图,∵E 为BC 中点,∴132CE BC ==,∴5CD DE CE =-=,∴18567AD AB CD BC =--=--=;(2)分类讨论:①如图,当点E 在点F 的左侧时,∵3CE EF +=,6BC =,∴点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==;②如图,当点E 在点F 的右侧,∵12AC =,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,∴3AD =.综上所述:AD 的长为3或5;【点睛】本题考查线段中点的有关计算,线段n 等分点的有关计算,线段的和与差.利用数形结合和分类讨论的思想是解题关键.25.(1)-14(2)6(3)0y =或1y =或1y =-或2y =或4y =-或5y =【分析】(1)根据题目中的法则即可运算;(2)根据法则表达出(−3,x)⊗(-2,4),再解方程即可;(3)根据法则表达出(1,x−1)⊗(x−2y ,2y),列出方程,再根据x 是整数,求出y 的值即可.(1)解:()()()()2,45,62546102414-⊗-=-⨯--⨯=-=-;(2)解:()()3,2,418x ⊗--=,()()32418x ⨯--⨯-=,解得6x =;(3)解:由()()11229,x x y,y -⊗-=得()2219x y y x ---=,即()129y x -=,∵x 是整数,∴121y -=±或3±或9±,∴0y =或1y =或1y =-或2y =或4y =-或5y =.【点睛】本题考查了新定义下的有理数运算问题,解题的关键是掌握题中新定义的运算法则.26.(1)50°(2)35°【详解】解:(1)OB 是AOC ∠的平分线,∴30BOC AOB ∠=∠=︒;∵OD 是COE ∠的平分线,∴20COD DOE ∠=∠=︒,∴302050BOD BOC COD ∠=∠+∠=︒+︒=︒;(2)OB 是AOC ∠的平分线,∴280AOC AOB ∠=∠=︒,∴1508070COE AOE AOC ∠=∠-∠=︒-︒=︒,∵OD 是COE ∠的平分线,∴1352COD COE ∠=∠=︒.。
湘教版七年级数学上册第一次月考考试卷及答案【完整版】
![湘教版七年级数学上册第一次月考考试卷及答案【完整版】](https://img.taocdn.com/s3/m/42a2a8ddbd64783e09122bf1.png)
湘教版七年级数学上册第一次月考考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DCC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.绝对值不大于4.5的所有整数的和为________.3.已知,|a|=﹣a ,bb =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x y x y -=⎧⎨--=⎩ (2)3()2()7x y x y x y x y -=+⎧⎨-++=⎩2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y3.如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,求证:AB ∥CD .4.如图,已知直线EF 分别交AB,CD 于点E,F,且∠AEF =66°,∠BEF 的平分线与∠DFE 的平分线相交于点P.(1)求∠PEF 的度数;(2)若已知直线AB ∥CD,求∠P 的度数.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、C6、D7、A8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、03、﹣2c4、a≤2.5、70°6、1三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、1 3 23、略4、(1)∠PEF=57°;(2)∠EPF=90°.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。
数学湘教版七年级上册试卷
![数学湘教版七年级上册试卷](https://img.taocdn.com/s3/m/c7018653591b6bd97f192279168884868662b817.png)
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. √3C. πD. 0.1010010001…2. 下列各数中,正数是()A. -3B. 0C. 2D. -√23. 已知a=2,b=-3,则a+b的值是()A. -1B. 1C. 5D. -54. 如果|a|=5,那么a的值可能是()A. -5B. 5C. ±5D. 05. 下列各数中,无理数是()A. √2B. √3C. πD. 0.1010010001…6. 下列各数中,有理数是()A. √2B. √3C. πD. 0.1010010001…7. 已知a=2,b=-3,则a-b的值是()A. -1B. 1C. 5D. -58. 如果|a|=5,那么a的值可能是()A. -5B. 5C. ±5D. 09. 下列各数中,无理数是()A. √2B. √3C. πD. 0.1010010001…10. 下列各数中,有理数是()A. √2B. √3C. πD. 0.1010010001…二、填空题(每题3分,共30分)11. 有理数a的相反数是________。
12. 有理数a的绝对值是________。
13. 有理数a、b的差是________。
14. 有理数a、b的积是________。
15. 有理数a、b的商是________。
16. 有理数a、b的平方是________。
17. 有理数a、b的立方是________。
18. 有理数a、b的最大公约数是________。
19. 有理数a、b的最小公倍数是________。
20. 有理数a、b的倒数是________。
三、解答题(每题10分,共40分)21. 计算下列各式的值:(1)2 + 3 - 4(2)-2 × 3 ÷ 4(3)√2 + √322. 已知a、b是相反数,且|a|=5,求a、b的值。
23. 已知a、b是同号数,且|a|=3,|b|=5,求a、b的值。
湘教版七年级上册数学期末考试试卷含答案
![湘教版七年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/4a07bcb780c758f5f61fb7360b4c2e3f56272561.png)
湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数的相反数是()A .13-B .13C .3D .92.下列各式中运算正确的是()A .336235x x x +=B .220a b ab -=C .(-18)÷(-9)=-2D .3(2)8-=-3.以下四个图中有直线、射线、线段,其中能相交的是()A .①②③④B .①③C .②③④D .①4.有理数a ,b 在数轴上的位置如图所示,那么下列式子中不一定成立的是()A .a >bB .b ﹣a <0C .ab <0D .|a|≥|b|5.若1a b -=-则223a b --等于()A .1-B .2-C .5-D .56.下列方程的变形中,正确的是()A .方程3221x x +=-移项得3212x -=-+B .方程625(1)x x -=--,去括号得6251x x -=--C .方程2332x =,方程两边都乘以32,得1x =D .方程1125x x--=可化为5(1)210x x --=7.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是()A .0x =B .3x =C .3x =-D .2x =8.下列调查中,最适合采用抽样调查的是()A .对旅客上飞机前的安检B .了解全班同学每周锻炼的时间C .企业招聘,对应聘人员面试D .对某水域的水质情况进行调查9.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为()A .10cmB .13cmC .12cmD .9cm10.某种商品因换季准备打折出售.如果按定价的七五折出售将亏25元,而按定价的打九折出售,将赚20元,这种商品的定价为()A .250元B .300元C .280元D .285元11.如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A .①②④B .①②③C .②④D .②③④12.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余D .∠AOC 与∠COB 互补二、填空题13.已知∠α=36°36′36″,则∠α的余角等于_____.14.如果单项式28m x y 和32n x y -是同类项则m n +=_________.15.若|m ﹣2|+(n+2)2=0,则m+2n 的值为______.16.修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.17.将数据47050000用科学记数法表示为__________.18.观察下列单项式:3572,6,12,20,x x x x ……按此规律写出第n 个单项式________.三、解答题19.计算:(1)5-7+(-1)(2)43111(2)356()23-+-+--⨯-||20.解下列方程:(1)5(1)2(12)0x x --+=(2)12124x x +-=+21.先化简,再求值:222212[2()2]42m n m n mn m n mn mn ---++,其中3m =,12n =.22.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)若∠AOB=140°,求∠COE 的度数;(2)若∠COE=65°,∠COA=20°,求∠BOE 的度数.23.列方程解应用题:甲乙两位同学制作黑板报,甲单独制作需要4小时,乙单独制作需要2小时;(1)如果甲乙一起制作,多长时间能做完?(2)如果甲先制作3小时,剩下的由乙来制作,乙要用多少时间才能制作完?24.解答下列两题:(1)某新冠疫苗接种点,每天接种人数在500人左右,工作人员统计时,超过500人的人数记为正,不足500人的人数记为负.以下是10天内的记录数据:-10+8+10-6-2+15-7+3-20+7计算该接种点10天内接种的总人数.(2)已知A=2423x x +-,B=232x x --.计算A -2B .25.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.26.某蔬菜基地今年收获大白菜24000千克,在收获前期共投入9000元的成本,今年大白菜的销售行情如下:方式一:直接在蔬菜基地销售,每千克为m 元:方式二:在市场上每千克为n 元,但平均每天只出售2000千克,且每天需人工费300元,每天还需缴纳管理费等其它费用100元.(1)分别用m .n 表示两种方式出售大白菜的纯收入:(2)若2m =元, 2.5n =元,选择怎样方式出售获利较多?说明你的理由:(3)当3n =元,m 为何值时,两种方式获利一样.27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)将数﹣5,﹣32,0,2.5在数轴上表示出来.(2)若数轴上表示数a 的点位于﹣3与2之间,那么|a+3|+|a ﹣2|的值是多少?(3)若A 是数轴上的一个点,它表示数a ,则|a+5|+|a ﹣3|的最小值是多少?当a 取多少时|a+5|+|a ﹣1|+|a ﹣3|有最小值?最小值是多少?参考答案1.B 【分析】根据倒数及相反数的定义解答即可.【详解】∵﹣3的倒数是﹣13,∴﹣3的倒数的相反数是13,故选B .【点睛】本题考查了倒数及相反数的定义,熟知倒数及相反数的定义是解决问题的关键.2.D 【分析】根据合并同类项,有理数的除法及乘方分析各选项即可.【详解】解:A 选项,333235x x x +=,故该选项计算错误,不符合题意;B 选项,2a b 与2ab 不是同类项,故该选项计算错误,不符合题意;C 选项,(-18)÷(-9)=2,故该选项计算错误,不符合题意;D 选项,3(2)8-=-,故该选项计算正确,符合题意;故选∶D【点睛】本题考查了合并同类项,有理数的除法及乘方,熟记乘方的意义是解题的关键.3.B 【分析】根据直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸依次判断即可.【详解】解:①射线和直线延伸后可以相交,符合题意;②线段不能向两端延伸,不能相交,不符合题意;③两条直线延伸后可以相交,符合题意;④射线和直线延伸后不能相交,不符合题意;故选:B .