实验一晶闸管直流调速系统主要单元调试
实验一 晶闸管-直流电动机调速各环节特性测定
实验一晶闸管—直流电动机调速系统各环节特性测定一、实验目的1.了解晶闸管——直流电动机调速系统的构成。
2.了解并掌握直流调速驱动器模块及直流调实验模块的使用方法。
3.掌握晶闸管—直流电动机调速系统参数测定的方法。
4.掌握晶闸管—直流电动机调速系统环节特性测定的方法。
二、实验要求1.测定晶闸管触发及整流装置的稳定输入输出特性。
2.测定晶闸管整流装置的等效电阻。
3.测定转速反馈环节的稳定输入输出特性。
4.测定电动机环节的传递函数。
三、实验设备及仪器:1.自动控制系统实验装置CDUCONT—12.直流调速驱动器模块DCDS—ACS0013.直流调压调速实验模块DCDS—ACS0024.电压给定模块AIN—0015.数字量给定模块DIN—0016.电压转速显模块DCDS—0017.实验机组模块8.交直流电压表9.交直流电流表10.数字万用表11.可变电阻器和电阻箱12.X—Y记录仪13.单相调压器14.数字式转速表四、原理及实验线路本实验是通过测定晶闸管—直流电动机调速系统的参数和各环节的输入和输出特性来测取晶闸管—直流电动机调速系统的数学模型。
为了获得晶闸管—直流电动机调速系统的参数和各环节的特性,必须对各个环节分别测取它们的阶跃输入响应,并对某些非线性环节进行处理。
晶闸管—直流电动机调速系统的结构图为:五、实验内容及步骤1.电枢回路总电阻的测定(电动机不加励磁)晶闸管—直流电动机电枢回路总电阻包括直流电动机电枢电阻R a和整流装置的等效内阻R rec,由于直流电动机电枢存在电刷及换向器之间的接触电阻,以及整流装置的等效电压源内阻,为使测量结果接近实际运行操作时的结果,故采用直流伏安比较法测量。
实验线路如图所示:1.2.6 主回路和控制回路的接线主回路和控制回路接线如图1-1和图1-2所示。
图1-1 主回路接线图图1-2 主控制回路接线图(1)等效内阻R rec 的测定1.电枢回路电阻的测定晶闸管-直流电机电枢回路总电阻包括直流电机电枢电阻Ra 和整流装置的等效内阻Rrec ,由于直流电机电枢存在电刷及换向器之间的接触电阻以及整流装置的等效电压源内阻,故采用伏安比较法测量。
晶闸管直流调速系统主要控制单元调试实验报告
路接入电容后,调节器为比例积分调节器,当突加突减给定时,由于电容的充放电作用, 输出以指数增长为输入值。若速度反馈接入“ 1” ,则输入为给定电压减去速度反馈电压的 速度误差信号。调节器对误差信号进行比例和积分作用,输出控制量。输出通过限幅电路 限幅,限幅电压由 RP1 和 RP2 调节。电流调节器 ACR 工作原理与 ASR 基本相同。 七.实验体会 做实验的过程中,在实验结果和预期结果不一样时,应通过思考和排除,及时找出错误 出现的原因。 八. 建议与意见 希望老师讲解一下零速封锁器对调节 ACR、ASR 的影响。 感谢老师的指导和组员的共同努力。
(3)测定 PI 特性 突减给定电压得波形:
六.思考题 (1)简述 ASR、ACR 电路的工作原理。 ASR、ACR 由运算放大器反馈电路、输出限幅电路和零速封锁电路组成。给定输入接在放 大器的反相端“2” ,并将输出反馈接回反相端构成负反馈。当反馈回路不接电容时,调节 器为比例调解器,输入与输出成线性关系,比例系数由 RP3 和 RP4 的大小决定。当反馈回
电子与信息工程学院自动化科学与技术系
号进行逻辑运算,切换加于整租桥和反组桥晶闸管整流装置上的触发脉冲,以实现系统的 无环流运行。 (1)逻辑判断环节 逻辑判断环节的任务是根据转矩极性检测器和零电流检测器的输出 U M 和 U I 状态, 正确 地判断晶闸管的触发脉冲是否需要进行切换 (由 U M 是否变换状态决定)及切换条件是否具 备(由 U I 是否从“0”变“1”决定) 。即:在 U M 变号后,主电路电流过零时,逻辑判断电 路立即翻转,同时应保证在任何时刻逻辑判断电路的输出 U Z 和 U F 状态必须相反。 (2)延时环节 要使正、反两组整流装置安全、可靠地切换工作,必须在逻辑无环流系统中的逻辑判断 电路发出切换指令 U Z 或 U F 后, 经关断等待时间 t1 (约 3ms) 和触发等待时间 t2 (约 10ms) 之后才能执行切换指令,故应设置相应的延时电路。 (3)逻辑保护环节 逻辑保护环节也称为“多一”保护环节,当逻辑电路发生故障时,U Z 、U F 的输出同时为 “1”状态,逻辑控制器的两个输出 Ublf 和 Ublr 全为“0”状态,造成两组整流装置同时 开放,引起短路环流事故。加入逻辑保护环流环节后,当 U Z 、U F 全为“1”时,是逻辑保 护环节输出 A 点电位变为“0” ,使 Ublf 和 Ublr 都为高电平,两组触发脉冲同时封锁,避 免产生短路环流事故。 (4)推β环节 在正反桥切换时,逻辑控制器中的 G8 输出“1”状态信号,将此信号送入 ACR 的输入端 作为脉冲后推移β指令,从而可避免切换时电流的冲击。 (5)功率放大输出环节 因与非门的输出功率有限,为了尽可能可靠推动脉冲们 I 或 II,故加了由 V1 和 V2 组成 的功率放大级,有逻辑信号 U LK 1 和 U LK 2 进行控制,或为“通”或为“断”来控制触发脉冲 门 I 和触发脉冲门 II。 五.实验结果与分析 1.速度调节器 ASR 的调试 (1)调试正负电压限幅值 在给定为±1V 时,分别调节 RP2 和 RP1,使“3”端限幅输出分别为-5V 和+5V。但是, 在调节完成后,当给定降至 0.2V 左右时,ASR 输出就已变为 0。分析电路后,找出原因: 调试之前未将零速封锁器(DZS)解除,使得 ASR 的调节范围受到影响。 (2)ASR 作为 P 调节器的输入输出特性 短路电容,测量输入端和输出端的电压得出一组数据: 输入端 Ug/V 输出端电压/V 放大比例 K 0.70 -2.88 -4.11 0.50 -2.03 -4.06 0.30 -1.20 -4.0
