高强度螺栓断裂失效分析

合集下载

12.9级高强度螺栓断裂原因分析

12.9级高强度螺栓断裂原因分析

~测试与分析-12. 9级高强度螺栓断裂原因分析焦丽1,赵英军1,张伟民2,孙晓东1,周兰梅1(1.河北华北柴油机有限责任公司,河北石家庄050081;2.陆军装备部驻北京地区军事代表局驻石家庄地区第三军事代表室,河北石家庄050081 )摘要:柴油机12.9级高强度螺栓材料为42C r M 〇钢,在紧固过程中发生断裂。

对断裂的螺栓进行了宏观 检验、化学成分分析、锻造纤维流线检验和金相检验,并检查了螺栓的加工工艺,以揭示其断裂的原 因。

结果表明:螺栓在镦锻过程中,头-杆结合部产生了裂纹,大大减小了螺栓的有效承载面积,在 紧固力的作用下发生断裂。

检查发现,螺栓有因热处理不当而产生的脱碳,但这不是造成螺栓断裂 的原因。

关键词:高强度螺栓;镦锻;断裂中图分类号:T G 157文献标志码:A文章编号:1008-丨690(2020)04-0042-04Analysis on Fracturing of 12.9 Grade High-strength BoltJIAO Li' , ZHAO Yingjun 1 , ZHANG Weimin2, SUN Xiaodong' , ZHOU Lanmei 1(1. H e b e i H u a b e i Diesel E n g i n e Co., Ltd., Shijiazhuang 050081 , H e b e i C h i n a ;2. 3th Military Representative Office in Shijiazhuang Reg io n of Military Representative B u r e a uof the A r m y A r m a m e n t D ep a r t m e n t in Beijing, Shijiazhuang 050081 , H e b e i China)Abstract : T h e 12.9 grade high-strength bolts of diesel engine, m a d e from 42C r M o steel, fractured in the processof fastening. T h e fractured bolt w a s tested for macroscopic a p p e a r a n c e , chemical c omposition, forged fibre flow a n d microstructure, a n d its work i ng process also w a s c h e c k e d , to discover the reason w h y i t fracturing. T h e results s h o w e d that crack e m a n a t e d from head-rod joint of the bolt during upsetting. A s a result, effective load-bearing area of the bolt w a s considerably reduced, thus fracturing under the action of fastening force. It w a s revealed from the examination that the bolt exhibited decarburization du e to the fault in heat treatment but this is not the cause of the bolt fracturing.Key words : high-strength bolt ; upsetting ; fracturing〇引言螺栓是普遍使用的紧固件,常被称为工业之 米[|]。

高强度螺栓断裂金相分析

高强度螺栓断裂金相分析
对螺栓 调质加热 时应尽 量采用无氧化 加热 方式 ,以防止螺栓调质后脱 碳层深度超标 。对 原材料 已脱 碳的螺栓进行适 度的覆碳 ,把加热 炉中 的碳势调整到和被覆碳 的零件 原始 含碳量基本相等 ,使 已脱碳的螺栓 慢慢恢复到原来 的含碳量 。②应提高键槽 的加工精度 ,避免因尖 角、 粗刀纹等而造成的应力集 中。③螺栓生产者应加强对购进钢材非金属 夹杂物 的质量检 验 ,坚持做到不合格的钢材 不进厂 。
4 结 语
控 家庭暴力制度的建立 ,在维护人权与重视人伦 的脉络之间取得一个 新的平衡 。
参 考 文 献
【 王 庆淑 中国传统 习俗 中的性 别歧视 【 . 1 】 M】 北京 大学 出版社 ,19 : 95
1 2
【】 陈 晗 霖 ,王玲 . 2 家庭 暴 力 罪 及 其 防 范 和控 制 卟 理 论 探 索 ,2 0 05
老人的权益保护 。 加大司法救助的力度 ,以震慑违法犯罪 ,弘扬正 ③ 气 。司法机关 必须从 观念上 消除家庭暴力只是家庭 内部问题的认识 , 而应把反 家庭暴 力作 为一项社 会问题予以高度重视 。公安机关应主动 介入 ,对受 害者进行庇护救助 , 对施暴者 采取必 要的强制措施。审判
测定 为 : 8 R 3 H C。断裂面 中心部分底部有一明显纵向裂缝 ,裂缝两 侧 无脱碳现象 , 裂缝尾 部起 源于硫化物夹杂处 。
检 查M3 . 高强 度螺栓表面 硬度 发现于杆 部测 定的表面硬度 61 9 0S 和予端面测定 的表面硬度不一致 ,具体硬度检测结果如表 1 。取 l 号试 样进行抗拉强度 试验 ,结果拉至 1 1MP 时 ,缩 颈后于杆部断裂 ,如 00 a 图l 所示 。
家庭暴力是 一个古 老而普遍的社会现 象。反对 家庭暴 力 ,从 法律 角度 而言 。是一个庞 大的系统工程 。但从社会 角度来看 ,法律 防控 只 是社会 综合 治理的 一个重要 组成 部分 。对抗 家庭暴 力 ,应在 加大立 法 、执法力度的 同时 ,还需要全社会付 出共 同努力 。笔者希望通过防

