以形助数,数形结合

合集下载

以形助数-以数解形——浅谈数形结合思想在初中数学中的应用

以形助数-以数解形——浅谈数形结合思想在初中数学中的应用

以形助数,以数解形—-浅谈数形结合思想在初中数学中的应用摘要:在初中数学中,数形结合思想无处不在,利用好它可以帮助解决较难问题,并提高解题速度。

笔者结合教学实际,对数形结合思想进行浅议,探讨其在数学教学中的应用.关键词:数形结合初中数学数学应用数形结合思想是初中数学中一种重要的数学思想.在近几年武汉中考数学试卷中,利用数形结合思想解决问题的题目屡见不鲜,而且有逐年加强的趋势,可见其重要性。

因此,笔者结合数学教学实际,探讨数形结合思想在初中数学中的应用.在《初中数学新课程标准》中提到:“数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如:数形结合思想等。

”[1]所谓数形结合,就是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

利用它可以使复杂的问题简单化,抽象的问题具体化,很多难题便迎刃而解,而且解法简便易懂。

数与形是密切相关的两个数学表象,它们是一一对应的关系,且相互依存、相互促进.在解决数学问题时,我们要把它们有机的结合起来,并相互转化,即把几何图形转化为数量关系问题, 应用代数、三角函数等知识进行讨论,或者把数量关系问题转化为图形问题,借助几何知识加以解决,使学生看到“形”能想到“数”, 而看到“数”则能想到“形”,最终达到优化解题途径的目的.著名的数学家华罗庚说得好:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离" [2].初一我们就学习了数轴,它建立起了实数与数轴上的点的一一对应关系.进而,又引入了直角坐标系,它扩大成了有序实数对与坐标平面上的点的一一对应.到了初二、初三又陆续学习了一次函数、二次函数,我们知道它们跟直线、抛物线也是一一对应的关系,以至于后来的“用函数的观点看方程”,实质上就是曲线和方程的对应关系。

正是这些数与形的对应,才促使我们要利用它们之间的联系,相互结合,相互转化,最终达到解决数学问题的目的。

高中数学常见思想方法总结

高中数学常见思想方法总结

高中常见数学思想方法我们通常认为数学思想就是人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想.而且数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法.所以我们总结了以下几种常见的数学方法并附带例题加以说明,让学生对数学思想方法有更深刻的认识.方法一函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.高考数学命题近年来经历了以“知识立意”到以“问题立意”再发展为以“能力立意”的过程,试图体现突出能力与学习潜能的考查,使知识考查服务于能力考查;试图突出数学的思想方法的层次,即数学思想方法、逻辑学中的方法和具体的数学方法.函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.因此,函数与方程的思想方法一直为近几年的高考重点,大小试题中均有体现.用函数与方程的思想方法解题时,要领悟其实质,充分考虑其可行性,不可生搬硬套.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大. 由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大.解法二:(方程的思想)由0d <可知12313a a a a >>>> .因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S , ,n S 中的最大值. 121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩,故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① 直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N A BO F直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法数形结合,是中学数学最重要的思想方法之一.著名数学家华罗庚先生说:“数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数流一体,永远联系切莫分离.”这精辟地阐述了数形结合的重要性,它不仅是一个重要的数学思想,而且是一种重要的解题方法,因而数形结合的能力必然是历年高考的一个重点.所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽像问题具体化,开拓题的新思路,以便最终找到解决问题的带有数形信息转换特征的数学方法.正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________. 【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f ,(1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法分类讨论的思想方法是中学数学的基本思想方法,同时也是一种化整为零、各个击破、整合结论的解题策略.在分析和解决数学问题中,运用分类讨论思想可以将问题的条件与结论的因果关系、局部与整体的逻辑关系揭示得一清二楚、十分准确.在解决对像为可变的数量关系和空间图形形式的数学问题中有着广泛和重要的作用.有关分类讨论思想的数学问题贯穿于高中数学的各个部分,形式多样、综合性强,对于培养学生思维的缜密性、条理性、深刻性有着十分重要的作用.因此,分类讨论一直是高考命题的热点之一,也是每年必考的重要数学思想方法之一.1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.在分类过程中要注意按照一个统一的标准,这样才能做到不重复不遗漏,考虑问题要周到缜密,特别是对于一些特殊情况要考虑慎重,养成严谨的学习态度和思想作风.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >= ,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】 {}n a 是等比数列,且前n 项和0(1,2,3,)n S n >= ,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q -=>-,即10(1,2,3,)1nq n q->=- . 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞ .【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例3】 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S A ⊆且S B ≠∅ 的集合S 的个数是 ( )A.57B.56C.49D.8【答案】 B【解】由题意得S 中必含有4,5,6中至少一个元素,而元素1,2,3可以任意含有,则可按S 中所含元素个数分类:(1) 当S 中只含有4,5,6中的一个元素时,有13C 种,而1,2,3可构成集合32个,故S 有13323824C ⋅=⨯=(个);(2) 当S 中只含有4,5,6中的两个元素时,有23C 种,而1,2,3可构成集合32个,故S 有23323824C ⋅=⨯=(个);(3) 当S 中只含有4,5,6中的三个元素时,有33C 种,而1,2,3可构成集合32个,故S 有33328C ⋅=(个). 故集合S 的可能个数为24+24+8=56.【点评】本题正是由于题中所给的限制条件或研究对像的性质而引起的分类讨论.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________.【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.【例5】如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE x =,过E 作OB 的垂线l l ,记△AOB 在直线l 左边部分的面积为S ,则函数()S f x =的图象是 ( )【答案】 D【解】当02x <≤时, ()2111224f x x x x =⋅⋅=,是开口向上的抛物线,且()21f =; 当23x <≤时, ()()()21112123133222f x x x x x =⨯⨯+--+=-+-,是开口向下,以33,2⎛⎫ ⎪⎝⎭为顶点的抛物线; 当3x >,()f x 是确定的常数,图象为直线.【点评】本题正是图形运动造成,不同时段,面积有所不同,正是体现了几何图形的形状、位置的变化而引起的分类讨论问题.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.在上海主要体现在“归纳——猜想——证明”中,是发现数学规律,并用数学归纳法证明的完整过程.在近几年的高考中,都有这种找规律的题,考生不易得分,需要考生加强这方面的训练.【例1】 (12年上海模拟)在证明恒等式2222*1123(1)(21)()6n n n n n N ++++=++∈ 时,可利用组合数表示2n ,即22112(*)n n n C C n N +=-∈推得.类似的,在推导恒等式23333*(1)123()2n n n n N +⎡⎤++++=∈⎢⎥⎣⎦时,也可以利用组合数表示3n 推得.则3n =____________.【答案】 6C 3n +1+C 1n【解】 由题意得:n 2=2C 2n +1-C 1n =n (n +1)-n =n 2+n -n ,则由类比推理可得,∴n3=n 3-n +n =n (n +1)(n -1)+n =6C 3n +1+C 1n .【点评】 此题利用了类比推理以及归纳、猜想思想,从已知条件中得到规律,用到问题中去,从而得到结论.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++ , 即21231(23)k k a a a a k k a +++++=+ .所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五 化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题):由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