【点睛】题目主要考查直线、线段及射线的知识,掌握直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸是解题关键.4.D 【详解】试题分析:观察数轴可得:b <0<1<a ,∴a >b ,b ﹣a <0,a b<0,根据已知数轴不能判断|a|和|b|的大小.故选D .考点:1.有理数大小比较;2.数轴.5.C 【分析】将223a b --变形为2()3a b --,再将a-b=-1整体代入即可求解.【详解】∵a-b=-1,∴223a b --2()3a b =--2(1)3=⨯--5=-.故选:A .【点睛】本题考查了已知式子的值求代数式的值,注重整体代入的思想是解答本题的关键.6.D 【分析】解一元一次方程的步骤:去分母,去括号,移项,合并同类项,化系数为1.移项要变号;去括号时若括号前是负号,括号里面要变号;去分母时等式左右两边每一项都要乘以分母的最小公倍数.【详解】A :程3221x x +=-移项得3212x x -=--,故A 错误;B :方程625(1)x x -=--,去括号得6255x x -=-+,故B 错误;C ∶方程2332x =,方程两边都乘以32,得94x =D ∶正确故选:D【点睛】本题主要考查了解一元一次方程的步骤,熟练的掌握等式的性质,能够根据等式的性质正确的解一元一次方程是解题的关键.7.A【详解】解:由方程为一元一次方程得,m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.8.D【分析】根据普查及抽样调查的的适用范围(一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查)依次判断即可.【详解】解:A.∵对旅客上飞机前的安检非常重要,故宜采用普查;B.了解全班同学每周体育锻炼的时间工作量比较小,故宜采用普查;C.企业招聘,对应聘人员的面试工作量比较小,故宜采用普查;D.对某水域的水质情况进行调查,宜采用抽样调查;故选D.【点睛】题目主要考查抽样调查及普查的适用范围,理解抽样调查及普查的适用范围是解题关键.9.C【分析】直接根据题意表示出各线段长,进而得出答案.【详解】解:∵23BC AC,∴设BC=2x,则AC=3x,∵D为BC的中点,∴CD=BD=x,∵线段AB=15cm,∴AC+BC=5x=15,解得:x=3(cm),∴AD=3x+x=4x=12(cm).故选:C.【点睛】此题主要考查了两点之间的距离,正确表示出各线段长是解题关键.10.B【分析】七五折是定价的75%,九折是定价的90%,设定价为x元,则根据两种情况下的进价相等列方程,再解方程可得答案.【详解】解:设定价为x元,则0.75250.920,x x +=-解得:300,x =答:这种商品的定价为300元.故选B【点睛】本题关键是理解打折的含义,一元一次方程的应用,理解题意,确定相等关系是解本题的关键.11.A 【分析】由平面图形的折叠及正方体的展开图解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选A .【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C 【分析】根据垂直的定义和互余解答即可.【详解】解:∵∠EOD =90°,∠COB =90°,∴∠1+∠DOC =∠2+∠DOC =90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE =∠1+∠COD ,∴∠AOE =∠COD ,故选:C .【点睛】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.13.532324︒'''【分析】根据互为余角的两个角的和为90度,列出算式,再根据度分秒的换算即可得出答案.【详解】解:α∠的余角是:90363636532324︒-︒'''=︒''',故答案为:532324︒'''.【点睛】此题主要考查了余角和度分秒的换算,解题的关键是主要记住互为余角的两个角的和为90度.14.5【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:因为单项式8xmy 2和-2x 3yn 是同类项,所以m=3,n=2,所以m+n=3+2=5.故答案为:5.【点睛】本题考查了同类项的定义,熟记同类项定义是解答本题的关键.15.2-【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可求解.【详解】解:∵|m ﹣2|+(n+2)2=0,∴m ﹣2=0,n+2=0,解得m =2,n =﹣2,则m+2n =2+2×(﹣2)=2﹣4=﹣2.故答案为:﹣2.【点睛】本题考查了非负数的性质∶几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.16.两点之间线段最短【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.17.4.705×710【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:47050000=4.705×107,故答案为:4.705×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.21(1)n n n x -+【分析】观察发现,单项式的指数部分为2n-1,系数部分为n (n+1),据此即可求解.【详解】解:∵2x=1×(1+1)x2×1-1,6x3=2×(2+1)x2×2-1,12x5=3×(3+1)x2×3-1,20x7=4×(4+1)x2×4-1,…,∴第n个单项式为:n(n+1)x2n-1.故答案为:n(n+1)x2n-1.【点睛】本题主要考查了单项式规律,解答的关键是由所给的单项式的总结出变化的规律.19.(1)-3(2)-8【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘法分配律,最后算加减即可得到结果.(1)解:原式=5-7-1=-2-1=-3;(2)解:原式=-1-8+2-6×12-6×(-13)=-1-8+2-3+2=-8.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.20.(1)x=7(2)x=0【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.(1)解:去括号得:5x-5-2-4x=0,移项得:5x-4x=5+2,合并得:x=7;(2)解:去分母得:2(x+1)=4+(x-2),去括号得:2x+2=4+x-2,移项得:2x-x=4-2-2,合并得:x=0.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.21.24mn ,3【分析】根据整式的运算顺序:先算小括号里面的,再算中括号里面的,最后算括号在面的;进行计算即可.【详解】解:原式=22222[22]4mn m n mn m n mn mn --+++=222224m n m n mn -+=24mn 当13,2m n ==时221443(32mn =⨯⨯=【点睛】本题主要考查了整式的加减法,按照运算顺序,同一级运算从左到右一次计算,有括号先算小括号里面的,再算中括号里面的,最后算大括号里面的进行计算是解题的关键.22.(1)70°(2)45°【分析】(1)直接根据角平分线的定义进行解答即可;(2)先根据(1)中所得结论∠COE=12∠AOB 求出∠AOB 的度数,再利用角的和差关系即可得出结论.(1)解:∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠AOB=140°,∴∠COE=12∠BOD+12∠AOD =12(∠BOD+∠AOD )=12∠AOB=70°;(2)由(1)知∠COE=12∠AOB ,∵∠COE=65°,∴∠AOB=130°,∵∠COA=20°,∴∠BOE=∠AOB-∠AOC-∠COE=130°-20°-65°=45°.【点睛】本题考查的是角平分线的定义,几何图形中角度的计算,数形结合是解答此题的关键.23.(1)43(2)12【分析】(1)根据题意可得,甲的工作效率为14,乙的工作效率为12,利用工作总量除以总工作效率即可得出结果;(2)先求出甲完成的工作量,确定剩余工作量,然后除以乙的工作效率即可.(1)解:根据题意可得,甲的工作效率为14,乙的工作效率为12,∴1141423⎛⎫÷+= ⎪⎝⎭小时,故甲乙合作需要43小时完成;(2)甲先制作3小时,完成了13344⨯=,剩余工作量为:1-3144=,需要乙工作的时间为:111422÷=,故乙要用12小时才能制作完.24.(1)4998人(2)2281x x ++【分析】(1)先计算出超过或不足500人的数据的总数,然后再进行计算即可;(2)将代数式直接代入计算,然后合并同类项求解即可.(1)解:-10+8+10-6-2+15-7+3-20+7=-2,∴500×10-2=4998,∴该接种点10天内接种的总人数为4998人;(2)解:A=4x2+2x−3,B=x2−3x−2.A-2B=4x2+2x−3-2(x2−3x−2)=4x2+2x−3-2x2+6x+4=2x2+8x+1.25.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).26.(1)方式一:(24000m-9000)元,方式二:(24000n-13800)元(2)方式二的出售获利较多,理由见解析(3)m=2.8元【分析】(1)根据利润=总额-成本列出代数式;(2)把m=2,n=2.5代入(1)中所列的代数式并解答,然后比较即可;(3)根据题意列出关于m的方程,通过解方程得到m的值.(1)方式一:出售苹果的纯收入为(24000m-9000)元,方式二:24000÷2000=12天,12(300100)4800⨯+=,则出售苹果的纯收入为24000n-4800-9000=(24000n-13800)元,故方式一的纯收入为(24000m-9000)元,方式二的纯收入为(24000n-13800)元;(2)方式二的出售获利较多,理由如下:方式一:把m=2元代入24000m-9000,得到24000×2-9000=39000(元)方式二:把n=2.5元代入24000n-13800,得到24000×2.5-13800=46200(元)因为39000<46200,所以方式二的出售获利较多;(3)依题意得:24000m-9000=24000n-13800整理,得:5n-5m=1,把n=3代入,得:15-5m=1,解得:m=2.8,答:当n=3元,m=2.8元时,两种获利一样.【点睛】本题考查了列代数式,代数式求值,以及一元一次方程的应用,解题的关键是读懂题目意思,根据题目所给出的条件找到合适的等量关系再求解.27.(1)详见解析;(2)5;(3)8;a=1;8.【分析】(1)在数轴上标示出﹣5,﹣32,0,2.5即可求解;(2)由图可得﹣3<a<2,然后根据绝对值的意义对|a+3|+|a-2|进行化简,即可求解;(3)根据|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和确定当﹣5<a<3时,|a+5|+|a ﹣3|的值最小,然后根据绝对值的意义进行化简.【详解】解:(1)如图所示:(2)①∵﹣3<a<2,∴|a+3|+|a﹣2|=a+3+2-a=5;(3)∵|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和∴当﹣5<a<3时,|a+5|+|a﹣3|的值最小,且为a+5+3-a=8,是定值,∴a=1时,|a﹣1|最小为0,∴a=1时,|a+5|+|a﹣1|+|a﹣3|的最小值等于8.。
新版湘教版七年级数学上册各单元检测试卷(全册共5个单元)
![新版湘教版七年级数学上册各单元检测试卷(全册共5个单元)](https://img.taocdn.com/s3/m/dc777537cec789eb172ded630b1c59eef8c79ac4.png)