12.9级高强度螺栓断裂失效分析

12.9级高强度螺栓断裂失效分析

图 1 断 裂螺 宏 观 形 貌 ( a ) 断裂螺栓照 片 . 6 X: ( h )断 【 I 宏观彤批 . : ( 1
Fi g 1 A pp c a r  ̄ L I ] C L o 1 ) 、 r va t { o 1 1 of f ai l L I F t b ol t ( 1 ) p i c I L I F ( ,o f f a i l u r e l } o l t . 6X : ( 1 1 )ap p 4 J ar  ̄ t i 1 “- o1 ) S U I + V  ̄ t t i on of f r a  ̄ ’ t ur e S uI - f  ̄ t c c. 9 o X
貌 分析 , 判 断断 裂类 型 ; 利用 Z E I S S - I ma g e r . A2 m 型 金 相显 微镜 , 对 螺 栓 靠 近 断 裂 位 置 的 基 材 进 行 夹 杂
物 及金 相组 织 分析 ; 利用德国 S P E C TR O- MAX x型
业 上肩 负 重要任 务 , 只要 地球 上存 在着 工业 , 则 螺 栓
表 面脏 污吹 干 净. 使 用 VHX - 6 0 0 E型 3 D光 学 显 微
( b ) ) , 螺栓 断 口比较 平 齐 , 无 明显 塑 性 变 形 特 征 , 断 面 带有 放射 性 图样 , 裂 纹 源 位 于 螺栓 边缘 处 且 裂 纹
收 稿 日期 : 2 0 1 7 - 0 4 — 2 0
Байду номын сангаас
作者简介 : 李珍( 1 9 8 6 - ) , 女, 河 南 新 乡人 , 硕士 , 工 程 师
源 与扩 展 【 x 均仃 褐 的 物 仔 . 这 足f } r r 减 速

20MnTiB钢螺栓断裂失效分析

20MnTiB钢螺栓断裂失效分析

王 弘等 : 20M nT iB 钢螺栓断裂失效分析
门槛应力 , 不足以发生应力腐蚀开裂[ 3] 。 ( 3) X 射线微区元素定性分析结果显示腐蚀物 为铁的氧化物, 表明上述应力腐蚀的机理是阳极溶 解型
[ 3]
保证结构的使用安全。
5
Байду номын сангаас结论
。 由于受测试性能的限制 , 电子探针仪仅能分析
螺栓断裂失效的主要原因是由于螺栓根部存在 着初始裂纹, 初始裂纹尖端的应力集中和露天工作 环境的共同作用使螺栓产生应力腐蚀开裂。应力腐 蚀开裂的方式是阳极溶解型。 参考文献 :
收稿日期 : 2002 10 21 作者简介 : 王 弘 ( 1960 ) , 男 , 副教授 , 硕士。
M22( GB1228- 1984) , 螺栓材料为 20MnT iB 钢, 这是 国标推荐的高强度螺栓用钢 , 在相同硬度下, 与中碳 合金钢比较, 具有更加良好的韧性和可锻性, 较好的 强韧性, 还 可避免脱 碳现象[ 1] 。其 化学成 分 ( 质量 分数) 为: C 0. 17% ~ 0. 24% , Si 0. 17% ~ 0 37% , Mn 1 30% ~ 1. 60% , T i 0. 04% ~ 0. 1% , P< 0. 035% , S< 0. 035% , B 0. 0005% ~ 0. 0035% 。 螺栓材料在加工前经过严格的化学成分检验, 符合标准要求。加工螺栓用毛坯为热轧圆钢。加工 前毛坯全样经超声波无损探伤检验合格。螺纹采用 滚丝工艺加工。其热处理工艺为 880 400 中温 回火, 组 织为回火屈氏 体
500 #
T he corrosive on fracture surface
M icrostructure of failed bolt

高强度螺栓断裂分析-扭矩过大

高强度螺栓断裂分析-扭矩过大
测试过程与结果断口分析断口宏观形貌属纤维状断口如图1所示由纤维状分布形态可判断螺栓为扭力作用下引起的断裂
记录号:JS-AL-紧固件-023
高强度螺栓断裂分析
摘要:由 30CrMnSi 制造的高强度螺栓,经调质处理,在安装时发生断裂。分析结果表明: 螺栓断裂是由于外应力过载引起的超载断裂。
中关键词:高强度螺栓;超载断裂 材料种类/牌号:合金结构钢/30CrMnSi 概述 国由30CrMnSi制造的高强度螺栓,经调质处理,在安装时发生断裂。 测试过程与结果 断口分析 应 断口宏观形貌属纤维状断口,如图1所示,由纤维状分布形态可判断螺栓为扭力作用下 引起的断裂。
急 分 析 网
图1 螺栓断口宏观形貌,纤维状条纹由螺纹根部区发散,条纹呈弧形弯曲, 说明主要是在超载扭转应力作用下引起的断裂。
扫描电镜观察断口属韧窝型断裂,如图2所示。由于材料强度较高,断裂时速度较快, 在某些部位出现准解理断裂,如图3 所示。
1
中 国 应 急 图2 螺栓断口扫描电镜形貌,略带方向性的韧窝,由于螺栓材料强度较高,
故韧窝较小。
分 析 网
图3 螺栓断口微观形貌以韧窝为主,局部有少量的准解理断裂,这是由于螺栓材 料强度较高及断裂时外应力较高所致。这些特征均为外应力过载造成的断裂 特征。
金相检验 金相检验显微组织为回火索氏体,组织正常。
结论
2
分析结果表明螺栓断裂是由于外应力过载引起的超载断裂。
参考文献
[1]黄振东.钢铁金相图谱.北京:中国科技文化出版社,2005,1258-1259 页.
中资料整理人:王冬梅 审核人: 吴伯群
国家钢铁材料测试中心 国家钢铁材料测试中心