浅谈数学中的数形结合(1)

浅谈数学中的数形结合(1)

浅谈数学中的数形结合李素伟内容摘要:数形结合的思想方法是一种重要的数学思想方法,它在解题中的应用是深入和广泛的。

本文主要论述了数形结合思想方法在解题中的应用:一方面,以形助数即借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示;另一方面,以数助形即将图形问题转化为代数问题,以获得精确的结论;最后一方面是数形结合即“数”与“形”的信息相互转换,相互渗透。

关键词:数形结合的思想方法;以形助数;以数助形;数形结合。

数学教学有两条线:一条是明线,即教学知识;一条是暗线,即教学思想方法。

九义初中《数学教学大纲》把数学的精髓——数学思想方法纳入了基础知识的范畴,这是加强数学素质教育的一项创举。

数学思想方法既是基础知识又是将知识转化为能力的桥梁。

因此教师在教学中要注重数学思想方法的渗透、概括和总结,要重视数学思想方法在解题中的指导作用。

数形结合的思想方法是数学中一种重要的思想方法。

数学是研究现实世界的数量关系和空间形式的科学。

数和形是数学知识体系中两大基础概念,把描述数量关系的数和具体直观的图形有机结合,将抽象思维与形象思维有机结合,根据需要,把数量关系的比较转化为图形性质或其位置关系的讨论,或把图形间的待定关系转化为相关元素的数量计算,进而探求问题的解答就是数形结合的思想方法。

数形结合的思想方法能扬数之长、取形之优,使得“数量关系”与“空间形式”珠联璧合,相映生辉。

为研究和探求数学问题开辟了一条重要的途径。

以下从“以形助数”、“以数助形”、 “数形结合”三个方面论述了数形结合的思想方法的重要性。

1 “以形助数”,较直观、快捷。

某些看似单纯的数量关系的代数问题,如果能注意到它所包含的几何意义,或者设计出一个与之相关的几何模型则可找到新颖别致的解法,我们从以下两个例题可看到借助“形”不但有直观的分析,而且对知识能有更深刻的掌握。

例1 求函数y=xx cos 2sin 3 的最大值和最小值。

以“形”助“数”促理解,以“数”解“形”促深化-浅谈数形结合思想在数学解题中的应用

以“形”助“数”促理解,以“数”解“形”促深化-浅谈数形结合思想在数学解题中的应用

以“形”助“数”促理解,以“数”解“形”促深化 - 浅谈数形结合思想在数学解题中的应用【摘要】数学研究的对象可分为“数”与“形”两部分,“数”与“形”是有联系的,这个联系成为数形结合。

数形结合包括两种情况:第一种情况是“以数解形”,第二种情况是“以形助数”。

数形结合思想简单来说就是把数学中的“数”和数学中的“形”结合起来去解决数学问题的思想。

它将抽象的数学语言与直观的图形相结合,并使抽象的问题具体化,从而实现优化解题途径的目的。

【关键词】数形结合思想;数学解题;应用一种好的有效的数学思想方法胜过于百道千道甚至上万道数学题目,这将会告别传统的“题海战术”,学生就能在相对良好的环境中将数学知识转化为数学能力,养成数学学习的兴趣,也能调动数学学习的积极性,提高学习的效益。

总的来说,数学思想方法比数学知识更为重要,数学知识是单一的,亘古不变的,相反的,数学的思想方法会随着社会的不断进步而进步,它是灵活的,多样的。

如果不及时的对数学知识加以记忆,很快就会被人们所遗忘,所以说,人们对思想方法的掌握是永久性的,能够受用一生的。

教材中的主要体现教材体系梗概以小学为例,小学生大多都处于具体运算阶段,这一阶段中,小学生基本已经从表象思维中脱离出来,逐渐地形成抽象性思维,也能够进行适当的逻辑推理,但是他们的抽象性思维还不够成熟,在解决问题方面的能力也不足,仍需要具体事物图像的辅佐,把抽象的事物图像直观化,然后根据直观化的图像,他们才能够更好地进行理解。