实验一 晶闸管直流调速系统参数和环节特性的测定实验
实验一晶闸管直流调速系统参数和环节特性的测定实验一、实验目的(1)熟悉晶闸管直流调速系统的组成及其基本结构。
(2)掌握晶闸管直流调速系统参数及反馈环节测定方法。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放” 等几个模块。
4 DJK04 电机调速控制实验I 该挂件包含“给定”,“电流调节器”,“速度变换”,“电流反馈与过流保护”等几个模块。
5 DJK10 变压器实验该挂件包含“三相不控整流”和“心式变压器”等模块。
6 DD03-3电机导轨﹑光码盘测速系统及数显转速表7 DJ13-1 直流发电机8 DJ15 直流并励电动机9 D42三相可调电阻10 数字存储示波器自备11 万用表自备三、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理图如图5-1所示。
四、实验内容(1)测定晶闸管直流调速系统主电路总电阻值R。
(2)测定晶闸管直流调速系统主电路电感值L。
(3)测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD2。
(4)测定晶闸管直流调速系统主电路电磁时间常数T d。
(5)测定直流电动机电势常数C e和转矩常数C M。
(6)测定晶闸管直流调速系统机电时间常数T M。
(7)测定晶闸管触发及整流装置特性U d=f(U ct)。
(8)测定测速发电机特性U TG=f(n)。
五、预习要求学习教材中有关晶闸管直流调速系统各参数的测定方法。
图5-1 实验系统原理图六、实验方法为研究晶闸管-电动机系统,须首先了解电枢回路的总电阻R、总电感L以及系统的电磁时间常数T d与机电时间常数T M,这些参数均需通过实验手段来测定,具体方法如下:(1)电枢回路总电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a、平波电抗器的直流电阻R L及整流装置的内阻R n,即R = R a十R L十R n(5-1)由于阻值较小,不宜用欧姆表或电桥测量,因是小电流检测,接触电阻影响很大,故常用直流伏安法。
交直流调速实验指导书
交直流调速实验指导书中科腾达(北京)科技发展有限公司2014年8月目录实验一晶闸管直流调速系统各主要单元的调试1实验二电压单闭环不可逆直流调速系统调试4实验三带电流截止负反馈的转速单闭环直流调速系统调试8实验四电压、电流双闭环不可逆直流调速系统调试12实验五转速、电流双闭环不可逆直流调速系统调试16实验六模拟式直流调速装置514C实验21实验七数字式直流调速装置6RA70实验23实验八交流调速装置MM420实验27实验九矢量控制交流调速装置(CUVC)单机实验32实验一晶闸管直流调速系统各主要单元的调试一、实验目的(1) 熟悉直流调速系统各主要单元部件的工作原理。
(2) 掌握直流调速系统各主要单元部件的调试步骤和方法。
二、实验所需挂件及附件三、实验内容(1)调节器Ⅰ的调试(2)调节器Ⅱ的调试(3)反号器的调试(4)零电平检测的调试(5)转矩极性鉴别的调试(6)逻辑控制的调试四、实验方法(1)“调节器Ⅰ”的调试①调零将PMT-04中“调节器Ⅰ”所有输入端接地,再将比例增益调节电位器RP1顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。
调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅰ“7”端的输出,使调节器的输出电压尽可能接近于零。
②调整输出正、负限幅值把“5”、“6” 两端短接线去掉,此时调节器Ⅰ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅰ的“3”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。
③测定输入输出特性再将反馈网络中的电容短接(将“5”、“6”端短接),使调节器Ⅰ为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压,测出相应的输出电压,直至输出限幅,并画出曲线。
④观察PI特性拆除“5”、“6”两端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。
晶闸管直流调速系统参数和环节特性的测定实验报告
晶闸管直流调速系统参数和环节特性的测定实验报告一、实验目的1.熟悉晶闸管直流调速系统的组成及其基本结构。
2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。
二、实验内容1.测定晶闸管直流调速系统主电路总电阻 R。
2.测定晶闸管直流调速系统主电路总电感 L。
3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。
4.测定晶闸管直流调速系统主电路电磁时间常数 T d。
5.测定直流发电机电动势常数C e和转矩常数 C T。
6.测定晶闸管直流调速系统机电时间常数 T m。
7.测定晶闸管触发及整流装置特性 U d =ƒ(U ct)。
8.测定测速发电机特性 U TG =ƒ(n)。
三、实验设备四、实验原理五、实验步骤(一)测定晶闸管直流调速系统主电路电阻。
伏安比较法测量1. 测量电枢回路总电阻RR=R a + R L + R n (电枢电阻R a、平波电抗器电阻R L 、整流装置内阻R n )(1)不加励磁、电机堵转(2)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1和I1。
(3)断开S2测定U2和I2。