应急分析网 Nhomakorabea3

大型起重机高强度螺栓的断裂失效分析

大型起重机高强度螺栓的断裂失效分析

大型起重机高强度螺栓的断裂失效分析摘要:本文通过对一台大型起重机高强度螺栓断裂失效的分析,探究其原因和解决方法。

初步分析结果表明,螺栓断裂的主要原因是材料强度不足、应力过大和使用环境恶劣等因素导致的。

针对这些问题,本文提出了一系列改进措施,包括选用高强度材料、降低应力和改善使用环境等方面。

通过实验验证和理论计算,改进后的螺栓具备更高的强度和耐用性,可以有效地提高装置的稳定性和安全性。

关键词:起重机;高强度螺栓;断裂失效;强度分析;改进措施正文:1. 背景介绍大型起重机是现代工业中不可或缺的设备之一。

在使用过程中,螺栓作为连接装置的重要组成部分,在保证装置的稳定性和安全性方面起着至关重要的作用。

然而,螺栓也是易受力集中的零部件,容易出现断裂失效的情况。

因此,对螺栓失效进行分析和解决具有重要的理论和实践意义。

2. 断裂失效分析2.1 断裂形态分析通过对失效螺栓的断口形态进行分析,可以初步了解其失效原因。

观察失效螺栓的断口,发现其呈现出典型的断裂韧突混合断口。

2.2 强度分析对失效螺栓的材料进行强度测试,发现其强度值低于设计要求。

在使用过程中,由于受到集中载荷的作用,应力过大导致螺栓逐渐疲劳并最终断裂。

2.3 环境分析失效螺栓所处的使用环境恶劣,存在高温、湿润等不利因素。

因此,失效的螺栓容易受到腐蚀和氧化等影响,导致其材料性能和强度下降。

3. 改进措施针对分析结果,本文提出了一系列改进措施:3.1 选用高强度材料为了提高螺栓的强度,可以选用高强度材料来替代原有的材料,例如S45C、SCM43等。

这样既可以提高螺栓的耐久性,也可以在承受大载荷时发挥更好的作用。

3.2 降低应力在设计过程中,应尽可能减小螺栓所承受的载荷和应力,从而减少螺栓的疲劳损伤和断裂的可能性。

可以通过优化结构、增加支撑和缓冲措施等方法实现此目的。

3.3 改善使用环境在实际使用中,应注意维护和保养,防止螺栓受到腐蚀和氧化的影响。

可以采用表面防护涂层、常规保养和定期更换等措施,延长螺栓的使用寿命。

20MnTiB螺栓失效分析

20MnTiB螺栓失效分析

20MnTiB螺栓失效分析1 概述高强度螺栓是继铆接、焊接之后发展起来的一种钢结构连接型式。

它具有施工简单、可拆卸、承载大、耐疲劳、较安全等优点。

因此, 高强度螺栓连接已发展成为钢结构工程安装的主要手段。

20MnTiB钢高强度螺栓用于航天发射塔架斜支梁、悬臂梁及主梁联结板的连接。

在进行服役过程中,发现有少量连接螺栓断裂的现象。

本文通过断裂螺栓的断口、显微组织、显微硬度和微区成分进行了分析。

查找螺栓失效原因,制定改进措施,以防止同类失效再度发生。

2 螺栓的材料及技术条件螺栓型号为M22(GB1228-1984),螺栓材料为20MnTiB钢,这是国标推荐的高强度螺栓用钢,在相同硬度下,与中碳合金钢比较,具有更加良好的韧性和可锻性,较好的强韧性,还可避免脱碳现象。

其化学成分如表1表1 螺栓化学成分(W B)C Mn Si P S Cu Cr TI B 样品0.22 1.38 0.99 0.006 0.023 0.15 0.07 0.07 0.0018该批螺栓所用钢材化学成分符合标准要求,P、S、Cu等残余元素也控制在合理范围之内。

加工螺栓用毛坯为热轧圆钢。

制造工艺流程如下:20MnTiB圆钢(盘条)酸洗拉拔冷镦成型搓丝热处理发黑包装入库其热处理工艺为880℃油淬,380~400℃中温回火,组织为回火屈氏体。

每批成品均抽样作静拉伸实验,力学性能达到GB1231-1984标准中10.9S的螺栓性能等级要求,σb为1040~1240MPa,σs≥940MPa,δ5≥10%,ψ≥42%,A k≥58.8N·m,维氏硬度为312~367HV30,洛氏硬度为33~39HRC。