因此,在小学教科书上必然有着数形结合思想,用图片的方式来表相应的数学知识,而且必定占据很大的比重,这样便于小学生的理解。

例如,利用三角板工具来理解和认识锐角、直角、钝角;利用线段表示法来找出数学问题中变量的关系,再画出相应线段来写出方程;用分割实物月饼来认识几分之几;利用日历表来熟悉了解大月、小月等。

在《古人计数》这节课中,如何能够让学生更好地理解10个一就是1个十?教师会让学生拿出10根小棒,表示“10个一”,然后把10根小棒捆成一捆,就是“1个十”。

以形助数 以数解形

以形助数 以数解形

以形助数以数解形数形结合的思维方法,是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。

纵观整个小学数学教材,无不充分体现数与形的有机结合,帮助学生从直观到抽象,逐步建立起整个数学知识体系,培养学生的思维能力。

抽象思维与形象思维的结合,即数形结合,可以使学习的内容变得比较易于理解,如何更好的以形象“解”抽象,是我们一线数学教师一直思考的问题。

下面是我在教学中的一点做法:一、利用直观图有助于孩子清晰的认识数的组成低年级学生在学习数学时,学生的的逻辑思维是比较初步的,而且在很大程度上仍是具有具体形象性。

我在教学《1000以内数的认识》用摆小正方体贯穿于整个教学过程。

一开始借助小正方体数数,经历数数,感受到不同的情况下可以采取不同的数数方法。

利用课件让孩子们直观感受一十,一百,一千的表象,知道一十是1列,一百拼成1片,一千成了1个大正方体,为进一步理解1000以内数的组成打下基础。

同时认识计数单位百、千,并感悟到10个一是一十,10个十是一百,10个百是一千的十进制关系。

图示如下:借助小正方体理解1000以内的数的组成。

通过小正方体组成不同的“形”表示1个一、1个十、1个百,使学生对1000以内数的组成形成表象,通过小正方体的“形”让学生自己感悟到,数和形相结合,使学生自己真正理解1000以内数的组成的。

二、利用直观图有助于孩子分析题意,避免机械应用在教学解决“小雪比小磊多几朵花“这个问题时我让孩子们拿出学具,动手摆一摆,并说说摆的过程。

师:小组讨论思考三个问题(1)谁和谁比?(2)谁的多?谁的少?(3)多的分成几部分,是哪几部分?这样,根据直观的数与物(形)的对应关系,帮助学习建立起同样多、多的部分、少的部分、大的数、小的数等较抽象的数学概念,从而理解掌握比多比少用大的数减去小的数,求大的数用小的数加上多的部分(或少的部分),求小的数用大的数减去少的部分(或多的部分)。

这样学生在学习“比多比少”应用题时,就能能很好的建立起数与形的有机结合,充分理解掌握比多比少的基本数量关系。

新课标理念下初中数学教学中数形结合思想应用思考

新课标理念下初中数学教学中数形结合思想应用思考

·199·初中阶段是学生培养思维能力的关键阶段,相比于小学阶段来说,初中阶段的学习内容要更难一些,知识点也更为复杂。

针对于这一阶段的学习知识的掌握存在很高的难度,抽象化的内容和知识比较多。

因此,数形结合思想是非常适合于这一阶段的教学活动。

在初中阶段数学教学的过程中,采用数形结合的方法开展相关的教学活动,可以帮助学生更好地理解比较难和比较抽象化的教学内容,进而提升学生的数学学习效果。

由此可见,探讨在初中数学教学过程中应用数形结合思想的方法和措施的重要意义。

一、数形结合的概念所谓的树形结合主要指的是将抽象的数字与具体的几何图形相结合,将抽象化的数学内容变得更加直观和具体,主要有以“数”化“形”、以“形”變“数”和“数”“形”结合三种类型。

二、在初中数学教学过程中应用数形结合思想的意义(一)化抽象为具体数学学科本身就是一门比较抽象化的学科,也正是因为其自身具备抽象化的特点,因此在学习时具备很高的难度。

如今,教师在课堂教学的过程中应用数形结合思想,将抽象的数学学习与图形相结合,达到了化抽象为具体的目的地,让学生能够更加直观准确的了解所要学习的内容。

同时也能够应用一系列更为简单的方法来解决数学问题,进而降低了数学的学习难度,提升了学生的学习兴趣。

(二)提高学生的数学分析能力在数学教学的过程中应用数形结合思想,可以让学生掌握正确分析数学问题和解决数学问题的方法和技巧,进而提高学生的数学分析能力和问题解决能力。

相比于传统的教学环境下的死记硬背的教学方式以及固化的教学方式,这种数形结合的新型的教学方式的应用更能够激发学生的数学学习兴趣。

三、新课标理念下在初中数学教学过程中应用数形结合思想的方法和措施(一)转变教学观念,创新教学模式若想在初中数学教学过程中更好的应用数形结合思想,首先应该做的就是转变教师传统的教学观念。

受中国大环境应试教育的影响,很多教师在开展数学课堂教学活动的过程中,都会存在教学思想过于陈旧的问题。

以“形”变“数”,以“数”解“形”

以“形”变“数”,以“数”解“形”