新版湘教版七年级数学上册各单元检测试卷(全册共5个单元)新版湘教版七年级数学上册各单元检测试卷(全册共5个单元)第1章有理数(45分钟 100分)一、选择题(每小题4分,共28分) 1.与-3互为倒数的是 ( ) A.-1 3B. -3C.13D.3【解析】选A.因为-33 ?13=1,所以-3的倒数是-13. 2.-- ?12的值为( )A.2B.12C.-2D.-12【解析】选D.-- ?12=-12=-12. 3.如果a 的倒数是-1,那么a 2018等于 ( )A.1B.-1C.2 013D.-2 013【解析】选B.因为a 的倒数是-1,所以a=-1,所以a 2018=(-1)2018=-1.4.下列各数中,最小的数是 ( ) A.-2018B.|-2018|C.2018D.0【解析】选A.|-2018|=2018,2018>0>-2018,所以最小的数是-2018. 5.若数a 在数轴上的位置如图所示,则|a-2.5|= ( )A.a-2.5B.2.5-aC.a+2.5D.-a-2.5【解析】选B.因为绝对值符号里面的a-2.5是负数,去掉绝对值之后,结果为它的相反数,应为2.5-a.6.下列各组数中,相等的是 ( ) A.-1与(-4)+(-3) B. ?3 与-(-3) C.324与916D.(-4)2与-16【解析】选B. ?3 与-(-3)的结果都是3.7.如图,在数轴上有a,b 两个有理数,则下列结论中,不正确的是 ( )A.a+b<0B.a-b<0C.a2b<0D. ?ab3>0【解析】选B.因为a-b= a+(-b),而a与-b都是正数,故a-b>0.【知识归纳】两数差的符号规律1.大数减小数差是正数.2.小数减大数差是负数.3.相等两数的差是零.二、填空题(每小题5分,共25分)8.计算:|-3|-2= .【解析】原式=3-2=1.答案:19.(计算:-(-3)= ,|-3|= ,(-3)2= .【解析】-(-3)=3,|-3|=3,(-3)2=9.答案:3 3 910.我市生态竞争力指数全国第四,仅次于澳门、香港和南昌,目前全市现有林地面积573000公顷,数据573000用科学记数法表示为.【解析】573000=5.733105.答案:5.73310511.若(a-1)2+b+1=0,则a2018+b2018= .【解题指南】解答本题的步骤1.先由非负数和的性质,求a,b的值.2.把a,b的值代入a2018+b2018并计算.【解析】因为(a-1)2+b+1=0,所以a=1,b=-1,所以a2018+b2018=12018+(-1)2018=1+1=2.答案:212.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2018的值是. 【解析】从前面四个等式可知,左边是几个奇数的和,右边是这几个奇数个数的平方,而1+3+5+…+2018是1007个奇数的和,所以所求式子的值为10072=1014049. 答案:1014049 三、解答题(共47分)13.(10分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:-3,+1,212,-1.5,6.并用“<”号连接起来.【解析】如图:-3<-1.5<+1<212<6.14.(16分)(20182辽宁师大二附中质检)计算. (1)-43÷(-2)2315.(2)-1.5330.75+0.53334-3.430.75.(3)-(1-0.5)÷133 2+(?4)2 .(4)(-5)33 ?35+32÷(-22)3 ?114 . 【解析】(1)原式=-64÷4315=-16315=-165.(2)原式=0.753(-1.53+0.53-3.4) =0.753(-4.4)=-3.3.(3)原式=-12÷133(2+16)= -1233318=-27.(4)原式=-1253 ?35+32÷(-4)3 ?54 =75+10=85. 【变式训练】计算下列各题: (1)-10+8÷(-2)2 -(-4)3(-3). (2) 214?412?118 ÷ ?118. (3)25÷ ?225 -8213 ?134 -0.5÷2312.。
湘教版七年级数学上册全册综合测试
![湘教版七年级数学上册全册综合测试](https://img.taocdn.com/s3/m/3ba56efd4b73f242326c5fa8.png)
七年级数学综合测试一.选择题(共8小题,满分24分,每小题3分)1.已知2a=5,2b=3.2,2c=6.4,2d=10,则a+b+c+d的值为()A.5B.10C.32D.642.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3B.﹣3C.﹣4D.44.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,305.因式分解x2﹣9y2的正确结果是()A.(x+9y)(x﹣9y)B.(x+3y)(x﹣3y)C.(x﹣3y)2D.(x﹣9y)26.已知在同一平面内,直线a,b,c互相平行,直线a与b之间的距离是3cm,直线b与c之间的距离是5cm,那么直线a与c的距离是()A.2cm B.8cm C.8或2cm D.不能确定7.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱广益C.我爱广益D.广益数学8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°二.填空题(共8小题,满分24分,每小题3分)9.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=.10.计算:x(x﹣2)=11.若(m﹣2)x n+=0是二元一次方程,则m+n的值.12.若s2=[(3.2﹣)2+(5.7﹣)2+(4.3﹣)2+(6.8)2]是李华同学在求一组数据的方差时,写出的计算过程,则其中的=.13.如图,AB∥CD,EG、EM、FM分别平分∠AEF、∠BEF、∠EFD,下列结论:其中正确的是(填序号).①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.14.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.15.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的为(填序号).①点A到BC的距离是线段AD的长度;②线段AB的长度是点B到AC的距离;③点C到AB的垂线段是线段AB.16.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.三.解答题(共2小题,满分10分,每小题5分)17.(5分)某学习小组学习了幂的有关知识发现:根据a m=b,知道a、m可以求b的值.如果知道a、b可以求m的值吗?他们为此进行了研究,规定:若a m=b,那么T(a,b)=m.例如34=81,那么T(3,81)=4.(1)填空:T(2,64)=;(2)计算:;(3)探索T(2,3)+T(2,7)与T(2,21)的大小关系,并说明理由.18.(5分)因式分解:(1)m3﹣16m(2)9a2(x﹣y)+4b2(y﹣x)四.解答题(共2小题,满分12分,每小题6分)19.(6分)已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.20.(6分)计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y =3五.解答题(共2小题,满分14分,每小题7分)21.(7分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中点A,B,C分别和点A1,B1,C1对应;(2)平移△ABC,使得点A在x轴上,点B在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中点A,B,C分别和点A2,B2,C2对应;(3)直接写出△ABC的面积.22.(7分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.六.解答题(共2小题,满分16分,每小题8分)23.(8分)如图,EF⊥BC于点F,∠1=∠2,DG∥BA,若∠2=40°,则∠BDG是多少度?24.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?七.解答题(共2小题,满分20分,每小题10分)25.(10分)某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m的值为;(Ⅱ)求统计的这组学生年龄数据的平均数、众数和中位数.26.(10分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:∵2a=5,2b=3.2,2c=6.4,2d=10,∴2a+b+c+d=5×3.2×6.4×10=16×64=210,∴a+b+c+d=10.故选:B.2.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选:D.4.解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.5.解:x2﹣9y2=(x+3y)(x﹣3y),故选:B.6.解:有两种情况,如图:(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米﹣3厘米=2厘米;故选:C.7.解:3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a﹣b)=3(x+1)(x﹣1)(a﹣b),∵x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,∴3(x+1)(x﹣1)(a﹣b)对应的信息可能是我爱广益,故选:C.8.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:(2+1)(22+1)(24+1)(28+1)+1,=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=216.10.解:原式=x2﹣2x故答案为:x2﹣2x11.解:∵(m﹣2)x n+=0是二元一次方程,∴m2﹣3=1且m﹣2≠0且n=1,解得:m=﹣2,n=1,∴m+n=﹣2+1=﹣1,故答案为:﹣1.12.解:∵s2=[(3.2﹣)2+(5.7﹣)2+(4.3﹣)2+(6.8)2],∴是3.2、5.7、4.3、6.8的平均数,∴=(3.2+5.7+4.3+6.8)÷4=20÷4=5故答案为:5.13.解:∵AB∥CD,∴∠DFE=∠AEF,∠DFE+∠BEF=180°,故①正确,∵ME平分∠BEF,MF平分∠DFE,∴∠MEF=∠BEF,∠MFE=∠DFE,∴∠MEF+∠MFE=(∠BEF+∠DFE)=90°,∴∠EMF=90°,故②正确,∵EG平分∠AEF,∴∠GEF=∠AEF,∵∠AEF=∠DFE,∴∠GEF=∠MFE,∴EG∥MF,故③正确,无法判断∠AEF=∠EGC,故④错误.故答案为:①②③.14.解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.15.解:∵AD⊥BC,∴点A到BC的距离是线段AD的长度,①正确;∵∠BAC=90°,∴AB⊥AC,∴线段AB的长度是点B到AC的距离,②正确∵AB⊥AC,∴C到AB的垂线段是线段AC,③不正确.其中正确的为①②,故答案是:①②.16.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.三.解答题(共2小题,满分10分,每小题5分)17.解:(1)∵26=64,∴T(2,64)=6;故答案为:6.(2)∵,(﹣2)4=16,∴=﹣3+4=1.(3)相等.理由如下:设T(2,3)=m,可得2m=3,设T(2,7)=n,根据3×7=21得:2m•2n=2k,可得m+n=k,即T(2,3)+T(2,7)=T(2,21).18.解:(1)m3﹣16m=m(m2﹣16)=m(m+4)(m﹣4);(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(3a+2b)(3a﹣2b)(x﹣y).四.解答题(共2小题,满分12分,每小题6分)19.解:(1)把和代入方程得:,①×2+②得:15n=15,解得:n=1,把n=1代入①得:m=2,则方程组的解为;(2)当时,原方程变为:2x﹣3y=5,解得x=,∵x<﹣2,∴<﹣2,解得y<﹣3.故y的取值范围是y<﹣3.20.解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.五.解答题(共2小题,满分14分,每小题7分)21.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)△ABC的面积为3×3﹣×1×3﹣×1×2﹣×2×3=.22.证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).六.解答题(共2小题,满分16分,每小题8分)23.解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.24.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.七.解答题(共2小题,满分20分,每小题10分)25.解:(Ⅰ)本次接受调查的学生人数为:14÷28%=50(人),m%=×100%=12%,则m=12;故答案为:50,12;(Ⅱ)这组学生年龄数据的平均数是:=14(岁),∵15岁出现的次数最多,出现了18次,∴众数是15岁;将这组数据按从小到大排列,处于中间的两个数都是14,则这组数据的中位数是=14岁.26.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.。