3断裂螺栓失效分析3.1断口宏观形貌分析宏观下,断裂螺栓断口具有脆性特征,如图1。

断口面位于螺栓的第五个螺纹处。

断口可分为三个区域:裂纹源区、裂纹扩展区和最终瞬断区。

未观察到疲劳断裂特征。

裂纹源区位于螺纹根部,其放大形貌,如图2。

在裂纹源区可观察到一扁长形状的原始裂纹,长约 5.5mm,深约0.8mm,在其旁有一半月形的锈蚀区。

螺栓断裂分析报告

螺栓断裂分析报告

螺栓断裂分析报告一、引言螺栓是一种常见的连接元件,在机械设备和结构工程中得到广泛应用。

然而,螺栓在使用中可能会发生断裂,给机械设备和结构的安全运行带来隐患。

本报告旨在对螺栓断裂进行分析,并提供解决方案,以确保设备和结构的安全性。

二、螺栓断裂原因分析1.质量问题:螺栓断裂可能是由于螺栓本身存在质量问题所致,如材料强度不符合标准、制造工艺不良等。

为此,应关注螺栓的采购渠道和制造工艺,并严格按照相关标准进行选择和检测。

3.腐蚀问题:腐蚀是导致螺栓断裂的常见原因之一、在潮湿、酸性或碱性环境中,螺栓易受到腐蚀,使其材料的强度降低。

因此,在腐蚀环境中应选择抗腐蚀性能良好的螺栓材料,并进行定期维护保养。

4.紧固力不均匀:不正确的紧固力分布可能导致螺栓在负载过程中承受不均匀的力,从而引发断裂。

在安装过程中,应根据设备或结构的要求,采用正确的紧固力分布方案,并进行定期检查和调整。

三、螺栓断裂的解决方案1.优化选材:根据设备或结构的负荷、工作环境等要求,选择合适的螺栓材料。

关注材料的强度、韧性、抗腐蚀性等指标,并遵循标准进行选材。

2.合理设计螺栓连接:根据实际负荷情况和工作要求,合理选用螺栓的规格、数量和布置方式,并确保紧固力的均匀分布。

在设计过程中,可以借助有限元分析等工具来验证螺栓连接的安全性。

3.定期检查和维护:对于暴露在恶劣环境中的螺栓,应定期进行检查和维护,特别是针对腐蚀环境。

清洁螺栓表面,涂覆抗腐蚀涂层,必要时更换受损螺栓,以延长其使用寿命。

4.强化管理和培训:通过建立规范的螺栓管理制度和培训机制,提高操作人员的专业水平,加强螺栓使用和维护的知识宣传,以减少螺栓断裂的发生。

四、结论螺栓断裂是机械设备和结构工程中常见的问题,但可以通过合理选材、优化设计、定期维护和加强管理来减少其发生。

对于已经断裂的螺栓,应及时进行更换,并对其断裂原因进行调查分析,以避免类似问题再次发生。

通过以上措施的综合应用,能够提高螺栓连接的安全性和可靠性,保证设备和结构的正常运行。

螺栓断裂分析课件

螺栓断裂分析课件

7
2 分析与讨论
(1)螺栓断口无明显的宏观塑性变形,裂纹扩展区面积较大,且较平整, 有明显的疲劳弧线,瞬断区面积较小,结合35CrMo螺栓的工作状态可 以判断,该螺栓的断裂性质为低应力疲劳断裂。
(2)经裂纹宏观与微观形貌观察,发现几乎每个螺纹牙底都分布着细长的 热处理裂纹。裂纹开口端较宽,尾部细长曲折,呈沿晶断裂,为典型的热处 理裂纹形貌。
螺栓断裂分析
9
螺栓断裂分析
10
螺栓断裂分析
图7 螺栓心部的显微组织
6
另外在螺纹的表面也发现了如图8所示的不光滑起皮 现象,截取端面研磨后置于光学显微镜下观察,发现在如 图9中箭头所指处的螺纹表面存在大量 折叠缺陷。折叠缺 陷是由于螺纹表层在滚压过程中受到挤压力而产生的重叠 层。
图8 螺纹表面的起皮现象
纵剖面热处理裂纹的未侵蚀形貌
图6 沿晶热处理裂纹侵蚀后的形貌
螺栓断裂分析
5
1.3 显微组织及显微硬度检测
螺栓的热处理工艺为调质处理,显 微组织为正常的回火索氏体(图7), 符合调质处理的显微组织状态。回火索 氏体是马氏体的一种回火组织,是铁 素体与粒状碳化物的混合物,具有良好 的韧性和塑性,同时具有较高的强度和 硬度,具备良好的综合力学性能。对螺 栓心部进行维氏硬度检测,检测结果为 411HV,符合相关标准中硬度 > 318HV的要求。
(3)另外发现螺纹表面不光滑,主要是由于螺栓的滚压工艺不当,造成了 折叠、起皮等缺陷所致。
螺栓断裂分析
8
3 结论
35CrMo螺栓的断裂性质为低应力疲劳断裂。该螺栓在 制造过程中由于热处理及滚压工艺不当,造成了大量的裂纹和缺陷, 这些裂纹和缺陷存在很大的应力集中,成为疲劳裂纹源,在循环应 力的作用下裂纹逐渐扩展,最终发生了疲劳断裂。

12.9级高强度螺栓断裂分析

12.9级高强度螺栓断裂分析

摘 要:针对4根断裂螺栓进行了设计检查和实物细节检查,采用化学成分分析、硬度检测及金相检验等方法,对螺栓断裂的
原因进行了分析。结果表明,由于关键零件安装尺寸累计超差过大,降低了风电偏航减速机传动精度,致减速机行星架绕回
转轴线产生偏心运动,加上减速机频繁受到变载荷的冲击,导
用过程中发生了螺栓断裂失效。
关键词:12.0级强度;高强度螺栓;断裂分析;偏航减速机
中图分类号:TG113.03
文献标志码:A
文章编号:229/ -6646(2219)06 -0542 -06
Analysis of 12.9 grade high strength bolt fracture
Cnl Junkang
(Jiangsu Shinri Geer Systems Co. ,Ltd. Changzhon 213000)
图3结构示意图 Fig. 3 Structural sketch
偏航减速机工作时,低速级行星架和输出轴通
过花键副传递载荷,4根 螺栓M12 x 33承担两

用,只承受拉伸载荷。
件(轴、齿
轮及轴承等)自身质量为144炮,受力约1 480 N,由 4根螺栓承受,若螺栓受力均等,则单根螺栓承受约 370 N。
3meascremenuoftopwidthofinternesspline测量结果看垫块上压痕宽度大于行星架花键齿顶的宽度可断两零件过相对o25检测内齿圈和箱体配合直径齿圈和箱口配合及齿圈径向跳动公差f检测结果见表5o表5配合直径和齿圈ff检查表table5checklistoffittingdiameterandringffmm项目图纸尺寸实际尺寸超差内齿圈安装止口孔径0370?00709500375

失效分析

失效分析

Abstract:20MnTiB high strength bolt was fractured after 24 hours service.The analysis on optical microseopr, SEM,EDAX,hardometer and chemincal composition were carried out on the cracked bolt.The comprehensive a— nalysis results showed that the bolt existed cracks before using.The primary cracks led to stress concentration,SO the hydrogen in material moved to the crack top and enriched.With local incerease in hydrogen content there OC— cured hydrogen ductile-brittle fracture in bolt. Key words:bolt;cracks;stress concentration;hydrogen ductile-brittle fracture
表3慢应变拉伸性能测试结果
1’ahie 3 Test resnlt of slow strain tension
万方数据
52
物理测试
第26卷
图4断口处的显微组织 Fig.4 Microstructure of fracture
图6断口形貌 Fig.6 SEM of the fracture
图5螺纹根部裂纹形貌 Fig.5 Morphology at root of screw