以“形”变“数”,以“数”解“形”作者:刘护灵来源:《广东教育(高中)》2021年第10期著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”“数”与“形”反映了事物两个方面的属性. 数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的.一般而言,“形”有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算.2021年全国新高考Ⅰ卷第16题以民间剪纸艺术为背景,考查了考生的归纳与推理能力,及复杂数列求和运算能力,是难度较高的综合题目.原题如下:16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm 三种规格的图形,它们的面积之和S2=180dm2,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么Sk=______dm2.【审题和分析】:首先要理解题目,在考场中一般会发1-2张草稿纸,可以用草稿纸按照题意对折1-3次,或者绘制草图,得到如下图形:(当然考场中只需画前3次即可发现规律)还可以在每次标上数值,以探索对折后面积(边长)变化的规律,如下:【解法1】:(1)对折4次可得到如下规格:dm×12dm,dm×6dm,5dm×3dm,10dm×dm,20dm×dm,共5种;(2)由题意可得S1=2×120,S2=3×60,S3=4×30,S4=5×15,…,Sn=,设S=+++L+,观察这个式子的特征,属于{anbn}结构,其中{an}是等差数列,{bn}是等比数列,所以下面用错位相减法求和,即:S=++…++,两式作差得:S=240+120(++…+)-=240+-=360--=360-,因此,S=720-=720-.故答案为:5;720-.【点评1】此题表面上以“形”的方式呈现,即民间剪纸艺术——考生常见、可考场上进行操作的“对折纸张”活动,实质上在解决这个问题的时候,要求学生以“数”——即转化为数列求和的方法進行计算,所以,看懂题意和理解数列求和的方法,是解决这个问题的关键.【点评2】对于数列求和常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{anbn}结构,其中{an}是等差数列,是{bn}等比数列,用错位相减法求和;(3)对于{an+bn}结构,利用分组求和法;(4)对于{}结构,其中{an}是等差数列,公差为d(d≠0),则=(-),利用裂项相消法求和.【解法2】(由新疆昌吉州一中张润平老师提供):如果把“形”坐标化,能得到更加“精细”的代数表示,即解法2如下,记此规格的长方形长为xndm×yndm,它对应于坐标平面内的点P(xn,yn),其中xn=20,yn=12,(n∈N),则对折过程如下图:P(x0,y0);P1(x0,y0),P1(x0,y0); (1)P2(x0,()2y0),P2(x0,y0),P2(()2x0,y0); (2)P3(x0,()3y0),P3(x0,()2y0),P3(()2x0,y0),P3(()3x0,y0); (3)仔细审读,发现规律很有意思!【排列规则规律解读:(1)对于每一“点”,首先按“y”轴对折,其次按“x”轴对折(下同);(2)从第二行开始,将上行的第2个以后的点“对折”时,按“y”轴对折所得的点与前面得到的点重合,按“x”对折得到的点是“新”点】综上,对折4次共可以得到不同规格图形的种数为5.如果对折n次,得到下列n+1个点:Pn,k(()2x0,()n-ky0),其中,k=0,1,2,…,(n+1),所以Sk=[()ix0·()k-iy0]=[()kx0y0]=x0y0(k+1)()kSk=[x0y0(k+1)()k]=x0y0[(k+1)()k],其中Tn=[(k+1)()k],这是一个等差数列与等比数列的乘积形式,属于错位相减法的典型结构,下面利用错位相减法进行求和,和解法1类似,此处从略.【点评3】本题是一道数列题,其背景是民间折纸艺术,即数学上的对称关系. 解法2通过以“数”解“形”,即把“形”利用坐标表示,正是笛卡尔坐标的思想!十分巧妙!【点评4】一般而言,以“数”解“形”解题的基本思路:明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来(如果能建立坐标表示出来更好),再根据条件和结论的联系,利用相应的公式或定理等.【本文系广州市海珠区“十三·五”教育规划课题“GeoGebra和初中数学教学深度融合的研究”(立项号:2020C028)研究成果】责任编辑徐国坚。

北师大版小学数学六年级上册《数与形结合的规律》知识点讲解总结练习解析

北师大版小学数学六年级上册《数与形结合的规律》知识点讲解总结练习解析

数与形结合的规律知识精讲1.数与形结合的规律“数”:指数学中的数量和数量关系,如数字、等式等,表达的信息具有抽象性和精确性;“形”:指图形,表示量对应的图形意义等,表达的信息具有直观性和形象性。

数与形结合主要有两种方式:以数辅形、以形助数。

以数辅形:借助数的精确性说明形的特征,通过准确计算,把图形问题转化成数量问题,化难为易。

以形助数:利用图形更好地揭示实际问题中蕴含的数量关系,进而解决实际问题。

2.数与形结合的规律——以数辅形如可以借助数形结合的方法数线段、角、三角形等图形的数量。

数线段的方法:可以结合图形,按照基本线段的个数得出一共有几条线段。

注:基本线段是指一条线段被端点所分成的几条线段。

1条基本线段:线段数量=1(条)。

2条基本线段:线段数量=2+1=3(条)。

3条基本线段:线段数量=3+2+1=6(条)。

4条基本线段:线段数量=4+3+2+1=10(条)。

……n条基本线段:线段数量=n+(n-1)+…+2+1 (条)。

类似地,数角或三角形等图形的数量,也可以数形结合运用基本角和基本三角形的个数来求。

3.数与形结合的规律——以形助数如下图是公共汽车从解放路到游乐园之间行驶速度变化的情况。

从图中可以观察得出以下信息。

(1)公共汽车从解放路到游乐园共行驶了4分。

(2)在第1分内,汽车行驶速度从0提高到400米/分。

(3)从0分到1分,汽车行驶速度在增加;从3分到4分,汽车行驶速度在减少;从1分到3分,行驶速度保持不变,是400米/分。

除了可以之间观察得出的信息之外,还可以根据图像推断出一些实际情况。

如根据上图可知汽车在1分至3分之间匀速行驶,因此路程是在增加,共增加了800米。

易错易误点混淆基本图形的数量和所求图形的数量在数线段或其他图形的数量时,容易只数基本图形,即将所求图形的数量和基本图形的数量混淆,从而导致错误。

如下图中一共有多少个角?错解:4。

这里错在只数出了4个基本角,而要求的是一共有多少个角。

以形助数,以数解形——谈数形结合思想在小学数学中的应用

以形助数,以数解形——谈数形结合思想在小学数学中的应用

以形助数,以数解形——谈数形结合思想
在小学数学中的应用
数形结合思想在小学数学中的应用数形结合思想是数学教学的重要组成部分,在小学数学教学中,数形结合思想起着至关重要的作用。