湘教版七年级上册数学期末考试试卷及答案
![湘教版七年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/546b5cdb8662caaedd3383c4bb4cf7ec4bfeb610.png)
湘教版七年级上册数学期末考试试题一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是34.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x-=+5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10v D .()510v +8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.10.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.15.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.16.已知13625'∠=︒,则∠1的补角是________.17.单项式12ab 的系数是____________;次数是_____________.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭19.解方程:2131163x x -+-=20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.25.某校开展了以“建功新时代”为主题的系列活动,举办了A 合唱,B 舞蹈,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?参考答案一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-【答案】C2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元【答案】B3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是3【答案】D4.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x -=+【答案】D5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥【答案】A6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个【答案】C7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10vD .()510v +【答案】B8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.【答案】410.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种【答案】B11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°【答案】C12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b【答案】A二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.【答案】615.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.【答案】1216.已知13625'∠=︒,则∠1的补角是________.【答案】143°35′17.单项式12ab 的系数是____________;次数是_____________.【答案】122.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭【答案】(1)4(2)419.解方程:2131163x x -+-=【答案】58x =20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.【答案】22,34mmn n +--【分析】根据单项式23m a b --与12n b a -是同类项,可得22m -=,11n -=,再将代数式化简,然后再代入,即可求解.【详解】解:∵单项式23m a b --与12n b a -是同类项,∴22m -=,11n -=,解得:0m =,2n =,()222222223323323m mn n n m mn n n m mn n --++=+-+=+-当0m =,2n =时,2230044m mn n +-=+-=-.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?【答案】(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【分析】(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.【答案】首先画一条射线,再用圆规再射线上依次截取线段AB=a ,BC=b ,CD=b ,再以D 为端点截取DE=c 即可得到AE=a+2b-c .【详解】如图所示:.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.【答案】自行车路段的长度为3000米,长跑路段的长度为2000米.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x-+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.【答案】(1)∠AOM =50°(2)∠AOM =2∠NOC ,见解析【分析】(1)解:(1)由题意得:∠MON=90°,∵∠BON=40°,∴∠MOB=∠MON+∠BON=130°.∴∠AOM=180°-∠MOB=50°;(2)∠AOM=2∠NOC,理由:由题意得:∠MON=90°,则:∠MOB=∠MON+∠NOB=90°+∠NOB.∵射线OC平分∠MOB,∴∠BOC=12∠MOB=45°+12∠BON,∴∠NOC=∠BOC-∠BON=45°-12∠BON=12(90°-∠BON).∵∠AOM+∠MON+∠BON=180°,∴∠AOM=180°-90°-∠BON=90°-∠BON,∴AOM=2∠NOC.25.某校开展了以“建功新时代”为主题的系列活动,举办了A合唱,B舞蹈,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?【答案】(1)200人(2)见解析,18°(3)1000人【分析】(1)解:本次调查的学生总人数是120÷60%=200(人)(2)解:选择C的有:200-120-52-8=20(人),补全的条形统计图如图所示;扇形统计图中“D”部分的圆心角度数是10200×360°=18°;(3)估计该校报名参加书法和演讲比赛的学生共有4000×1040200=1000(人).。
湘教版七年级数学上册单元测试题全套(含答案)
![湘教版七年级数学上册单元测试题全套(含答案)](https://img.taocdn.com/s3/m/eccbbac7910ef12d2af9e786.png)
湘教版七年级数学上册单元测试题全套(含答案)第1章章末检测一、选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元2.在有理数-4,0,-1,3中,最小的数是()A.-4B.0C.-1D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1065.下列算式正确的是()A.(-14)-5=-9B.0-(-3)=3C.(-3)-(-3)=-6D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1中,化简结果等于1的个数是()-1A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>-b C.a+b>0D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8B.-2或8C.2或-8D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是()A .2B .4C .6D .8二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有__________,分数有___________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2);(2)2-2÷(3)(-24)123-(4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学生A B C D E F身高157162159154163165身高与平均身高的差值-3+2-1a+3b(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数:1第2个数:2+(-1)231+(-1)34;第3个数:3+(-1)231+(-1)341+(-1)451+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.A 3.A 4.D 5.B 6.B7.C8.D9.B10.C11.3-1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.014.4-415.116.6.96×10521万17.1018.110解析:找规律可得c=6+3=9,a=6+4=10,b=ac+1=91,∴a+b+c=110.19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分)(2)-4)=-8+5=-3.(8分)(3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分)21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min).答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017+(-1)231+(-1)34…1+(-1)403240331+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)第2章章末检测一、选择题(每小题3分,共30分)1.下列式子是单项式的是()A.x+y2B.-12x3yz2 C.5xD.x-y2.在下列单项式与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x3.多项式4xy2-3xy3+12的次数为()A.3B.4C.6D.74.下面计算正确的是()A.6a-5a=1B.a+2a2=3a2C.-(a-b)=-a+bD.2(a+b)=2a+b5.如图所示,三角尺的面积为()A.ab-r2B.12ab-r2C.12ab-πr2 D.ab6.已知一个三角形的周长是3m-n,其中两边长的和为m+n-4,则这个三角形的第三边的长为()A.2m-4B.2m-2n-4C.2m-2n+4D.4m-2n+47.已知P=-2a-1,Q=a+1且2P-Q=0,则a的值为()A.2B.1C.-0.6D.-18.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-310.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm2,第②个图形的面积为8cm2,第③个图形的面积为18cm2……则第⑩个图形的面积为()A.196cm 2B.200cm 2C.216cm 2D.256cm 2二、填空题(每小题3分,共24分)11.单项式-2x 2y5的系数是,次数是W.12.如果手机通话每分钟收费m 元,那么通话n 分钟收费元.13.若多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x ,请写出这个多项式.14.