高强度螺栓断裂分析

高强度螺栓断裂分析

高强度螺栓断裂分析作者:上海交通大学曾振鹏摘要:采用断口分析、金相检验和硬度测定等方法,对高强度螺栓断裂原因进行了分析。

断口分析结果表明,断口平坦,呈放射状花样,微观形态主要为准解理花样,表明螺栓的断裂是脆性断裂;同时发现,在断口附近还存在横向内裂纹,内裂纹的断口形态与断裂断口一样。

金相分析表明,材料棒中存在严重的中心碳偏析,而中心碳偏析是引起断裂的主要原因。

关键词:高强度螺栓;准解理;横向内裂纹;中心碳偏析某厂生产的一批规格为M30×160mm的高强度大六角头螺栓,在进行验收试验时发生断裂。

螺栓材料为35CrMoA,采用常规工艺生产,硬度要求为35~39HRC。

1检验1.1材料的化学成分用VD25直读光谱仪进行了材料化学成分分析,分析结果(质量分数)列于表1。

从表1可以看出,材料的化学成分符合标准要求。

1.2硬度测定硬度测定结果列于表2。

由表可见,螺栓材料硬度虽符合技术要求,但已接近上限。

1.3材料的显微组织(1)在抛光态下,可见材料中含有较严重的夹杂物,其形态、分布见图1。

对照标准[2],夹杂物级别为3~4级。

图1夹杂物形态及分布状况100×图2螺栓的显微组织280×(2)显微组织见图2。

组织为回火马氏体+粒状贝氏体,并有少量铁素体。

从图2可明显看出,组织中存在严重偏析,出现回火马氏体和粒状贝氏体带,致使显微组织不均匀,而且在回火马氏体带中存在MnS夹杂。

对样品螺纹根部附近的组织进行了观察,未发现脱碳现象。

1.4断口分析(1)图3a为断口的宏观形貌,断口较平坦,表面呈灰色,有明显的撕裂脊,呈放射状花样,放射线从中心向四周发射。

表明裂纹先在中心形成,然后向外扩展。

当裂纹扩展至整个横截面时,螺栓断裂。

图3断口的宏观形貌(2)断口的微观形态基本上以准解理花样为主,还有一些二次裂纹,如图4所示。

图4断口微观形貌从断口的宏观和微观分析可知,断裂断口为脆性断口,裂纹起源于中心部位。

超高强度螺栓断裂失效分析

超高强度螺栓断裂失效分析

超高强度螺栓断裂失效分析发表时间:2017-07-13T12:00:44.147Z 来源:《基层建设》2017年第8期作者:钱豪[导读] 螺栓的受力特点决定了它是发动机的薄弱零部件。

因此,连杆螺栓的失效分析与预防十分重要。

本文分析超高强度螺栓断裂失效的相关内容。

浙江精功新材料技术有限公司浙江杭州 310018摘要:螺栓作为重要的紧固件,其失效事故发生较多,造成的危害很大。

其中,螺栓的氢脆断裂是较为常见的故障模式,由于氢脆大多与批次性问题有关,因此,危害性较大。

螺纹连接是发动机各部件之间最常用的连接方式,大概占到发动机连接的70%。

螺栓的受力特点决定了它是发动机的薄弱零部件。

因此,连杆螺栓的失效分析与预防十分重要。

本文分析超高强度螺栓断裂失效的相关内容。

关键词:超高强度螺栓;断裂失效;氢脆超高强度螺栓是继铆接、焊接之后发展起来的一种钢结构连接型式。

它具有施工简单、可拆卸、承载大、耐疲劳、较安全等优点。

因此, 高强度螺栓连接已发展成为工程安装的主要手段。

1 实例分析某型号高强度螺栓用于某轴承上,其强度要求很高。

该型螺栓在生产检验合格服役5 个月后,发现个别螺栓相继在螺纹处发生断裂。

该型高强度螺栓为铰制孔螺栓(螺纹长度95 mm),材料为35CrMnSiA 钢,规格为M56,螺杆长度为235mm,强度要求以GB/T3077-1999为标准。

其制造工艺为:毛坯电渣重熔→预加工→超声波探伤→粗加工(单边留量3~5mm)→调质处理(950℃淬火,630℃回火)→半精加工→淬火热处理(淬火温度为900℃,310℃回火)→力学性能检验→精加工→磁粉探伤(包括螺纹部分)→表面油漆防护→装配。

目前,采用的无损检测手段无法检测出螺栓内部0.2mm 以下的微裂纹。

通过金相检验、氢含量检验和断口电镜扫描分析等相关的手段对断裂的螺栓及未断裂的随机抽取样品进行相应的检验和断裂原因分析。

2 实验方法与结果2.1 实验对象。

实验对象为该型螺栓2 枚,其中包括断裂的铰制孔螺栓,以及对应同型号未断螺栓1 枚。

高强度螺栓断裂原因分析

高强度螺栓断裂原因分析

2019年 第10期热加工M材料缺陷aterial Failure9高强度螺栓断裂原因分析■ 王嘉畅,冯文冲,张海兵摘要:针对10.9S 级高强度螺栓失效问题,采用金相检验、化学成分分析和扫描电子显微镜及能谱仪等方法进行分析。

结果表明:由于螺栓材料本身含有的氢在螺栓较大的安装应力下聚集,因此导致氢致延迟开裂,造成螺栓失效。

关键词:高强度螺栓;氢脆;失效据委托方介绍,来样为M20钢结构大六角头螺栓,等级为10.9S ,材质为20MnTiB 。

该螺栓为舞台桁架联接螺栓,舞台于2012年竣工,在2015年12月1日检修时,管理人员发现剧院舞台有螺母掉落。

该舞台桁架用于挂设剧院舞台幕布,由于桁架使用过程中,部分螺栓掉落,2016年3月2日施工单位进行检修并更换了19颗螺栓。

现场采用高强螺栓轴力扭矩复合测试仪对舞台桁架的高强螺栓联接状况进行了检测,发现原有螺栓扭矩及预拉力基本符合规范要求,部分螺栓存在预拉力过大现象,部分螺栓螺杆有变形,无法将螺栓取出。