一般来说,数形结合思想是指以形助数,以数解形,即把数学具体化,结合实际情况,把抽象的数学知识转化为具体的形象,从而更好地理解和运用数学知识。

在小学数学教学中,数形结合思想具有特别重要的作用。

例如,教学加法时,可以通过图形的方式来让学生们更好地理解加法的概念,理解加法的运算过程。

比如,当教学加法时,可以画出三个圆圈,我们可以让学生在每个圆圈里画几个小圆点,代表每个圆圈里有几个东西,然后让学生将三个圆圈里的小圆点加起来,就可以得到最后的结果。

这样,学生们就可以更好地理解加法的概念,知道加法的运算过程,从而更好地应用加法。

此外,数形结合思想还可以帮助学生们更好地理解减法的概念,更好地运用减法。

教学减法时,可以画出两个圆圈,在每个圆圈里画几个小圆点,代表每个圆圈里有几个东西,然后让学生从第一个圆圈里减去第二个圆圈里的小圆点,就可以得到最后的结果。

这样,学生们就可以更好地理解减法的概念,知道减法的运算过程,从而更好地应用减法。

用数形结合思想教学数学时,还可以画出图形,让学生们更好地理解乘法、除法等数学知识的概念,更好地运用这些知识。

比如,教学乘法时,可以画出一个矩形,把这个矩形分成几个小矩形,代表乘法的因数,然后让学生们计算出最后的结果,就可以更好地理解乘法的概念,知道乘法的运算过程,从而更好地应用乘法。

总之,以形助数,以数解形,是小学数学教学中重要的一种数学思想,它可以帮助学生们更好地理解和运用数学知识,起到重要的作用。

二次函数中的数学思想方法应用

二次函数中的数学思想方法应用

y xoA B二次函数中的数形结合过程与方法:研究二次函数图象的特点和性质,利用图象探究抛物线的一般应用,达到数——形——数的同一,找寻较佳解决方案。

中考数学命题除了着重考查基础知识外,还十分重视对数学思想的理解和应用。

例如代数中的一元二次方程与二次函数的关系问题,一元二次方程的根与二次函数图形与x 轴交点之间的关系,是中考内容必考的内容之一。

要从结构上把握教材,达到熟练地将这两部分知识相互转化。

二次函数知识本身就是数形结合思想的数学思想的一个很好的体现。

在解决这类问题时,学生往往要么只注意到代数知识,要么只注意到几何知识,不会把它们互相转化,如坐标系中点的坐标与几何图形中线段的长的关系;坐标系中x 轴与y 轴相互垂直与几何图形中的直角、垂直、对称及切线等的关系;函数解析式与图形的焦点之间的关系等数形结合就是通过数与形的相互转化来解决数学问题的一种思想方法。

根据解题需要我们可以把数量关系的问题转化为图形性质的问题来讨论,或者把图形性质的问题转化为数量关系的问题来研究。

1.以形助数——通过几何图形,使数量关系直观化、形象化,从而找出最佳解题途径。

1.(2005宁夏)如图,抛物线的对称轴为x=1,与x 轴交于A 、B 两点,若B 点坐标是)0,3(则A 点坐标为。

2.(2002浙江杭州)已知二次函数c bx ax y ++=21(a ≠0)与一次函数n mx y +=2(m ≠0)的图象相交于点A (-2,4)、B (8,2)(如图所示),则能使1y >2y 成立的 x 的取值范围是。

3.(2005南通市)二次函数c bx ax y ++=2的图象如图所 示,若c b a M ++=24,c b a N +-=,b a P +=4,则下列结论正确的是( )A .Μ>0,Ν>0,Ρ>0B .Μ>0,Ν<0,Ρ>0C .Μ<0,Ν>0,Ρ>0D .Μ<0,Ν>0,Ρ<04.二次函数c bx ax y ++=21与3)2(2)1(22+++-+=c x b x a y 在同一坐标系中的图象如图。

高中数学四大思想

高中数学四大思想

⾼中数学四⼤思想⾼中数学四⼤思想1.数形结合思想数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与⼏何图形的直观描述相结合,使代数问题、⼏何问题相互转化,使抽象思维和形象思维有机结合。

实质:将抽象的数学语⾔与直观图形结合起来;将抽象思维和形象思维结合起来。

抽象问题具体化,复杂问题简单化。

应⽤数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)⽅程(多指⼆元⽅程)及⽅程的曲线.以形助数常⽤的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析⼏何⽅法.以数助形常⽤有:借助于⼏何轨迹所遵循的数量关系;借助于运算结果与⼏何定理的结合.2.分类讨论思想分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决.原则:化整为零,各个击破。

⽆重复、⽆遗漏、最简。

步骤:1)明确讨论对象,确定对象范围;2)确定分类标准,进⾏合理分类,做到不重不漏;3)逐类讨论,获得阶段性结果;4)归纳总结,得出结论。

常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.3.函数与⽅程思想函数思想,即将所研究的问题借助建⽴函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解⽅程以及讨论参数的取值范围等问题;⽅程思想,即将问题中的数量关系运⽤数学语⾔转化为⽅程模型加以解决.运⽤函数与⽅程的思想时,要注意函数,⽅程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。