(4)计算电枢回路总电阻R=(U2-U1)/( I1 - I2)合上S1和S2测得U1=100V, I1=0.95A;断开S2测得U2=103V,I2=0.63A;R=(U2-U1)/( I1 - I2)=(103V-100V)/(0.95A-0.63A)=9.375Ω2. 电枢电阻 R a(1)短接电机电枢(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1’和I1’。
(4)断开S2测定U2’和I2’。
(5)计算平波电抗器电阻R L和整流装置内阻R n: R L + R n =(U2’-U1’)/(I2’-I1’) 电枢电阻R a :R a =R-(R L + R n)合上S1和S2测得U1’=95V,I1’=1.15A断开S2测得U2’=97V,I2’=0.80AR L + R n =(U2’-U1’)/(I2’-I1’)=(97V-95V)/(1.15A-0.8A)=5.714ΩR a =R-(R L + R n)=9.375Ω-5.714Ω=3.661Ω3. 平波电抗器电阻 R L(1)短接电抗器两端(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1’ ’和I1’ ’ 。
直流调速系统实验指导书
直流调速系统实验指导书江西理工大学应用科学学院机电工程系2007年10月目录实验一晶闸管直流调速系统参数和环节特性的测定 (1)实验二晶闸管直流调速系统主要单元调试 (6)实验三不可逆单闭环直流调速系统静特性的研究 (9)实验四双闭环晶闸管不可逆直流调速系统 (13)实验五逻辑无环流可逆直流调速系统 (18)实验六双闭环可逆直流脉宽调速系统 (22)实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解电力电子及电气传动教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数T d5.测定直流电动机电势常数C e和转矩常数C M6.测定晶闸管直流调速系统机电时间常数T M三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—33组件3.NMEL—03组件4.电机导轨及测速发电机(或光电编码器)5.直流电动机M036.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。
《交直流调速系统实验》实验指导书
《交直流调速系统》课程实验指导书专业:电气工程及其自动化电子信息工程学院2014年5月目录实验概述 (1)实验一晶闸管直流调速系统主要单元的调试 (4)实验二晶闸管直流调速系统参数和环节特性的测定实验 (7)实验三转速单闭环直流调速系统 (14)实验四电压单闭环直流调速系统 (18)实验五逻辑无环流可逆直流调速系统 (21)实验六三相正弦波脉宽度调制(SPWM)变频原理实验(带有PLC接口) (24)实验概述《交直流调速系统》是一门实践性、实用性很强的专业课程,学习交直流调速系统必须理论联系实际。
交直流调速系统在工业自动化中获得广泛应用,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是这些课程的重要组成部分。
通过实验,可以加深对理论的理解,培养和提高实际动手能力、分析和解决问题的独立工作能力。
1. 实验的特点和要求交直流调速系统实验的内容较多、较新,实验系统也比较复杂系统性较强。
该实验是上述理论教学的重要的补充和继续,而理论教学则是实验教学的基础。
学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实际相结合,使认识不断提高、深化。
具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路。
(2)熟悉并掌握基本实验设备、测试仪器的性能及使用方法。
(3)掌握交、直流电机控制系统的组成和调试方法,系统参数的测量和整定方法。
(4)能设计交、直流电机控制系统的具体实验线路,列出实验步骤。
(5)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。
(6)能够综合实验数据,解释实验现象,编写实验报告。
2. 实验准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。
每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至损坏实验装置。
直流电机调速系统实验
第一章直流电机调速系统实验实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
实验一 运动控制系统实验:晶闸管直流调速系统参数和环节特性的测定
第三章交直流调速实验实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解电力电子及电气传动教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机—直流发电机—测速发电机组(或光电编码器)的飞轮惯量GD2 4.测定晶闸管直流调速系统主电路电磁时间常数T d5.测定直流电动机电势常数C e和转矩常数C M6.测定晶闸管直流调速系统机电时间常数T M7.测定晶闸管触发及整流装置特性U d=f (U ct)8.测定测速发电机特性U TG=f (n)三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.教学实验台主控制屏2.SMCL—01组件3.NMCL—33组件4.NMCL—03组件5.电机导轨及测速发电机(或光电编码器)6.直流电动机M037.双踪示波器(自备)8.万用表(自备)五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。