减去-2m 等于m 2+3m +2的多项式是m 2+m +2.15.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为.16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于4.17.若a -2b =3,则9-2a +4b 的值为W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016个格子中的整数是-2.-4abc6b-2…三、解答题(共66分)19.(12分)化简:(1)3a 2+5b -2a 2-2a +3a -8b ;(2)(8x -7y )-2(4x -5y );(3)-(3a 2-4ab )+[a 2-2(2a 2+2ab )].20.(8分)先化简再求值:(1)-9y +6x 2+y -23x 2x =2,y =-1;(2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.21.(10分)已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的值无关,求x的值.22.(10分)暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a=300,b=200时的旅游费用.23.(12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).参考答案与解析1.B 2.C 3.B 4.C 5.C6.C7.C8.C9.B10.B11.-25312.mn13.8x2-5x-214.m2+m+215.116.417.318.-219.解:(1)原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.(4分)(2)原式=8x-7y-8x+10y=3y.(8分)(3)原式=-3a2+4ab+a2-4a2-4ab=-6a2.(12分)20.解:(1)原式=-9y+6x2+3y-2x2=4x2-6y.(2分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(4分)(2)原式=2a2b-(2a2+2a2b+4ab2)=2a2b-2a2-2a2b-4ab2=-2a2-4ab2.(6分)当a=12,b=1时,原式=--4×12×1=-52.(8分)21.解:(1)∵A=2x2+xy+3y-1,B=x2-xy,∴A-2B=2x2+xy+3y-1-2x2+2xy=3xy+3y-1.∵(x +2)2+|y-3|=0,∴x=-2,y=3,则A-2B=-18+9-1=-10.(5分)(2)∵A-2B=y(3x+3)-1,A-2B的值与y值无关,∴3x+3=0,解得x=-1.(10分)22.解:共需交旅游费为0.8a×2+0.65b×8=(1.6a+5.2b)(元).(5分)当a=300,b=200时,旅游费用为1.6×300+5.2×200=1520(元).(10分)23.解:(1)窗户的面积为2m2.(4分)(2)窗框的总长为(15+π)a m.(8分)2×25+(15+π)a×20+252π2+(300+20π)×1=400+652π≈502(元).答:制作这种窗户需要的费用约是502元.(12分) 24.解:(1)111432(6分)(2)第n个“T”字形图案共有棋子(3n+2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(10分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(14分)第3章章末检测一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是()A.x-2=3B.1+5=6C.x2+x=1D.x-3y=02.方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=23.下列等式变形正确的是()A.若a=b,则a-3=3-bB.若x=y,则xa=yaC.若a=b,则ac=bcD.若ba=dc,则b=d4.把方程3x+2x-13=3-x+12去分母正确的是()A.18x+2(2x-1)=18-3(x+1)B.3x+(2x-1)=3-(x+1)C.18x+(2x-1)=18-(x+1)D.3x+2(2x-1)=3-3(x+1)5.若关于x的方程x m-1+2m+1=0是一元一次方程,则这个方程的解是()A.-5B.-3C.-1D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518-x=2×106C.518-x=2(106+x)D.518+x=2(106-x)7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是()A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是.12.若-x n +1与2x 2n -1是同类项,则n =.13.已知多项式9a +20与4a -10的差等于5,则a 的值为.14.若方程x +2m =8与方程2x -13=x +16的解相同,则m =.15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为.16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x );(2)2x -13-2x -34=1;(3)12x +54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.D 3.C 4.A 5.A 6.C7.B8.B9.A10.C解析:设图②中白色区域的面积为8x,灰色区域的面积为3x,由题意,得8x+3x=33,解得x=3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x=112.213.-514.7215.x=616.3017.150018.100019.解:(1)x=-20.(5分)(2)x=72.(10分)(3)x=3.(15分)20.解:由题意,得3+a2+-13(2a-1)-1=0,(4分)解得a=5.(8分)21.解:设甲种票买了x张,则乙种票买了(35-x)张,(2分)依题意有24x+18(35-x)=750,(6分)解得x=20.则35-x=15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm,根据题意得(50+46+42+…+14)-9x=311,(7分)即320-9x=311,解得x=1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x名同学准备参加演出(依题意46<x<90),则乙班有(92-x)名.依题意得50x+60(92-x)=5020,解得x=50,92-x=42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x+8x+7x+1(3分)(2)由题意,得x+x+1+x+7+x+8=416,解得x=100.(7分)(3)不能,(8分)因为当4x+16=622,解得x=15112,不为整数.(12分)第4章章末检测一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图,蛋糕的形状类似于()A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB=BC,则点B为AC的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为()A.3cmB.6cmC.9cmD.12cm第4题图第5题图5.如图,∠AOB为平角,且∠AOC=27∠BOC,则∠BOC的度数是()A.140°B.135°C.120°D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是()7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC 的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm10.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE =100°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB ,CD 交于点O ,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD =4,延长BD 到A ,使BA =6,点C 是线段AB 的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B7.C8.B9.C10.B解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD=40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC =100°+100°+100°+40°=340°,故③错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短12.①②③⑥13.同角的补角相等14.115.102016.12017.-6或0或4或1018.3019.解:图略.(10分)20.解:(1)∵C是线段BD的中点,BC=3,∴CD=BC=3.又∵AB+BC+CD=AD,AD=8,∴AB =8-3-3=2.(5分)(2)∵AD+AB=AC+CD+AB,BC=CD,∴AD+AB=AC+BC+AB=AC+AC=2AC.(10分)21.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB+∠DCE=180°.(7分)理由如下:∵∠ACB=∠ACD+∠DCB=90°+90°-∠DCE,∴∠ACB +∠DCE=180°.(10分)22.解:(1)设BC=x cm,则AC=3x cm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm.(4分)(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm.(8分)(3)∵M为AB的中点,∴AM=1AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.(12分)223.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12∠BOC =90°-12×150°=15°.(3分)(2)∠DOE =12a .(6分)解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α.(3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),∴∠AOC =2∠DOE .(9分)②4∠DOE -5∠AOF =180°.(10分)理由如下:设∠DOE =x ,∠AOF =y ,∴∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,2∠BOE +∠AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∠DOE -5∠AOF =180°.(12分)第5章章末检测一、选择题1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况 D.调查某校篮球队员的身高2.下列说法中,正确的是()A.将一组数据中的每一个数据都加同一个正数,方差变大B.为了解全市同学对书法课的喜欢情况,调查了某校所有女生C.“任意画出一个矩形,它是轴对称图形”是必然事件D.为了审核书稿中的错别字,选择抽样调查3.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生一样多D.不能判断4.七年级1班的同学最喜欢的球类运动用如图的统计图表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系5.某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90°D.30°6.数学老师要求每个学生就本班同学上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,你认为下列结论中正确的是()A.该班共有30名学生B.骑自行车的人数为10人C.该班骑自行车的人数最多D.