(2)密切注意⼀元⼆次函数、⼀元⼆次⽅程、⼀元⼆次不等式等问题;掌握⼆次函数基本性质,⼆次⽅程实根分布条件,⼆次不等式的转化策略。

4.转化与化归思想转化与化归思想,就是在研究和解决数学问题时采⽤某种⽅式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进⽽达到解决问题的思想。

以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用

以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用

2021年第28期教育教学5SCIENCE FANS 以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用周 岁(江苏省东海县牛山街道中心小学,江苏 连云港 222000)【摘 要】数形结合思想能在有效帮助学生掌握数学知识,如抽象理论、数学概念与数学关系的同时,提升学生的数学思维与学习能力。

本文主要探讨如何在小学数学复习课上应用数形结合思想引导学生进行复习。

【关键词】小学数学;复习课;数形结合思想【中图分类号】G623.5 【文献标识码】A 【文章编号】1671-8437(2021)28-0125-02复习是一个重新整理知识的过程,在小学数学教学中,科学的复习方式能够帮助学生掌握数学难点,解决学习过程中存在的疑难问题,在提高教学的有效性的同时,能够加快学生吸收数学知识的速度。

但就目前的小学数学复习课来看,以运算、解题为核心的数学教学很难发挥其应有的价值。

教师应调整教学方法,尝试应用数形结合思想开展复习指导活动,实现抽象到具象的有机转化,这样能让复习更有效率,也能提高教学质量。

1 运用数形结合思想引出复习问题在以往的小学数学复习课中,复习活动大多围绕解题、计算开展。

从学生的成绩表现上来看,学生确实能准确解答数学问题,但学生的数学学习能力却没有提升:没有掌握数学方法,不会举一反三,对数学知识点的理解也不够透彻。

而借助数形结合思想,教师能够帮助学生解决在数学复习中所遇到的问题,进而培养学生的数学思维,帮助其掌握多元化的数学学习方法[1]。

以苏教版小学数学三年级上册“千克与克”的复习课为例,笔者通过数形结合思想开展教学活动,帮助学生完成数学学习任务。

笔者给出图形与数学符号,将生活中的素材与引入数学课堂。

笔者给出秤钩与“g”的符号,如图1所示:图1结合有关图片材料,学生很快给出结论:这个“秤钩”和5很像。

教师可针对学生的结论提出问题:秤钩除了像5之外,还有什么用?学生凭借生活经验,能够得出“秤钩能够勾起重物”的结论。

浅谈如何培养学生的数形结合思想

浅谈如何培养学生的数形结合思想

浅谈如何培养学生的数形结合思想所谓的“数形结合”就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”的方法,把抽象思维与形象思维有机的结合起来。

这样可以使很多复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

因此“数形结合”的思想在我们的学习和生活中有着不可忽视的地位和作用,然而不少初学者遇到这类问题时就有点显得有些不知所措、束手无策、无从下手了。

鉴于此种情况,本人结合多年的教学经验谈谈自己几点不成熟的看法,仅供大家作为参考,若有不当处望各位批评指正。

一、通过观察、实践活动培养学生数形结合思想“数形结合”是在学生具备一定的数感和空间想象力的基础上发展起来的,一般要通过对实物的观察、分析、猜测或实地测量获取必要的资料信息,然后运用几何的初步知识,逐步在脑海中形成几何形体的表象,为我们的探究问题、解决问题指明思路和方向。

在实际的教学活动中我们可利用剪、拼、折、叠、拆等方法让学生亲自动手、主动参与从而感受知识形成过程。

(一)通过观察培养学生的数感——以数解形数感主要表现在:理解数的意义;能用多种方法表示数;能在具体的情境中把数的相对大小关系;能用数表达和交流信息;能为解决问题而选择适当的方法;能估计运算的结果,并对结果的合理性作出解释。

我们在实际教育教学过程中要引导学生联系自己身边具体的有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用初步建立数感。

下面举例说明:例如,某教师上课不是开始进行新知识的学习,而是在黑板上画青蛙,同时讲解。

师:同学们,看黑板上老师画出来的青蛙,一只青蛙有一张嘴,2只眼睛4条腿。

2只青蛙有2张嘴,4只眼睛8条腿。

3只青蛙有3张嘴,6只眼睛12条腿。

老师编到这里,请同学们接着往下编。

生:4只青蛙有4张嘴,8只眼睛16条腿。

5只青蛙有5张嘴,10只眼睛20条腿。

6只青蛙有6张嘴,12只眼睛24条腿。

数形结合百般好,隔离分家万事休

数形结合百般好,隔离分家万事休

数形结合百般好,隔离分家万事休作者:吴进来源:《数学教学通讯·小学版》2020年第11期摘要:华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离。

”“数”的准确性和“形”的直观性,可以引导学生更全面地认识数学本质,发展学生的数学思维,触发高效的数学学习。

关键词:以形助数;以数解形;数形结合;小学数学数学是一门研究客观世界中的数量关系和空间形式的学科,具有抽象性、逻辑性和概括性等特点,而“数”和“形”就是贯穿小学数学课本的两条基本主线。

■一、以形助数,抽象知识直观化现阶段,在小学数学学习中,“数”指的是数与代数,包括了数的认识、数的运算、数量关系、常见的量等内容。

然而基于学生数学核心素养的培养要求,我们传统的数与代数的教学就显得:重数量,轻质量;重过程,轻思维;重内容,轻生活;重形式,轻价值。

小学阶段,低年级学生的思维趋向于将数学知识与具体事物或生动表象联系在一起,高年级学生逐步学会区分概念中的本质与非本质属性、主要与次要的因素,学会用抽象、科学的定义概括生活表象,思维逻辑性逐渐增强。