将变阻器R D(可采用两只电阻串联)接入被测系统的主电路,并调节电阻负载至最大。
《电力拖动控制系统》实验报告模版
实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解MCL-II电机及控制教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机—直流发电机—测速发电机组(或光电编码器)的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数Td5.测定直流电动机电势常数Ce和转矩常数CM6.测定晶闸管直流调速系统机电时间常数TM7.测定晶闸管触发及整流装置特性Ud = f (Uct)8.测定测速发电机特性UTG = f (n)三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug 作为触发器的移相控制电压,改变Ug的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.电机导轨及测速发电机、直流发电机2.MCL—01挂箱3.MCL—02挂箱4.直流电动机M035.MEL—03三相可调电阻器(或自配滑线变阻器)6.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加Ug须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻Ra,平波电抗器的直流电阻RL和整流装置的内阻Rn,即R=Ra+RL+Rn为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图2-1所示。
将变阻器RP(可采用两只900Ω电阻并联)接入被测系统的主电路,并调节电阻负载至最大。
实验一 单闭环晶闸管直流调速系统实验
实验一单闭环晶闸管直流调速系统实验一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验内容1.移相触发电路的调试(主电路未通电)2.测取调速系统在无转速负反馈时的开环工作机械特性。
3.测取调速系统在带转速负反馈时的有静差闭环工作的静特性4.测取调速系统在带转速负反馈时的无静差闭环工作的静特性三.实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。
在单闭环系统中,转速单闭环使用较多。
图1-1 所示的是转速单闭环直流调速系统。
在速度反馈的单闭环直流调速系统中,将反映转速变化情况的测速发电机电压信号经速度变换器后接至速度调节器的输入端,与负给定电压相比较经放大后,得到移相控制电压,速度调节器的输出用来控制整流桥的触发装置,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变三相全控整流的输出电压,从而构成闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节,对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
此时,当给定恒定时,闭环系统对转速变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内。
四.实验设备及仪表1.MCL—Ⅱ系列教学实验台主控制屏。
2.MCL—01 组件。
3.MCL—02 组件。
4.MCL—03 组件。
5.MEL-11 挂箱6.MEL—03 三相可调电阻(或自配滑线变阻器)。
7.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13 组件)。
8.直流电动机M03。
9.双踪示波器。
实验一晶闸管直流调速系统主要单元调试
实验一晶闸管直流调速系统主要单元调试一.实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
2.掌握直流调速系统主要单元部件的调试步骤和方法二.实验内容1.控制回路调节器的调试2.主回路晶闸管整流单元波形观测三.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—31A组件3.NMCL—18组件4.NMCL—33组件5.双踪示波器6.万用表四.实验方法1.控制回路调节器的调试(1)电流调节器(ACR)的调试按图1-1接线,DZS(零速封锁器)的扭子开关扳向“封锁”。
①调整输出正,负限幅值“9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值大于 6V。
②测定输入输出特性将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
③将反馈网络中的电容接入,使调节器为PI调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
(2)速度调节器(ASR)的调试按图1-1接线。
①调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由NMCL—31A的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于±5V。
②测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
③测定输入输出特性将反馈网络中的电容接入电路,使ASR调节器为PI调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
2.主回路晶闸管整流单元波形观测按图1—2接线。