“乘车”部分所对应的圆心角的度数为108°7.下列调查方法合适的是()A.为了了解冰箱的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式8.如图是某市某月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量重度污染的概率是()A. B. C. D.9.下列调查中,调查方式选择合理的是()A.了解妫水河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查10.如图的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定11.观察市统计局公布的苏州市农村居民人均收入每年比上一年增长率的统计图如图,下列说法正确的是()A.2004年农村居民人均收入低于2003年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时在2005年D.农村居民人均收入每年比上一年的增长率,有大有二、填空题12.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是________人,参与敬老院服务的学生人数是________人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有________人.13.某校七年级二班在订购本班的班服前,按身高型号进行登记,对女生的记录中,身高150cm以下记为S 号,150〜160cm以下记为M号,160〜170cm以下记为L号.170cm以上记为XL号.若用统计图描述这些数据,合适的统计图是________.14.期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优生人数为________.15.在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为________课时.16.2015年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组,各组人数所占比例如图所示,已知青年组120人,则中年组的人数是________.17.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是________18.初一(1)班给出25分钟的时间,要求用多种方法证明某一问题,结果如表所示.用2种办法给出证明的人数最________,占总人数的百分率约为________.0123正确证法种数人数101214619.调查某城市的空气质量,应选择________(填抽样或全面)调查.20.某校八年级(5)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是________度.21.随着我国人口增长速度变缓,小学入学儿童的人数逐年下降,下表显现了某地区小学儿童人数的变化情况,由此估计,从________年起,该地区小学儿童人数将不超过1600人.年份(年)201020112012…小学入学儿童人数(人)252023202120…三、解答题22.某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张,印刷费与印数的关系见下表:印数a(单位:千册)1≤a<55≤a<10彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.80.6(1)印制这批纪念册的制版费为多少元;(2)若印制2千册,则共需多少费用?23.某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.请根据以上信息,完成下列问题:(1)本次调查的样本容量是多少?(2)某位同学被抽中的概率是多少?(3)据此估计全校最喜爱篮球运动的学生人数约有多少名?(4)将条形统计图补充完整.24.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案一、选择题C CD D B D C D A D D二、填空题12.50;60;3013.条形统计图14.1015.616.4017.72018.多;33.3%19.抽样20.16221.2015三、解答题22.解:(1)印制这批纪念册的制版费是:300×4+50×6=1500(元);(2)印刷费是:(2.2×4+0.6×6)×2000=24800(元),则总费用是:24800+1500=26300(元).答:若印制2千册,则共需26300元的费用.23.解:(1)160÷40%=400(人),即本次调查的样本容量是400.(2)400÷2000=.(3)2000×40%=800(人).(4)乒乓球的人数:400×30%=120(人).如图所示:24.(1)400(2)解:B组人数为:400×35%=140人,E组人数为:400﹣40﹣140﹣120﹣80=20人,条形统计图补充完整如图:。
湘教版数学七年级上册期末测试题附答案(共3套)
![湘教版数学七年级上册期末测试题附答案(共3套)](https://img.taocdn.com/s3/m/b2691d067c1cfad6185fa777.png)
湘教版数学七年级上册期末测试题(一)(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A.甲的第三次成绩与第四次成绩相同B.第三次训练,甲、乙两人的成绩相同C.第四次训练,甲的成绩比乙的成绩少2分D.五次训练,甲的成绩都比乙的成绩高2.(3分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数,并根据调查结果绘制了如图所示的条形统计图.若将条形统计图转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.144°B.75° C.180°D.150°3.(3分)对甲、乙两户家庭全年各项支出的统计如图所示,已知甲户居民的衣着支出与乙户相同,下面根据统计,对两户家庭教育支出的费用做出判断,正确的是()A.甲比乙大 B.乙比甲大 C.甲、乙一样大 D.无法确定4.(3分)已知y1=﹣x+1,y2=﹣5,若y1+y2=20,则x=()A.﹣30 B.﹣48 C.48 D.305.(3分)小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款()A.106元B.102元C.101.6元D.111.6元6.(3分)解方程时,把分母化为整数,得()A.B.C.D.7.(3分)分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.8.(3分)从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个9.(3分)如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥10.(3分)甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题(每空3分,共30分)11.(3分)在(1)2x﹣1;(2)2x+1=3x;(3)|π﹣3|=π﹣3;(4)t+1=3中,代数式有,方程有(填入式子的序号).12.(3分)根据条件:“x的2倍与5的差等于15”列出方程为.13.(3分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为度.14.(3分)若某地区的观众中,青少年、成年人、老年人的人数比是3:4:3,要抽取容量为500的样本,则青少年应抽取人较合适.15.(3分)如图是某几何体的平面展开图,则这个几何体是.16.(3分)如图绕着中心最小旋转能与自身重合.17.(3分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.(3分)一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.(3分)已知∠A=40°,则它的补角等于.20.(3分)两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.(12分)已知关于x的方程3x﹣2m+1=0与2﹣m=2x的解互为相反数,试求这两个方程的解及m的值.22.(12分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)23.(12分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(12分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如图所示(部分信息未给出)解答下列问题:(1)计算第六次人口普查小学学历人数,并把条形图补充完整;(2)求第五次人口普查中,该市常住人口每万人中具有初中学历的人数;(3)第六次人口普查结果与第五次相比,每万人中初中学历的人数增加了多少人?25.(14分)如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.(14分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.(14分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?参考答案:一、选择题(每小题3分,共30分)1.D 2.A 3.B 4.B 5.C 6.B 7.C 8.B 9.A 10.A二、填空题(每空3分,共30分)11.(1)(3);(2)(4).12.2x﹣5=15.13.72°.14.150.15.三棱柱.16.90°.17.60.18.360.19.140°.20.1;3;1.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.解:3x﹣2m+1=0,解得:x=,2﹣m=2x,解得:x=,根据题意得:+=0,去分母得:4m﹣2+6﹣3m=0,解得:m=﹣4,两方程的解分别为﹣3,3.22.解:(1)根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),答:种植油菜每亩的种子成本是31元;(2)根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元;(3)根据题意得:340×500 000=170 000 000=1.7×108(元),答:2014年南县全县农民冬种油菜的总获利为1.7×108元.23.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.24.解:(1)450﹣36﹣55﹣180﹣49=130(万人);如图所示:(2)400×32%=128(万人).答:该市常住人口每万人中具有初中学历的人数是128万人;(3)180÷450﹣128÷400=0.4﹣0.32=0.08(万人).答:每万人中初中学历的人数增加了0.08万人.25.解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.26.解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.27.解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.湘教版数学七年级上册期末模拟题(二)(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)已知A,B两地相距30千米.小王从A地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B地,则小王骑自行车的速度为()A.13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时2.(3分)一项工程甲单独做需要x天完成,乙单独做需要y天完成,两人合做这项工程需要的天数为:A.B.+C.D.3.(3分)一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.4.(3分)如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.(3分)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.(3分)下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.(3分)下列调查中,适宜采用全面调查的是()A.了解一批炮弹的杀伤半径B.