此外,委托方未能提供螺栓具体生产工艺、现场安装等相关详细信息。

为找到断裂原因,消除安全隐患,笔者对断裂螺栓进行了失效分析。

1. 理化检验(1)宏观分析 对螺栓断口形貌进行观察,如图1、图2所示。

螺栓大六角头部涂有灰色防锈漆,杆部呈黑色,螺栓断裂于距螺杆第2~3牙螺纹牙底,该部位应为螺母紧固界面处,无明显塑性变形。

断口至螺杆间螺纹呈褐黄色,存在明显锈蚀痕迹。

断面起伏较大,高度可达两牙高度,且有些锈蚀。

断面颜色呈黑色和灰色两区域,黑色区域可见明显的放射线条纹,且汇聚于一侧螺牙底部,低倍下放大后可见一些闪光小刻面,呈脆性断裂特征。

裂源两侧周向边缘存在剪切唇特征。

灰色区域断口与轴向呈一定角度,断面较粗糙,为后续扩展断裂区域。

宏观分析螺栓断裂模式为脆性断裂。

(2)微观断口分析 将螺栓断口清洗后置于扫描电子显微镜下观察:①裂纹源区可见明显的放射线形貌,呈冰糖状沿晶断裂形貌,放大后晶面上可见鸡爪痕、微小孔洞形貌,断口可见大量沿晶二次裂纹形貌,呈氢致开图1 螺栓宏观形貌第10期 热加工图2 断口宏观形貌图3 裂纹源低倍形貌(15×)图4 裂纹源高倍形貌(50×)图5 裂纹源放大形貌(270×)图6 裂纹源沿晶特征(750×)图7 裂纹源沿晶特征(1200×)图8 扩展后期韧窝+沿晶特征(1100×)表1 螺栓断口化学成分(质量分数) (%)检验项目C P S 检测值0.200.0200.0170.25标准值0.17~0.24≤0.030≤0.0300.17~0.37图9 心部抛光态(100×)图10 心部显微组织(500×)图11 断口抛光态(100×)图12 断口显微组织(500×)图13 牙底抛光态(100×)行热酸蚀试验,与G B/T1979—2001中的评级图对比,结果如表的应力作用下氢原子在晶界或材料缺陷处聚集成氢分子而产生压力,形成延迟微裂纹。

高强度螺栓断裂(失效)常见形式有哪些?是何原因?

高强度螺栓断裂(失效)常见形式有哪些?是何原因?
d.高强度螺栓是否有频率较高的波动载荷(会引起疲劳失效)。
失效现象
原因说明
高强度螺栓的头部断裂
1.头杆不垂直,拧紧后存在弯曲应力;
2.头杆过大,存在频率较高的波动载荷,引起疲劳失效;
在收缩区(缩径)断裂
拧紧力过大,超应力使用
发现高强度螺栓凹陷、点蚀或锈斑
发生了腐蚀
一般而言,高强度螺栓常见的损坏主要形式有螺栓断裂、螺纹损坏、应力腐蚀、氢脆、疲劳、松弛等。
我们就以下几个方面分析:
1、高强度螺栓使用的材料:是否混钢。材料的化学成份是否符合标准。金相分析材料是否存在缺陷(微观气孔、微观裂纹、偏析或夹杂物等)。
2、高强度螺栓热处理的质量:硬度(表面硬度和芯部硬度);拉力载荷和延伸率。
高强度螺栓螺纹第一牙处断裂
这一部位有应力集中点
拧入不久,出现断裂,断口平整,无缩径
高强度螺栓产生了氢脆的现象
3、进行酸洗或电镀后是否进行了去氢处理;
4、再一步则试验高强度螺栓的再回火、保证载荷是否达标;
5、如果上述均合格,应了解使用状况:
a.高强度螺栓是否有超拧现象(拧紧后存在很高的预紧力);
b.高强度是否有剪切载荷(估算:极限剪切应力应小于极限抗拉应力的60%);
c.高强度螺栓使用的场合,是否有腐蚀现象;

高强度螺栓断裂原因分析

高强度螺栓断裂原因分析
应力腐蚀的产生需要拉应力特定腐蚀介质发生的温度从室温到300是阳极反应裂纹从表面开始断口不平整多数为沿晶特征裂纹萌生处可能有腐蚀产物脆的发生需要拉应力发生的温度从100到100是阴极反应断口较平整裂纹几乎不分叉多数为沿晶断口晶界面上没有腐蚀产物但有时氢脆与应力腐蚀往往同时发生这时判别就非常困难因为应力腐蚀的过程中阳极产生的氢可以进入金属的内部此时就可能产生氢脆和应力腐蚀的共同作用
● 失效分析 ●
材料热处理 (10 ) Material & Heat Treatment
高强度螺栓断裂原因分析
张海峰, 王春芬
( 洛阳船舶材料研究所, 河南 洛阳 471039)
摘 要: 对断裂的高强度螺栓进行了成分、性能及微观形貌结构等分析。结果表明, 螺栓断裂为疲劳断裂及氢
脆和应力腐蚀断裂, 氢脆主要发生于裂纹形成初期。
某单位生产的高强度螺栓在 200℃的潮湿环 境下使用时发生了断裂, 断裂的螺栓来源于不同 的使用厂家, 分为两批, 分别编号为 1# 和 2#, 委托 方 介 绍 螺 栓 的 材 质 可 能 为 35VB、35CrMo 或 20MnTiB, 生产工艺流程为: 圆钢"截长"镦头" 镦六方"磙丝"淬火( 860℃) "回火( 350℃以下) "镀锌+150℃×2 h 去氢( 或发蓝处理) 。1# 试样是 在正常使用 3 个月后部分断裂的螺栓 ( 安装时的 预紧力 1 750 N/m) , 2# 试样是用过一段时间后, 重 新安装时断裂的螺栓, 螺栓为 12.9 级 M30 螺栓, 要求通过分析找出断裂原因。
1 宏观分析
断裂螺栓及原始螺栓宏观形貌见图 1。断裂 部位主要为从根柄部断裂, 也有从螺纹处断裂 的。两批次试样断裂部位一样, 但 1# 试样断口表 面比较平坦, 2# 试样表面显得比较粗糙。