可变电阻R G可选择2个900Ω并联。
G(给定)直接加至U ct。
实验一晶闸管直流调速
实验一晶闸管直流调速一.实验目的1.观察晶闸管直流调速控制过程,掌握控制过程中的现象和调速效果;2.见证各控制量的相互变化关系。
二.实验装置PMK-YS晶闸管调速演示系统,示波器三.实验原理1.单相半控晶闸管直流调速电路原理简介PMK-YS晶闸管调速演示系统主要由同步电路、触发电路、晶闸管整流电路、电压负反馈电路和电流正反馈电路组成。
触发电路由单结晶体管构成。
通过调整给定值可保证触发脉冲与同步电压成一定相位关系,从而控制晶闸管按照给定的相位开始导通供电,实现直流电机调速。
本机电路采用电压负反馈,电流正反馈形式,当输出电压偏高,反馈电压也会升高,使指令电压降低,输出电压随之回落;当负载加重,负载电流加大,使指令电压上升,抬高输出电压,以改善电机转速下降状况。
2.直流电机调速原理简介根据有刷直流电机的理论模型,当励磁磁场作用于通电电枢导线时,电枢电流产生罗伦茨力,推动电枢旋转。
当外力不变时,电枢电流越大,电枢转速越高;励磁磁场越小,电枢转速越高;因此,直流电机常见的调速方法是通过改变电枢电压或励磁电流来实现。
当然也可以通过改变负载阻抗的方法来实现,但这种方法比较少见。
常见的调速过程一般先在额定的励磁条件下改变电枢电压,实现电机从最低转速到额定转速区间的调速。
然后,如果必要,再通过降低励磁电流的方法来实现升速。
当励磁磁场为零,若电机处于静止状态,则电枢电流在大也无法使电机启转,若电机处于旋转状态,则电机可能飞车。
3.选用直流调速装置首要关心的问题调速比D=n max/n min上式其实就是对调速范围的一个评估4.静差率S=n0−n Nn0=∆n Nn0上式反应额定条件下,速度调整量和基本速度的比例,也就是分辨率或稳定性。
5.负载、电流、励磁和转速的关系1)电枢电流和负载转矩的关系I=T K t∅上式说明:励磁非空,动电生力,励磁为零,空烧无力。
2)电枢电压、励磁与转速的关系在空载条件下,电枢电压在电枢阻抗上产生电枢电流,这一电流在励磁磁场中驱动电枢转动,同时转动的电枢切割励磁磁场产生反电动势,最后电势平衡,可得n=u K e∅上式说明:空载电机在励磁一定的条件下电枢电压和转速有线性关系。
晶闸管直流调速系统实验
实验二、晶闸管直流调速系统一、实验目的1、分析晶闸管半控桥式整流电路电机负载(反电势负载)时的电压、电流波形;2、熟悉典型小功率晶闸管直流调速系统的工作原理,掌握直流调速系统的整定与调试;3、测定直流调速系统开环和闭环时的机械特性;4、掌握直流调速系统的过电流保护和零压保护等环节的应用。
二、实验电路及工作原理1、实验电路由二部分组成,它们是亚龙YL-209型电力电子实验装置的第1 单元(如图1-1 所示)和第2 单元(如图2-1 所示)。
组合后的电路如图2-2所示,此为一典型产品的电路图,组成此系统的各单元如图2-3 所示。
图2-3中各元件的文字符号与图2-1、图2-2有所不同,请注意。
图2-1直流调速系统的主电路检测与保护单元(单元2)图2-2 典型小功率直流调速系统电路图图2-3 典型直流调速系统的组成框图2、此电路的工作原理可见《自动控制原理与系统》(第3版)(孔凡才编著)或《自动控制系统》(孔凡才主编)(机械工业出版社)。
现再作一些补充说明:①、此实验中的单元1 为主电路和触发电路,单元2 为反馈电路和保护电路。
在单元2 中,R I为串联在电路中的取样电阻,它两端的电压与通过的电流I d成正比,此电压经分压后,作为电流反馈信号输出。
其中经电位器RP15分压输出的U fi为电流正反馈信号,它与电压负反馈电压U fv反向串联后,再与给定电压U S叠加,作为控制信号ΔU=U s-U fv+U fi,(注意它们的极性),加到放大器的输入端。
②、由于直流电动机起动时,转速n=0,导致反电势E=0,这样电机电枢电流I a=(U-E)/R a=U/R a,而R a一般很小,会造成直流电动机起动时电流过大(十几倍~几十倍额定电流)而烧坏电机和元件,因此必须设置限流环节。
在图2-2 中,由电位器RP17分压输出的为电流截止负反馈电压(U Im1),它与由稳压管V1给出阈值电压(U v1)进行比较,当主电路电流过大,U Im1>U v1时,稳压管击穿导通,它将使图1-1 中的V4导通,而V4的导通将对电容C1构成分流旁路,使电容(充电)电压U C1上升减缓,从而延长U C到达BT管峰值的时间,即延迟触发脉冲产生的时刻,亦即增大控制角α,减小导通角θ,使整流输出电压减小,输出电流减小,从而起到限制电流过大的作用。
实验一、晶闸管直流调速系统环节特性及单元调试
实验一、晶闸管直流调速系统环节特性及单元调试一、实验目的1、了解晶闸管直流调速系统的组成及主要单元部件的工作原理。
2、掌握晶闸管直流调速系统的环节特性及测定方法。
3、掌握晶闸管直流调速系统的主要单元的调试方法。
二、实验内容1、主控制屏DK01调试2、晶闸管直流调速系统基本组成及连接3、晶闸管直流调速系统开环运行4、晶闸管触发及整流装置特性Ud=f(Uct)和测速发电机特性UTG=f(n)的测定5、调节器的调试三、实验设备1、DKSZ-1型实验装置主控制屏DK012、DK02、DK03、DK153、TD4652型双踪慢扫描示波器4、万用电表四、实验方法1、主控制屏调试及开关设置2、实验系统组成及连接三相全控桥式整流电路供给直流电动机M可调的电枢电压,直流发电机G作为电动机的负载,通过测速发电机TG测量转速,并获得转速反馈电压。
直流电动机、发电机的励磁绕组接220V励磁电源。
给定器G输出可调的移相控制电压Uct,触发器输出的六路脉冲经过功放级AP1驱动输出,六路脉冲已连结到对应的六只晶闸管。
图1-1 实验系统原理图3、晶闸管直流调速系统开环运行控制电压Uct由给定器直接接入,反馈电压未引入控制的系统为开环系统。