了解一批灯泡的使用寿命C.了解全国人民对政府惩治腐败的满意程度D.了解本班同学对星期天外出旅游的态度8.(3分)某班学生参加课外兴趣小组情况的统计图如图所示,则参加人数最多的课外兴趣小组是()A.书法 B.象棋 C.体育 D.美术9.(3分)如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台10.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是()A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍二、填空题(每小题4分,共24分)11.(4分)如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.(4分)如图,以图中A,B,C,D,E为端点的线段共有条.13.(4分)如果关x的方程与的解相同,那么m的值是.14.(4分)若x=0是方程2010x﹣a=2011x+3的解,那么代数式的值﹣a2+2= .15.(4分)根据2009~2014年浙江固定资产投资(单位:亿元)及增速统计图所提供的信息,下列判断正确的是.①2011年增长速度最快;②从2011年开始增长速度逐年减少;③各年固定资产投资的均数是16 035亿元.16.(4分)某校为了举办庆祝中国共产党成立94周年的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.三、解答题(共66分)17.(9分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;(2)为了了解一批空调的使用寿命,从中抽取10台做调查.18.(9分)如图所示的是某厂一、二两个车间2002年工业产值的情况,请你仔细观察统计图,并回答下列问题:(1)从统计图看,哪个车间的产值高?两个车间的总产值哪个季度最高?(2)从统计图看,哪个车间的产值增长快?第三季度哪个车间的产值是下降的?19.(11分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.20.(12分)如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.21.(12分)在某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x场,根据题意,用含x的式子填空:(1)该队平了场;(2)按比赛规则,该队胜场共得分;(3)按比赛规则,该队平场共得分.22.(13分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有名;(2)表中x,y和m所表示的数分别为:x= ,y= ,m= ;D类的扇形所对应的圆心角的度数是多少.参考答案:一、选择题(每小题3分,共30分)1.D 2.D 3.B 4.B 5.D 6.B 7.D 8.C 9.C 10.C二、填空题(每小题4分,共24分)11.圆柱、圆锥、球.12.10.13.±2.14.﹣7.15.①②③.16.100.三、解答题(共66分)17.解:(1)因为要求调查数据精确,故采用普查;(2)在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10.18.解:(1)由图可得一车间的产值高,两个车间的总产值第四季度最高,(2)由折线统计图可得,一车间的产值增长快,第三季度二车间的产值是下降的.19.解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.20.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.21.解:(1)11﹣x;(2)3x;(3)(11﹣x);根据题意可得:3x+(11﹣x)=23,解得:x=6.答:该队共胜了6场.22.解:(1)由题意可得,本次抽查的学生有:60÷30%=200(名),故答案为:200;(2)由(1)可知本次抽查的学生有200名,∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,故答案为:100,30,5%;(3)补全的条形统计图如右图所示;(4)由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,即实验成绩为D类的扇形所对应的圆心角的度数是18°.湘教版数学七年级上册期末测试题(三)(时间:120分钟分值:120分)一、单项选择题(本题共10题,共30分,每小题3分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)下列说法中,不正确的是()A.0既不是正数,也不是负数B.当a>1时,则a的倒数大于0且小于1C.a与﹣a互为相反数D.|a|表示正数2.(3分)已知A地的海拨高度为﹣50米,B地比A地高30米,则B地的海拔高度为()米.A.﹣80 B.30 C.﹣20 D.203.(3分)下列变形错误的是()A.4x﹣5=3x+2变形得4x﹣3x=2+5B.3x﹣1=2x+3变形得3x﹣2x=3+1C.x﹣1=x+3变形得4x﹣1=3x+18D.3x=2变形得x=4.(3分)对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.5.(3分)已知3a5b3和﹣4a3m﹣1b n是同类项,则代数式2m+3n的值为()A.13 B.14 C.﹣14 D.﹣136.(3分)下列运算错误的是()A.﹣7﹣(﹣3)﹣3+(﹣5)=﹣12 B.﹣4×(﹣2)×(﹣1)2014=8C.(﹣24)÷(﹣3)÷(﹣2)=﹣4 D.(﹣2)×5﹣8÷(﹣)2=﹣167.(3分)下列运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x28.(3分)用字母表示如图所示的阴影部分的面积是()A.B.C.D.9.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.两点确定一条线段10.(3分)为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.我市2014年中考数学成绩二、填空题(每小题3分,共24分)(3分)2013年5月1日,国家邮政局特别发行“万众一心”邮票,其邮票发行为12050000 11.枚,用科学记数法表示是枚.12.(3分)一张长方形的餐桌可以坐6个人,按照下图的方式摆放餐桌和椅子:请观察表中数据规律填表:a= .14.(3分)已知∠α与∠β互余,且∠α=35°18′,则∠β=°′.15.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是.16.(3分)已知,则2m﹣n的值是.17.(3分)某校女生占全体学生总数的52%,比男生多80人.若设这个学校的学生数为x 人,那么可列方程.18.(3分)已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.三、运算题(共25分)19.(4分)计算÷(﹣)+(﹣4)2×(﹣5)+(﹣2)5×(﹣﹣)20.(4分)3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2].21.(4分)解方程:2﹣=.22.(4分)已知AB=10cm,直线AB上有一点C,BC=4cm,M是线段AC的中点,求AM的长.23.(4分)如图,点A、O、B在同一条直线上,OD平分∠AOC,OE平分∠BOC,∠AOD=55°,求∠COE的度数.24.(4分)已知A=4x2+4x﹣3,B=x2﹣3x﹣2,求当x=﹣时,代数式A﹣2B的值.四、应用题(每小题7分,共21分)25.(7分)学校小卖部新进了一部分学习用品,文具盒每只定价10元,笔记本每本2元.小卖部在开展促销活动期间,向学生提供两种优惠方案:①文具盒和笔记本都按定价的90%付款;②买一只文具盒送一本笔记本.现某班开展学习竞赛要到学校小卖部购买x只文具盒(x ≥1),笔记本本数是文具盒只数的4倍多5.(1)若该班按方案①购买,需付款元:(用含x的代数式表示)若该班按方案②购买,需付款元.(用含x的代数式表示)(2)若x=10,通过计算说明此时按哪种方案购买较为合算?26.(7分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?27.(7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如图:请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?参考答案:一、单项选择题(本题共10题,共30分,每小题3分;在每小题提供的四个选项中,只有一项符合题目的要求)1.D 2.C 3.C 4.B 5.A 6.D 7.C 8.A 9.A 10.C二、填空题(每小题3分,共24分)11.1.205×107.12.2n+4.13.﹣1.14.54°42′.15.72°.16.13.17.52%x﹣48%x=80.18..三、运算题(共25分)19.解:原式=﹣×6﹣16×5﹣16+8+12=﹣10﹣80﹣16+8+12=﹣86.20.解:原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣x2y﹣3.21.解:去分母得,12﹣2(2x+1)=3(1+x),去括号得,12﹣4x﹣2=3+3x,移项得,﹣4x﹣3x=3﹣12+2,合并同类项得,﹣7x=﹣7,系数化为1得,x=1.22.解:(1)如图1,点C在线段AB上,∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵M是AC的中点,∴AM=AC=3(cm).(2)如图2,点C在线段AB的延长线上.∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵M是AC的中点,∴AM=AC=7(cm).∴AM的长为3cm或7cm.23.解:∵OD平分∠AOC,∠AOD=55°,∴∠AOC=2∠AOD=110°,∴∠BOC=180°﹣∠AOC=70°,∵OE平分∠BOC,∴∠COE=∠BOC=35°.24.解:∵A=4x2+4x﹣3,B=x2﹣3x﹣2,∴A﹣2B=4x2+4x﹣3﹣2x2+6x+4=2x2+10x+1,当x=﹣时,原式=﹣5+1=﹣3.四、应用题(每小题7分,共21分)25.解:由题意可知:(1)方案①需付款(16.2x+9);方案②需付款(16x+10);(2)把x=10分别代入(1)中二个代数式:方案①:16.2×10+9=171元;方案②:16×10+10=170元;故第②种合算.26.解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.27.解:(1)借出图书的总本数为:40÷10%=400本,其它类:400×15%=60本,漫画类:400﹣140﹣40﹣60=160本,科普类所占百分比:×100%=35%,漫画类所占百分比:×100%=40%,补全图形如图所示;(2分)(2)该校学生最喜欢借阅漫画类图书.(3分)(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).…(7分)。
湘教版数学初一上学期试卷及解答参考(2024年)
![湘教版数学初一上学期试卷及解答参考(2024年)](https://img.taocdn.com/s3/m/7f04555fdf80d4d8d15abe23482fb4daa58d1de3.png)
2024年湘教版数学初一上学期模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、小华有5张红色卡片和8张蓝色卡片,他随机抽取一张卡片,求抽到红色卡片的概率。
选项:A. 1/3B. 1/2C. 2/3D. 3/42、一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
选项:A. 40平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米3、一个长方形的长是10厘米,宽是5厘米,这个长方形的周长是多少厘米?A. 20厘米B. 25厘米C. 30厘米D. 35厘米4、小华有一些邮票,如果他每天用掉3张,那么5天后他会用掉多少张邮票?A. 15张B. 16张C. 17张D. 18张5、一个长方形的长是8厘米,宽是长的一半,这个长方形的面积是多少平方厘米?A、32平方厘米B、16平方厘米C、12平方厘米D、24平方厘米6、一个正方形的边长增加20%,那么它的面积增加了多少百分比?A、20%B、44%C、36%D、25%7、(1)如果两个数的乘积是-12,那么这两个数的符号分别是:A. 都是正数B. 都是负数C. 一个正数和一个负数D. 一个零和一个负数8、(2)下列哪个数是偶数?A. -3B. 0C. 1.5D. 49、(1)若一个数加上它的倒数等于2,那么这个数是()A. 2B. 1C. 0.5D. 2/3(2)在下列选项中,不属于等差数列的是()A. 1, 4, 7, 10, …B. 3, 6, 9, 12, …C. 2, 5, 8, 11, …D. 0, 3, 6, 9, …二、填空题(本大题有5小题,每小题3分,共15分)1、若一个数的平方等于25,则这个数是______ 。