但是,总体而言,小学生的数学思维仍然趋向于将数学知识与直接的、感性的经验联系在一起,具有很明显的具体形象性。

因此,在小学阶段,如何赋予“数与代数”这块内容更多的趣味性、直观性、实用性,可以说是我们亟须考虑的问题!结合小学数学几何图形直观形象的特点,我们做了如下尝试。

1. 数的认识数的认识,包含了自然数、整数、小数、分数等概念的学习,是小学数学学习中最基本的内容,是学生今后构建数的概念体系、掌握数的运算、探究数量关系的重要基础。

那么如何建立起枯燥概念与直观图形的纽带呢?我们就以认识“分数的意义”为例。

分数的概念:把单位“1”平均分成若干份,取其中一份或几份的数叫作分数。

如果单靠字面含义,难以理解分数的概念,而教材中直观图的及时呈现恰好可以提供帮助。

数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。

数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。

作业: 教学与测试》 作业:《教学与测试》 P86
8,9,10 , ,
(C)
2、不等式3 | x + a | −2 x + 6 > 0在R中恒成立, 则实数a的取值范围是
a > −3
[理一理 注意问题: 理一理] 理一理
1、数与形转化的等价性 、数与形转化的等价性 2、“数”的精确性 、 3、 3、“形”的全面 性 4、不能用图形的直观代替严密的 逻辑推理 客观题:简捷灵活; 客观题:简捷灵活; 主观题:启发思路, 主观题:启发思路,说理严密
1
y
x
O
1
2、已知a是平面内的单位向量,若向量b 满足b • a − b) 0,则 | b 的取值范围是 ( = |
[0,1]
3、对于任意的x ∈ R,不等式 | x |≥ ax恒成立, 则实数a的取值范围是 (A)a < 1 ( B ) | a |< 1 (C ) | a |≤ 1 ( D)a ≥ 1
(C)
4、函数y = x − 2 x + 2 + x − 6 x + 13的
2 2
最小值为
13
x≥0 5、 浙)若a ≥ 0,b ≥ 0,且当 y ≥ 0 时, (08 x + y ≤ 1 恒有ax + by ≤ 1,则以a,b为坐标的点P(a,b) 所形成的平面区域的面积是
1
| lg | x − 1 ||, x ≠ 1 6、设定义域为R的函数f ( x) = x =1 0,
函数y = f(x)的图象与x轴交点的横坐标
6、向量、三角、不等式 、导数、统计、算法 与框图、几何概型等的 图形表示。
二、以数解形
用空间向量解立体几何、用解析法解平面几 何等。

数形结合思想中“以形助数”在小学数学教学中的运用探究

数形结合思想中“以形助数”在小学数学教学中的运用探究

数形结合思想中“以形助数”在小学数学教学中的运用探究数学教学中,数形结合思想是一种重要的教学方法。

“以形助数”是数形结合思想中的一部分,它指的是通过形象直观的图形来帮助学生理解和掌握抽象的数学概念。

这种方法在小学数学教学中具有重要的意义,可以帮助学生更好地理解数学知识,提高他们的学习兴趣和学习效果。

本文通过对“以形助数”在小学数学教学中的运用进行探究,旨在探讨如何更好地运用这种方法来提高小学生数学学习的效果。

一、“以形助数”在小学数学教学中的意义1. 帮助学生理解抽象概念小学生在学习数学时,经常会遇到一些抽象的概念,如分数、小数、几何图形等。

这些概念对于他们来说是比较难以理解和把握的。

而通过“以形助数”的方法,可以将抽象的概念转化为形象的图形,帮助学生直观地理解这些概念,从而更好地掌握和运用它们。

2. 提高学生的学习兴趣通过“以形助数”的方法,可以使数学变得更加生动有趣。

学生可以通过观察图形、动手实践等方式来学习数学知识,不仅增加了学习的趣味性,还可以激发他们的学习热情,提高学习的积极性。

3. 培养学生的综合能力“以形助数”不仅可以帮助学生理解数学知识,还可以培养他们的观察能力、想象力、动手能力等综合能力。

通过观察、思考、实践等方式,可以使学生在学习中得到全面的发展。

1. 在教学中引入具体的事例在教学中,可以通过引入一些生活中的具体事例来帮助学生理解抽象概念。

在教学分数时,可以通过一些具体的事例,如分苹果、分糖果等来帮助学生理解分数的概念,并通过图形的方式来展示分数的大小关系,使学生更直观地理解分数的意义和运用。

2. 利用教具和实物进行教学在教学中,可以运用各种教具和实物来帮助学生理解数学知识。

在教学几何图形时,可以利用图形模型、几何仪器等教具来展示各种几何图形的性质和关系,让学生通过观察和实践来理解几何图形的特点和应用。

3. 进行游戏和活动式教学通过游戏和活动的形式来进行教学,可以使学生在轻松愉快的氛围中学习数学。

数形结合的好处

数形结合的好处

数形结合的好处:
一、应用“数形结合”,训练迁移思维能力。

明确它是一种从数到形的过程.经过长期的训练,养成很好的“数形结合”的好习惯,提高数学思维能力和转化能力,达到数形统一。

二、利用“数形结合”,作为某些数学问题用的解答方法,能最直接揭示问题的本质,直观的看到问题的结果,只需稍加计算或推导,就能得到问题的答案。

通过一些典型题目最佳解法的寻求,增强“求新、求异”意识,能激发“不甘满足,勇于创新”的激情。

三、“以数辅形”、“以形助数”的数形结合思想,具有可以使问题直观呈现的优点,有利于加深对知识的“识记和理解”,将复杂的代数问题赋予灵活变通的形式;在解答数学题时,数形结合,有利于分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高“分析问题和解决问题”的能力和迁移思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以形助数、数形结合
湖南省南县第一中学 陈敬波
一.引入
数与形是两个古老的概念,是数学研究的对象,数与形在一定的条件下可以互相转化,二者是有联系的,这个联系称之为数形结合,作为一种数学思想,通过两种形式的应用:以数解形,以形助数,使复杂问题简单化,抽象问题具体化,有助于把握数学问题实质。