应先接通励磁电源,并调节控制电压Uct为零,然后才能接通三相交流主电源,否则电动机起动电流过大引起过流冲击。
调节给定电压Uct,即可调节直流电动机转速。
调节发电机负载电阻Rg,即可改变直流电动机的负载电流。
5、晶闸管触发及整流装置特性Ud=f(Uct)和测速发电机特性UTG=f(n)的测定从零逐渐增加控制电压Uct,转速不超出额定转速(1500rpm)的1.2倍,分别读取对应的Uct、Ud、UTG、n的数值若干组,即可描绘出特性Ud=f(Uct)和UTG=f(n)。
6、调节器的调试合上低压直流电源开关,对调节器ASR(或ACR)进行单元调试。
零速封锁端应连接,并置零速封锁解除状态。
五、实验报告1、简述各电路单元的调试要点。
晶闸管直流调速系统参数和环节特性的测定报告教材
晶闸管直流调速系统参数测定及主要单元调试一、实验目的(1)了解晶闸管——电动机系统的组成及其基本结构(2)掌握晶闸管——电动机系统的参数测定方法(3)熟悉直流调速系统主要单元部件的工作原理及调试步骤。
二、实验内容(1)测定晶闸管直流调速系统主电路总电阻值R(2)测定晶闸管直流调速系统主电路电感值L(3) 电动机电势常数Ce和转矩常数Cm的测定(4)测定晶闸管触发及整流装置特性Ud=f(Uct)(5)调节器的调试三、实验设备1. 电源控制屏DJK01挂件2.晶闸管主电路DJK02挂件3.三相晶闸管触发电路DJK02-1挂件4.电机调速控制实验I DJK04挂件5.可调电阻、电容箱DJK08挂件、三相可调电阻D42挂件6.直流电动机——负载直流发电机——测速器一套7.双踪示波器一台8.万用表一块四、实验原理五、实验步骤(一)测定晶闸管直流调速系统主电路电阻。
伏安比较法测量1. 测量电枢回路总电阻RR=Ra + RL + Rn (电枢电阻Ra、平波电抗器电阻RL 、整流装置内阻Rn )(1)不加励磁、电机堵转(2)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压;调节电阻,使枢电流80%-90%的额定电流测定U1和I1。
(3)断开S2测定U2和I2。
(4)计算电枢回路总电阻R=(U2-U1)/( I1 - I2)合上S1和S2测得U1=100V, I1=0.95A;断开S2测得U2=103V,I2=0.63A;R=(U2-U1)/( I1 - I2)=(103V-100V)/(0.95A-0.63A)=9.375Ω2. 电枢电阻Ra(1)短接电机电枢(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1’和I1’。
(4)断开S2测定U2’和I2’。
(5)计算平波电抗器电阻RL和整流装置内阻Rn:RL + Rn =(U2’-U1’)/(I2’-I1’)电枢电阻Ra :Ra =R-(RL + Rn)合上S1和S2测得U1’=95V,I1’=1.15A断开S2测得U2’=97V,I2’=0.80ARL + Rn =(U2’-U1’)/(I2’-I1’)=(97V-95V)/(1.15A-0.8A)=5.714ΩRa =R-(RL + Rn)=9.375Ω-5.714Ω=3.661Ω3. 平波电抗器电阻RL(1)短接电抗器两端(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压,调节电阻,使枢电流80%-90%的额定电流,测定U1’’和I1’’。
运控报告——精选推荐
实验一晶闸管直流调速系统参数和环节特性的测定实验一、实验目的(1)了解DJDK-1型电机控制系统实验装置的结构及布线情况。
(2)熟悉晶闸管直流调速系统的组成及基本结构。
(3)掌握晶闸管直流调速系统参数及反馈环节测定方法。
二、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压和转速,以满足实验要求。
实验系统的组成原理图如图1-1所示。
图1-1 实验系统原理图三、实验内容(1)测定测速发电机特性UTG=f(n);(2)测定开环机械特性n=f(Id)。
四、实验设备(1)DJDK-1型实验装置主控制屏DJK01;(2)直流电动机-直流发电机-测速发电机组;(3)DJK02组件挂箱,DJK04组件挂箱;(4)直流电压表、直流电流表;(5)TDS210示波器;(6)双臂滑线电阻器;(7)万用表。
五、实验方法1.晶闸管触发及整流装置特性Ud=f(Ug)和测速发电机特性U TG=f(n)的测定实验线路如图1-4所示。
电动机加额定励磁,逐渐增加触发电路的控制电压Ug ,分别读取对应的Ug 、U TG 、Ud 、n 的数值若干组,即可描绘出特性曲线Ud=f(Ug)和U TG =f(n)。
由Ud=f(Ug)曲线可求得晶闸管整流装置的放大倍数曲线Ks=f(Ug):Ks =ΔUd/Δug .图1-4 测定 时的实验线路图 2.测定开环机械特性n=f(Id)要求:应在高速和低速两种情况下分别测定;由机械特性n=f(Id)测得开环系统的静差率S 及调速范围D 。
实验线路如图1-4所示。
电机开环启动,不加负载,调节Ug ,使转速n =1200 r/min ;保持Ug 不变,加负载(滑线变阻器并联接法,电阻最大),调节滑线变阻器以改变负载,测几组参数,直到电流Id =Ied = 1.2A 。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________ 实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(6)转速闭环线的连接(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为 2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uT
uu
uv
uw
uu
1# 2# 3# 4# 5# 6#
如何调准90°?