2、一个长方形的长是8厘米,宽是5厘米,它的周长是 ______ 厘米。
3、已知一元一次方程2x - 5 = 3x + 1,解得x的值为 ______ 。
4、若等式3a - 2 = 2a + 5的解为a = 4,那么3a + 2的值为 ______ 。
湘教版七年级上册数学期末考试试卷含答案
![湘教版七年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/7f4661dbbdeb19e8b8f67c1cfad6195f312be8bf.png)
湘教版七年级上册数学期末考试试题一、单选题1.7-的绝对值为()A .7B .17C .17-D .7-2.当4x =时,代数式1x -+的值是()A .1-B .1C .3D .3-3.如图示,数轴上点A 所表示的数的绝对值为()A .2B .﹣2C .±2D .以上均不对4.将39000000000用科学记数法表示为()A .3.9×1010B .3.9×109C .0.39×1011D .39×1095.由若干个相同的小正方体,摆成几何体的主视图和左视图均为如图所示,则最少使用小正方体的个数为()A .9B .7C .5D .36.如图,直线AB CD 、相交于点E ,EF AB ⊥于E ,若56CEF ∠=︒,则BED ∠的度数为A .24︒B .26︒C .34︒D .44︒7.下列运算正确的是()A .2325a a a +=B .333a b ab +=C .2222a bc a bc a bc -=D .523a a a -=8.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A .﹣8+4﹣5+2B .﹣8﹣4﹣5+2C .﹣8﹣4+5+2D .8﹣4﹣5+29.如图,点O 在直线AB 上,若∠AOC=60°,则∠BOC 的大小是()A .60︒B .90︒C .120︒D .150︒10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=25°,则∠2的度数是()A .55︒B .60︒C .65︒D .70︒二、填空题11.-5的相反数是_______12.温度升高1℃记为+1℃,气温下降9℃记为_____13.已知x=2,|y|=5,且x >y ,则x+y=_________.14.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数有_____个.15.有理数5.613精确到百分位的近似数为________.16.某商品原价是x 元,提价10%后的价格是__________.17.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.18.若|x+1|+(y ﹣2)2=0,则x+y=_____.19.如图是一个正方体的展开图,请问1号面的对面是_____号面.20.如图,下列条件中:①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;则一定能判定AB//CD 的条件有_________(填写所有正确的序号).三、解答题21.计算(1)()69---(2)()51112248⎛⎫-⨯-- ⎪⎝⎭(3)()()7356x x -+-(4)()()3232xy x xy xy x --+-22.解方程533523x x ++=23.如图,B 是线段AD 上一点,C 是线段BD 的中点.(1)若AD =8,BC =3,求线段CD ,AB 的长;(2)试说明:AD +AB =2AC.24.如图,已知∠BOC=2∠AOC ,OD 平分∠AOB ,且∠AOC=40°,求∠COD 的度数.25.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)26.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若一般和优秀均被视为达标成绩,则该校被抽取的学生中有多少人达标?27.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.参考答案1.A2.D3.A4.A5.D6.C7.C8.B9.C10.A11.512.﹣9℃13.-314.315.5.6116.(1+10%)x 元17.四五18.119.520.①③④21.(1)3;(2)-4;(3)21x +;(4)65xy x-【分析】(1)先运用有理数的减法变形,再进行加法运算;(2)先进行有理数的乘方,再进行乘法,最后算加减;(3)先去括号,再合并同类项即可求解.【详解】解:(1)原式=693-+=,(2)原式=11132248⎛⎫-⨯-- ⎝⎭=1684-++=4-;(3)原式7356x x =-+-21x =+;(4)原式3232xy x xy xy x =-++-65xy x =-.22.9x =【分析】左右同乘6进行去分母,再去括号,移项合并,化系数为1即可求解.【详解】解:去分母:()()353235x x +=+去括号:159610x x+=+移项,合并同类项:9x -=-化系数为1:9x =【点睛】本题考查解一元一次方程,熟练掌握求解步骤,注意变号情况是解题关键.23.(1)2;(2)详见解析.【详解】试题分析:(1)根据中点的定义即可求得CD=BC=3,根据图中相关线段间的和差关系即可求得AB 的长度;(2)根据图示可得AD+AB=AC+CD+AB ,BC=CD ,然后由等量代换即可证得结论.试题解析:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC.24.∠COD =20°.【详解】因为BOC 2AOC ∠=∠,AOC 40∠=︒,所以BOC 24080∠=⨯︒=︒,所以AOB BOC AOC 8040120∠=∠+∠=︒+︒=︒,因为OD 平分∠AOB ,所以11AOD AOB=1206022∠=∠⨯︒=︒,所以COD AOD AOC 6040∠=∠-∠=︒-︒20=︒25.(1)35元;(2)黄老师家5月份用水14吨;(3)当0<a≤10时,应交水费为2a (元),当a >10时,应交水费为2.5a-5(元)【分析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a >10时,分别进行计算即可.【详解】(1)10×2+(16-10)×2.5=35(元),答:应交水费35元;(2)设黄老师家6月份用水x 吨,由题意得10×2+2.5×(x-10)=30,解得x=14,答:黄老师家6月份用水14吨;(3)①当0<a≤10时,应交水费为2a (元),②当a>10时,应交水费为:20+2.5(a-10)=2.5a-5(元).26.(1)见解析;(2)96【分析】(1)由不合格人数及其百分比求得总人数,总人数减去不合格与一般的人数求得优秀的人数,再根据百分比之和为1可得一般对应的百分比;(2)由条形统计图可得两个等级的具体人数,据此可得.【详解】解:(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,补充图形如下所示:;(2)该校被抽取的学生中达标的人数=36+60=96(人).答:该校被抽取的学生中有96人达标.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂条形统计图及扇形统计图,能从中找到必要的数据.27.BF、DE互相平行【分析】设AB与DE相交于H,由∠3=∠4,根据内错角相等,两直线平行可证得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6,即可得∠BAF=∠6,根据同位角相等,两直线平行可得AB∥CD,根据平行线的性质可得∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断BF∥DE.【详解】BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册第一单元测试卷
总分:100分 时间:90分钟
一、选择题(每小题3分,共30分)
1、3的相反数是( )
A 、-3
B 、+3
C 、0.3
D 、13 2、在下列数-56,+1,6.7,-14,0,722,-5 中,属于整数的有( ) A 、2个 B 、3个 C 、4个 D 、5个 3、绝对值等于本身的数是( ) A 、正数 B 、非负数 C 、零 D 、负数 4、图中所画的数轴正确的是( )。
5、下列四个式子错误的是 ( )。
A 、 3.14π->- B 、3.5>-4 C 、155536-<- D 、-0.21>-0.211 6、下列运算中正确的个数有( ) (1)(-5)+5=0, (2)-10+(+7)=-3,(3)0+(-4)=-4, (4)(-72)-(+75)=-7
3, (5)―3―2=―1 A 、1个 B 、2个 C 、3个 D 、4个
7、一天早晨的气温为-3 ℃,中午上升了6 ℃,半夜又下降了7 ℃,则半夜的气温是( )
A 、-5 ℃
B 、-4 ℃
C 、4 ℃
D 、-16 ℃
8、如果两个数的和是一个正数,积是一个负数,那么这两个数( )。
A .都是正数
B .都是负数
C .一个正数,一个负数,且负数的绝对值较大
D .一个正数,一个负数,且正数的绝对值较大
班级 姓名: _ - 1 _1 _1 _ - 1 _0 _3 _1 _0 _ - 1 _1 _ D _ C _ B _ A _2 _0
9、绝对值大于2且小于5的所有整数的和是 ( )
A 、 5
B 、0
C 、 7
D 、 -7
10、己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ) A 、a < b B 、ab<0 C 、a -b<0
D 、a+b<0 二、填空题(每题2分,共20分)
11、 -7绝对值为 , -112
的倒数是 。
12、最大的负整数是_____, 最小的正整数是_____。
13、比较大小: 23- -0.6, 9
8-的倒数是 。
14、化简:-[-(-5)]=_________。
15、如果向银行存入人民币20元记作+20元,那么从银行取出人民币
32.2元记作 元。
16、某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),
经检查,一个零件的直径是19.9 mm ,该零件____________。
(填“合格”或“不合格”).
17、绝对值等于5的有理数是____________。
18、____________。
19、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是
-10米,则地势最高的与地势最低的相差__________米.
20、4,3,a b a b ==+=若则___________。
三、解答题: (共50分)
21、计算:(1至4题每题2分,5,6两题每题5分,共计18分)
(1 ||–3 + (–1) (2)224212642)()(-⨯----
(3) ( – 43
)×(– 14 ) (4) (– 12 ) ÷ (– 27)
(5) 49(81)(16)94
-÷⨯÷- (6)(213348--)×(-48) 22、把下列各数在数轴上表示出来(5分),并用“<”把它们连接起来(1分)。
(6分)
-3.5, 0, 4, -1, 2.5
23、比较下面两个数的大小。
(2×5分=10分)
(1) ?2334
-
-与 (2)-(-3.1) 与 3-- 24、 a 与b 互为相反数,c 与d 互为倒数,求 2()831a b c d ⨯+-⨯⨯+ 的值。
(6分)
25、(10分)某检修小组甲乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(单位:千米):+15、—2、+5、—1、+10、—3、—2、+12、+4、—5、+6;
另一小组乙也从A 地出发,在南北方向检修,约定向北为正,行走记录为:—17、+9、—2、+8、+6、+9、—5、—1、+4、—7、—8
(1)分别计算收工时,两组分别在A 地的哪一边,距A 地多远?
(2)若每千米汽车耗油量为0.4升,求出发到收工甲、乙两小组各耗油多少升? (要求使用 简便方法)。