超高强度螺栓断裂失效分析

超高强度螺栓断裂失效分析

超高强度螺栓断裂失效分析摘要:螺栓作为重要的紧固件,其失效事故较多,危害极大。

其中,螺栓氢脆断裂是一种常见的失效模式。

由于氢脆主要与批次问题有关,因此危害更大。

螺纹连接是发动机部件之间最常用的连接,约占发动机连接的70%。

螺栓的应力特性决定了它是发动机的薄弱部分。

因此,连杆螺栓的失效分析和预防非常重要。

对超高强度螺栓的断裂失效进行了分析。

关键词:超高强度螺栓;断裂破坏;氢脆超高强度螺栓是经过铆接和焊接而发展起来的一种钢结构连接形式。

它具有结构简单、可拆卸、承载力大、抗疲劳、安全等优点。

因此,高强螺栓连接已发展成为工程安装的主要手段。

1例分析某轴承上使用了某种类型的高强度螺栓,其强度要求非常高。

经过5个月的生产检验合格后,发现部分螺栓螺纹处相继断裂。

该类高强螺栓为铰孔螺栓(螺纹长95mm),材质为35CrMnSiA钢,规格为M56,螺纹长235mm,强度要求符合gb/t3077-1999。

制造工艺如下:坯料电渣重熔→预处理→超声波探伤→粗加工(单边余量3~5mm)→淬火和回火处理(950℃淬火、630℃回火)→半精加工→淬火热处理(淬火温度900℃,310℃回火)→机械性能检查→完成→磁粉探伤(含螺纹)→表面油漆保护→装配目前,无损检测方法无法检测出螺栓内部0.2mm以下的微裂纹。

通过金相检验、氢含量检验和断口扫描电镜分析,对断裂的螺栓和未断裂的随机试样进行了检验,并分析了断裂原因。

2实验方法和结果2.1受试者。

试验对象为2个此类螺栓,包括断裂的铰制螺栓和1个相应的相同类型的未断裂螺栓。

2.2外观检查。

目测第一螺纹段铰制螺栓断口齐平,无塑性变形,断口垂直于轴线,为一次性脆性断裂。

断口附近有明显的腐蚀痕迹。

2.3化学成分分析。

对两个螺栓样品的化学成分进行了测试和分析。

结果表明,两个螺栓的化学成分均符合标准。

2.4氢含量检测。

对断裂铰孔螺栓和未断裂铰孔螺栓的光杆边缘、r/2和芯部进行了氢含量检测。

断裂和未断裂螺栓的光杆边缘和芯部的检测结果基本相同,r/2处的检测结果差异较大,分别为2.0×10-6和0.6×10-62.5断裂分析。

高强度螺栓断裂失效分析研究

高强度螺栓断裂失效分析研究

- 56 -
技术交流
中c、d),检测结果:索氏体+少量铁素体,组织 分布均匀,A类夹杂1.0级,B类夹杂物0.5级,并 无明显异常(见图3)。
石油和化工设备 2017年第20卷
图3
1.3 力学性能检测 为了进一步分析,另取一件有裂纹但并未断
开的螺栓,使用E64-305型电液伺服万能试验机夹 持螺栓两端,试图强行拉断,估算材料强度。第
(1)首先使用ARL 3460光谱分析仪检测化学成 分,材料牌号42CrMo,试样数据符合GB/T 30772015《合金结构钢》要求。
(2)使用TH 320洛氏硬度计检测断裂面硬度,
结果分别为HRC39,符合设计要求;最后使用 Axio observer A1M显微镜分析金相微观组织(图2
作者简介:张伦(1981—),男,陕西人,本科学历,工程师, 在中石化石油工程机械有限公司第四机械厂从事金属材料工艺研究 和质量标准工作。
现对此类螺栓的断裂失效做出综合分析。此 次分析的失效螺栓设计要求为:外径1"-8UNC,材 料42CrMo,硬度HRC35-40。
1 理化分析 1.1 宏观分析
图1
随机抽取两件断裂螺栓制取检测试样(见图 2中a、b),目测断口呈脆性断口,并无疲劳迹 象,初步怀疑金相组织可能存在异常。
图2
1.2 化学成分、硬度、金相检测
L1 L2 L3 L4 L5
拉伸试验
Байду номын сангаас
d0=Φ12.5mm,标距4d0
Rm(MPa) Rp0.2(MPa) A(%)
1300
1230
15
1175
1135
18
1250
1190
15

10.9S级高强螺栓断裂分析

10.9S级高强螺栓断裂分析

第46卷 第2期金 属 制 品2020年4月 Vol 46 No 2MetalProductsApril2020 doi:10.3969/j.issn.1003-4226.2020.02.00910.9S级高强螺栓断裂分析倪 莉, 刘 勇, 马勤超, 毛锡非, 王 慧, 张 挺, 刘海波(浙江国检检测技术股份有限公司, 浙江 海盐 314300)摘要:某批10.9S级高强螺栓在施工过程发生多件断裂。