二、单闭环系统的调试步骤
1、各单元的调试
(2)转速调节器ASR的调试
R0 RP1
R0
R1 C1
+ +
ASR
Rbal
+15V
RP1
Uct
RP2
-15V
限幅值和参数
二、单闭环系统的调试步骤
1、各单元的调试 (3)主电路的调试
直流电流表 B1 A
(3)按测得数据,画出两个电平检测器的 回环。
4.反号器(AR)的调试
测定输入输出比例,输入端加+5V电压, 调节RP,使输出端为-5V
5.逻辑控制器(DLC)的调试
测试逻辑功能,列出真值表,真值表应符合下表:
UM 输入
UI
1 1 0 0 01 1 0 0 1 00
Uz(Ublf) 0 0 0 1 1 1 输出
2 测取静特性时,须注意主电路电流不许超过电机的 额定值(1.1A).
3 双踪示波器的两个探头地线通过示波器外壳短接, 故在使用时,必须使两探头的地线同电位(只用一根 地线即可),以免造成短路事故。
四、思考题
1.闭环系统的调试原则是什么? 2.如何整定系统的零位? 3.如何整定反馈系数α? 4 . 如果发现闭环后,转速很高且不可控,
3、系统的闭环调试
(2)系统闭环运行;(3)闭环静特性测试 +
R1
C1
~
G
-
-15V
RP1
U
* g
R0
R0
++ +
ASR
Uct
A
Id
M
Ud
-
+
+
励 磁
-
Rbal
+ RP2
Un
TG
Id(A)
n(r/min)
注意: ①负给定;②反馈极性;③加负载时密切注视电流表
三、注意事项
1 改变接线时,必须先按下主控制屏总电源开关的 “断 开”红色按钮,同时使系统的给定为零。
数的整定。
二、实验内容 :
1.各控制单元调试 2.测定电流反馈系数。 3.测定开环 机械特性及闭环静特性 4.闭环控制特性的测定。 5.观 察,记录系统动态波形。
三、实验系统组成及工作原理
四、注意事项
1.三相主电源连线时需注意,不可换错相序。 2.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,
要求环宽也为0.4-0.6伏,调节RP,使回环 向纵坐标右侧偏离0.1-0.2伏。
具体方法:
(a)调节给定Ug,使DPZ的“1”端为0.7V左 右,调整电位器RP,使“2”端输出从“1”变为 “0”。
(b)减小给定,当“2”端电压从“0”变为 “1”时,“1”端电压在0.1~0.2V范围内,否则 应继续调整电位器RP。
(a)调节给定Ug,使DPT的“1”脚得到约0.3V电 压,调节电位器RP,使“2”端输出从“1”变为“0”。
(b)调节负给定,从0V起调,当DPT的“2”端从 “0”变为“1”时,检测DPZ的“1”端应为-0.3V左右, 否则应调整电位器,使“2”端电平变化时,“1”端电 压大小基本相等。
(2)测定零电流检测器(DPZ)的环宽:
只需按下对应的复位开关SB1、SB2即可正常工作。 3.系统开环连接时,不允许突加给定信号Ug起动电机 4.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免
带负载起动。 5.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按
钮,同时使系统的给定为零。 6.进行闭环调试时,若电机转速达最高速且不可调,注意转速反馈
(3)将控制一组桥触发脉冲通断的六个直键开关 弹出,用示波器观察每只晶闸管的控制极,阴极, 应有幅度为1V—2V的脉冲。
(4)将Ublr接地,可观察反桥晶闸管的触发脉冲。
图6-8 实验三接线图
2.双闭环调速系统调试原则
(1)先部件,后系统。即先将各单元的特 性调好,然后才能组成系统。
(2)先开环,后闭环,即使系统能正常开 环运行,然后在确定电流和转速均为负反 馈时组成闭环系统。
出系统的开环外特性n=f (Id)。填入下表:
n(r/min)
I(A)
注意,若给定电压Ug为0时,电机缓慢转动,则表明α太 小,需后移。
4.单元部件调试
ASR调试:方法与实验二相同。 ACR调试:使调节器为PI调节器,加入一定的输入
电压,调整正,负限幅电位器,使脉冲前移 a30°,使脉冲后移=30°,反馈电位器RP3逆时 针旋到底,使放大倍数最小。
实验一接线图
2.电流调节器(ACR)的调试 (1)调整输出正,负限幅值
“9”、“10”端 接MEL-11挂箱,使调节器为PI调 节器,加入一定的输入电压,调整正,负限幅电位 器,使输出正负最大值大于6V。
(2)测定输入输出特性
