分式难题汇编含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.0.715×104B.0.715×10﹣4C.7.15×105D.7.15×10﹣5
【答案】D
【解析】
7.把实数 用小数表示为()
A.0.0612B.6120C.0.00612D.612000
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解: = =
故选B.
【点睛】
本题考查分式的混合运算.
15. 的相反数是()
A.9B.-9C. D.
【答案】B
【解析】
【分析】
先根据负指数幂的运算法则求出 的值,然后再根据相反数的定义进行求解即可.
【详解】
=9,
9的相反数为-9,
故 的相反数是-9,
故选B.
【点睛】
本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.
【答案】A
【解析】
【分析】
根据分式的运算法则即可求出答案.
【详解】
原式= ,
故选A.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
20.计算 的结果是( )
A. B. C. D.1
【答案】D
【解析】
原式= = =1,
故选D.
【点睛】本题考查了同分母分式的加减法,熟记法则是解题的关键.
故选D.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17.计算 的结果为( )
A.-1B.1C. D.
【答案】B
【解析】
【分析】
先通分再计算加法,最后化简.
【详解】
=
=
=1,
故选:B.
【点睛】
此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.
12.式子 的值不可能等于()
A.﹣2B.﹣1C.0D.1
【答案】C
【解析】
【分析】
根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.
【详解】
解:
= ,
分式的值不能为0,因为只有a=b=c时,分母才为0,此时分式没意义,
故选:C.
【点睛】
本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.
9.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()
A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107
【答案】B
【解析】
【分析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
-0.25<-0.04<1<4
∴b<a<d<c
故选B.
【点睛】
此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.
3.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
分式难题汇编含答案
一、选择题
1.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
2.若a=-0.22,b=-2-2,c=(- )-2,d=(- )0,则它们的大小关系是()
A.a<c<b<dB.b<a<d<cC.a<b<d<cD.b<a<c<d
【答案】B
【解析】
【分析】
根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a,b,c,d的值,再比较大小即可.
【详解】
∵a=-0.22=-0.04,b=-2-2= ,c=(- )-2=4,d=(- )0=1,
【答案】C
【解析】
分析:先把括号内通分,再把分子分解后约分得到原式 ,然后利用 进行整体代入计算.
详解:原式
∵
∴
∴原式=2.
故选C.
点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.
5.000 071 5= ,故选D.
6.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( )
【详解】
8.下列计算错误的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算
【详解】
A. ,不符合题意;
B. ,不符合题意;
C. ,原选项错误,符合题意;
D. ,不符合题意;
故选:C
【点睛】
本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.
【详解】
10.若代数式 有意义,则实数 的取值范围是()
A. B. 且 C. D. 且
【答案】B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
11.若 ,则 的值是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接根据已知用含 的式子表示出两数,进而代入化简得出答案.
【详解】
解:∵
∴设 ,
∴
故选:B
【点睛】
此类化简求值题目,涉及到的字母 、 利用第三个未知数 设出,代入后得到关于 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
4.如果 ,那么代数式 的值是
A. B. C.2D.3
13.计算 的结果为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用幂次方计算公式即可解答.
【详解】
解:原式= .
答案选B.
【点睛】
本题考查幂次方计算,较为简单.
14.计算 的结果是( )
A. B. C.a-bD.a+b
【答案】B
【解析】
【分析】
先算小括号里的,再算乘法,约分化简即可.
【详解】
16.一次抽奖活动特等奖的中奖率为 ,把 用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【wk.baidu.com析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00002=2×10﹣5.
18.下列运算,错误的是().
A. B. C. D.61200 = 6.12×104
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
19.化简 =()
A.﹣xB.y﹣xC.x﹣yD.﹣x﹣y
【答案】D
【解析】
7.把实数 用小数表示为()
A.0.0612B.6120C.0.00612D.612000
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解: = =
故选B.
【点睛】
本题考查分式的混合运算.
15. 的相反数是()
A.9B.-9C. D.
【答案】B
【解析】
【分析】
先根据负指数幂的运算法则求出 的值,然后再根据相反数的定义进行求解即可.
【详解】
=9,
9的相反数为-9,
故 的相反数是-9,
故选B.
【点睛】
本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.
【答案】A
【解析】
【分析】
根据分式的运算法则即可求出答案.
【详解】
原式= ,
故选A.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
20.计算 的结果是( )
A. B. C. D.1
【答案】D
【解析】
原式= = =1,
故选D.
【点睛】本题考查了同分母分式的加减法,熟记法则是解题的关键.
故选D.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17.计算 的结果为( )
A.-1B.1C. D.
【答案】B
【解析】
【分析】
先通分再计算加法,最后化简.
【详解】
=
=
=1,
故选:B.
【点睛】
此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.
12.式子 的值不可能等于()
A.﹣2B.﹣1C.0D.1
【答案】C
【解析】
【分析】
根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.
【详解】
解:
= ,
分式的值不能为0,因为只有a=b=c时,分母才为0,此时分式没意义,
故选:C.
【点睛】
本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.
9.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()
A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107
【答案】B
【解析】
【分析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
-0.25<-0.04<1<4
∴b<a<d<c
故选B.
【点睛】
此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.
3.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
分式难题汇编含答案
一、选择题
1.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
2.若a=-0.22,b=-2-2,c=(- )-2,d=(- )0,则它们的大小关系是()
A.a<c<b<dB.b<a<d<cC.a<b<d<cD.b<a<c<d
【答案】B
【解析】
【分析】
根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a,b,c,d的值,再比较大小即可.
【详解】
∵a=-0.22=-0.04,b=-2-2= ,c=(- )-2=4,d=(- )0=1,
【答案】C
【解析】
分析:先把括号内通分,再把分子分解后约分得到原式 ,然后利用 进行整体代入计算.
详解:原式
∵
∴
∴原式=2.
故选C.
点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.
5.000 071 5= ,故选D.
6.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( )
【详解】
8.下列计算错误的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算
【详解】
A. ,不符合题意;
B. ,不符合题意;
C. ,原选项错误,符合题意;
D. ,不符合题意;
故选:C
【点睛】
本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.
【详解】
10.若代数式 有意义,则实数 的取值范围是()
A. B. 且 C. D. 且
【答案】B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
11.若 ,则 的值是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接根据已知用含 的式子表示出两数,进而代入化简得出答案.
【详解】
解:∵
∴设 ,
∴
故选:B
【点睛】
此类化简求值题目,涉及到的字母 、 利用第三个未知数 设出,代入后得到关于 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
4.如果 ,那么代数式 的值是
A. B. C.2D.3
13.计算 的结果为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用幂次方计算公式即可解答.
【详解】
解:原式= .
答案选B.
【点睛】
本题考查幂次方计算,较为简单.
14.计算 的结果是( )
A. B. C.a-bD.a+b
【答案】B
【解析】
【分析】
先算小括号里的,再算乘法,约分化简即可.
【详解】
16.一次抽奖活动特等奖的中奖率为 ,把 用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【wk.baidu.com析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00002=2×10﹣5.
18.下列运算,错误的是().
A. B. C. D.61200 = 6.12×104
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
19.化简 =()
A.﹣xB.y﹣xC.x﹣yD.﹣x﹣y