纵观历年高考试题,巧妙地运用数形结合思想方法解决一些抽象的数学问题,数形结合的重点是研究“以形助数”。

要注重培养这种数学思想意识,争取“胸中有数”,“见数思图”,开拓自己的思维视野。

二.热身
1、已知向量a =(cos750,sin750),b =(cos150,sin150),则|a -b |=________.
分析:向量坐标形式,联想平面直角坐标系中带
箭头的图形,向量差的模对应两终点连线的长,
绘图解决。

2、如果实数x,y 满足(x-2)2+y 2=3,则x y 的最大值为( )
A. 21
B. 33
C. 23
D. 3 由方程,联想到坐标直角坐标系中的圆,分式联
想到平面直角坐标系中直线斜率公式。

赋予代数问题的几何意义,利用图形解决。

三.举例
1. 若关于x 的方程x 2+2kx+3k=0的两根都在 -1与3之间,求实数k 的取值范围.
解析:(代数方法)3212k -4k 2-1-2<±<k ,计算量。

(数形结合法1)()()0,322=++=x f k kx x x f 的两根
都在 -1与3之间。

().011330099013,12
200)3(0)1(≤<-⇒⎪⎪⎩⎪⎪⎨⎧<<-≥≤>+>+⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-∈-≥∆>>-k k k k k k k f f 或 (数形结合法2)()2-32x k x =+,()
3,1-∈x t=2x+3,()9,1t ∈,k=()t 43-t -
2 ()()().43349,43222'1221t
t t t t y k y t t y --+=--==--= 1y 在()3,1上是增函数,在)9,3(上是减函数
2y 是动直线,利用图象,得01≤<-k 。

2. 不等式()1≥-22+x k x x (其中k 为常数)的解集不为空集,则k 的取值范围是( )
A. (-∞]33,
B.[0,33]
C.[0,21]]
D.(-∞,2
1] 方法1。

2-2y x x =,()()01-x 22≥=+⇒y y
y=k(x+1)表示过定点(-1,0)的动直线。

()1≥-22+x k x x 表示曲线与直线有共公点或曲线有在动直线上方的点的存在。

相切时,;21=k
相交时,;210<≤k
位于下方时,0<k
结合图形,得k ≤21.
方法2。

[]
()()11411123,111212.
200222max 22
2-⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=---=∈+=⎪⎪⎭⎫ ⎝
⎛+-≤⇒+-≤≤≤⇒≥-t t t t t y x t x x x k ,x x x k x x x 有解 3. 设函数f(x)=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x o ,使f(x o )<0,则a 的取值范围.
A. [-1,23e )
B. [)43,23e
C. [)43,23e
D. [)1,23e 解析:
f(x)=e x (2x-1)

ax+a<0⇒e x (2x-1)<a(x-1).
g(x)=e x (2x-1),h(x)=a(x-1)(a>1)
在同一坐标系中作出二者图象,其中动
直线过定点(1,0)
当动直线经过点(-1,g(-1)),即过点⎪⎭⎫ ⎝⎛--e 3,1时,a=e
23. 结合图象得∈a [
e
23,1) 四.练习 1. 已知复数31=z -i,()[]πθθθ,0,sin 2,cos 22∈=z ,则|21z z +|的最大值为
_________
2. 若()2,1∈x 时,不等式(x -x a log 12<)恒成立,则a 的取值范围为( )
A.(0,1)
B.(1,2)
C.(1,2]
D.[1,2]
3. 若集合()}{()()(){
,31|,,0,2|,22222a y x y x B a x a y y x A =-+-=>-== ,
且∅≠B A ,则实数a 的取值范围是( ) [][][][]
222,222.22,12.122,2.2,2.+--+-D C B A
答案:1.C ,2.C ,3.D.
五.小结
1. 数形结合思想是解决数学试题的一种常用方法与技巧,特别是在解决选择题、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力与速度。

2. 恰当等价转换与可行的作图本领。

作业:完成专题训练P188.T1-12.
}0,>a
以形助数、数形结合(学生用)
一.热身练习
1、已知向量=(cos750,sin750),=(cos150,sin150),则|-|=________.
2、如果实数x,y 满足(x-2)2+y 2=3,则x
y 的最大值为( )
3.23
.33
.21
.D C B A 二.应用举例
1.若关于x 的方程x 2+2kx+3k=0的两根都在-1与3之间,求实数k 的取值范围.
2.不等式()1≥-22+x k x x (其中为常数)的解集不为空集,则k 的取值范围是( )
]2
1,(.21,0.33,0.]33,.(-∞⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-∞D C B A
3.设函数f(x)=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x o ,使f(x o )<0,则a 的取值范围.
)1,23[.)43,23[.)43,23[.)1,23[.e
D e C e B e A -
三.课余练习
1.已知复数31=z -i,()[]πθθθ,0,sin 2,cos 22∈=z ,则|21z z +|的最大值为
_________
2.若()2,1∈x 时,不等式()x x a log 12<-恒成立,则a 的取值范围为( )
A. (0,1)
B. (1,2)
C. (1,2]
D. [1,2]
3.若集合()}{()()(){
,31|,,0,2|,22222a y x y x B a x a y y x A =-+-=>-==a>0},且∅≠B A ,则实数a 的取值范围是( )
[][][][]
222,222.22,12.122,2.2,2.+--+-D C B A 四.感悟小结。

相关文档
最新文档