将反馈网络中的电容短接(“9”、“10”端短 接),使调节器为P调节器,向调节器输入端逐渐 加入正负电压,测出相应的输出电压,直至输出 限幅值,并画出曲线。
实验一 晶闸管直流调速系统主要 单元调试
四、实验方法
1.速度调节器(ASR)的调试
按图6-5接线,DZS(零速封锁器)的扭子开关扳向 “解除”。
(1)调整输出正、负限幅值
“5”、“6”端 接MEL-11挂箱,使ASR调 节器为PI调节器,加入一定的输入电压(由 MCL—18或主控制屏的给定提供,以下同), 调整正、负限幅电位器RP1、RP2,使输出正 负值等于5V。
运动控制系统实验指导
实验目录
实验一 晶闸管不可逆直流调速系统主要单元调试 实验二 不可逆单闭环直流调速系统的调试及静特性研究 实验三 双闭环晶闸管不可逆直流调速系统 实验四 双闭环可逆直流脉宽调速系统
实验一 晶闸管直流调速系统主要 单元调试
一、实验目的
1.熟悉直流调速系统主要单元部件的工作 原理及调速系统对其提出的要求。
5.系统调试
将Ublf接地,Ublr悬空,即使用一组桥六个晶闸管。
(1)电流环调试
电动机不加励磁
(a)系统开环,即控制电压Uct由给定器Ug直接接 入,开关S拨向左边,主回路接入电阻Rd并调至最 大(Rd由MEL—03的两只900Ω电阻并联)。逐渐增 加给定电压,用示波器观察晶闸管整流桥两端电压 波形。在一个周期内,电压波形应有6个对称波头 平滑变化 。
n(r/min)
注意:(1)先加励磁;(2)密切注视电流表; (3)零位是否准确;(4)起动时逐渐加给定。
二、单闭环系统的调试步骤
3、系统的闭环调试
(1)转速反馈系数的调试: 1600rpm对应反馈电压2V.
~
Ug
Uct
A
+ Id
Ud
M
-
+
励 磁
-
+ RP2
Un
TG
二、单闭环系统的调试步骤
(2)速度变换器的调试
电动机加额定励磁 (a)系统开环,即给定电压Ug直接接至Uct,Ug作为输入给
定,逐渐加正给定,当转速n=1500r/min时,调节FBS(速度 变换器)中速度反馈电位器RP,使速度反馈电压为+5V左 右,计算速度反馈系数。
(b)速度反馈极性判断:系统中接入ASR构成转速单闭环系 统,即给定电压Ug接至ASR的第2端,ASR的第3端接至Uct。调节 Ug(Ug为负电压),若稍加给定,电机转速即达最高速且调节 Ug不可控,则表明单闭环系统速度反馈极性有误。但若接成转 速—电流双闭环系统,由于给定极性改变,故速度反馈极性可 不变
是什么原因,应该如何处理?
实验三 双闭环晶闸管不可逆直流 调速系统
一、实验目的
1.了解双闭环不可逆直流调速系统的原理,组成及各主要 单元部件的原理。
2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。 3.熟悉MCL-18, MCL-33的结构及调试方法 4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参
(3)先内环,后外环。即先调试电流内环, 然后调转速外环。
3.开环外特性的测定
(1)控制电压Uct由给定器Ug直接接入, 测功机加载旋钮应逆时针旋到底=0,调节偏移电压电位器,使α稍 大于90°,合上主电路电源,调节调压器旋 钮,使Uuv,Uvw,Uwu为200V,逐渐增加给 定电压Ug,使电机起动、升速,调节Ug使电 机空载转速n0=1500r/min,再调节测功机加 载旋钮(或负载电阻RG),改变负载,在直 流电机空载至额定负载范围,测取7~8点, 读取电机转速n,电机电枢电流Id,即可测
的极性是否接错。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,
必须使两探头的地线同电位(只用一根地线即可),以免造成短 路事故。
五、 实验方法
1.未上主电源之前,检查晶闸管的脉冲是否正常。
(1)用示波器观察双脉冲观察孔,应有间隔均匀, 幅度相同的双脉冲
(2)检查相序,用示波器观察“1”,“2”脉冲观 察孔,“1”脉冲超前“2”脉冲600,则相序正确, 否则,应调整输入电源。
U
VT1
VT3 VT5 C
A1
V W
R
M 03 M
L
VT4
VT6
VT2
A2
B2
-
Ug
Uct
Ug从0开始调
+
+ Id Ud
M
-
-
F1
接励磁 电源
F2
二、单闭环系统的调试步骤
2、系统的开环调试
(1)开环运行; (2)开环机械特性测试, n-Id曲线。
+
~