采用宏观检查、断口分析、金相检测、性能检测、化学分析等方法对失效螺栓进行分析。

结果表明:失效螺栓为韧性过载断裂。

引起螺栓过载断裂的原因是现场扭矩系数测量存在异常,导致计算的终拧扭矩过大。

在连接副出厂后运输、装卸、存储、安装、施拧和检查过程中应采取措施以确保其扭矩系数的稳定性。

关键词:高强螺栓;韧性;过载断裂;扭矩系数;金相组织中图分类号:TG115 文献标识码:AFractureanalysisof10.9SgradehighstrengthboltNiLi,LiuYong,MaQinchao,MaoXifei,WangHui,ZhangTing,LiuHaibo(ZhejiangGuojianTestingTechnologyCo.,Ltd.,Haiyan314300,China)Abstract:Abatchof10.9Sgradehighstrengthboltswasfacturefailureduringconstruction.Thefailureboltsareanalyzedbymacroinspection,fractureanalysis,metallographicinspection,performanceinspectionandchemicalanalysis.Resultsshowthatthefailedboltisatoughnessoverloadfracture.Thecauseisthatthereisanabnormalityinon sitetorquecoeffi cientmeasurement,causingthecalculatedfinaltorquetobetoolarge.Measuresshouldbetakentoensurestabilityofthetorquecoefficientduringtransportation,loading,unloading,storage,installation,screwingandinspectionofconnectionpairafterleavingthefactory.Keywords:highstrengthbolt;toughness;overloadfracture;torquecoefficient;microstructure1 问题提出六角头高强螺栓在某风电钢塔安装现场施拧过程中发生30余件断裂,终拧时环境温度27℃,扭矩系数为0.132,终拧扭矩为1610N·m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高强度螺栓断裂失效分析韩志良(常州机电职业技术学院机械系,常州213012)马红卫,丁燕君(常柴股份有限公司理化室,常州213002)摘要:针对装配现场发生的几起高强度螺栓断裂失效事故,采用金相分析、化学成分分析和力学性能测试等方法进行检测。

分析结果认为螺栓失效的原因有:(1)螺纹成形时产生裂纹,螺栓因之而脆断;(2)杆部与头部交接处表面脱碳、使局部强度降低而断裂;(3)装配时扭矩过大,螺栓明显缩颈而断裂;(4)原材料中心存在裂纹。

关键词:螺栓;裂纹;扭转;脱碳高强度螺栓是发动机紧固件中最重要的零件之一,如连杆螺栓、缸盖螺栓、主轴承盖螺栓,要求强度等级为10.9级,有的甚至达12.9级。

但在实际使用中,高强度螺栓(简称螺栓)断裂失效也时有发生。

笔者就发生在装配过程中的四起高强度螺栓断裂失效逐一进行分析。

1 195连杆螺栓断裂失效分析195连杆螺栓装配时断裂于螺纹处。

从断口上看,断口平直,无缩颈,几乎没有裂纹萌生区,全部为最后瞬断区。

零件供应商进行了失效分析,认为装配时连杆螺纹内夹入异物,阻碍了螺纹的拧紧,导致装配扭矩过大而断裂。

1.1 断口分析由于断口表现出极大的脆性,如果是基于扭紧力矩过大而断裂,断口应表现出良好的塑性,因为拧紧时螺栓主要受扭转应力,而扭转试验的应力状态的柔性系数较大(大于拉伸试验),材料易于塑性变形,而失效的螺栓并未表现出塑性。

另外,断裂源也不在齿根部,而是有所偏离。

1.2 化学成分和显微组织分析螺栓材料牌号为40Cr钢,强度等级10.9级,硬度要求32~38HRC,金相组织要求1~3级(JB/T8837-2000)。

经检验,螺栓化学成分(质量分数)符合GB/T3077-1988之规定,见表1。

显微组织为细的回火索氏体,按JB/T8837-2000评定为1级,其硬度值为34HRC和35HRC,硬度和显微组织均符合技术条件规定。

经磁粉探伤未发现磁痕。

将螺栓从杆部与头部交接处纵向剖开,经金相制样、观察,结果在大部分螺纹的根部均有裂纹,即在断口附近和远离断口的螺纹处均存在裂纹,裂纹位置偏离“真正的”齿根部,裂纹的两侧无贫碳和脱碳,说明裂纹的形成与调质处理无关,见图1和图2。

由于裂纹细小且位于螺纹根部,常规磁粉探伤未发现磁痕。

1 螺纹根部之裂纹(未侵蚀) 20×图2 螺纹根部组织400×4%硝酸酒精溶液侵蚀1.3 试验与讨论为判定裂纹的形成原因,另取同批量、同型号但未使用过的连杆螺栓进行纵剖面金相分析,结果在部分螺纹根部也存在裂纹,因此判定此裂纹系滚齿成型时造成的。

这与滚轮使用次数过多,滚齿加工能力下降有关,经查该批滚轮已超期服役。

由于螺纹根部存在裂纹,因此在装配拧紧时螺栓表现出较大的脆性,发生脆性断裂,而滚轮超期服役,其滚齿加工能力下降则是失效的主要因素。

2 缸盖螺栓断裂失效分析某单位生产的强度等级为10.9级的缸盖螺栓,在装配时发生断裂,送样要求分析原因。

2.1 断口分析两缸盖螺栓(分别编1号和2号)断裂位置均在杆部和头部交接处,装配拧紧时螺栓主要受扭转载荷,此时,主应力与轴线成45°,而切应力则与轴线垂直。

从断口看,裂纹开始区与轴线成45°角,表现为扭转时的正断断口,是正应力作用的结果。

而瞬断区与轴线垂直,瞬断区面积占总断口面积的绝大部分,说明断裂时应力较大或材料强度不足。

2.2 化学成分和显微组织分析螺栓材料牌号为40Cr钢,硬度要求32~38HRC,金相组织要求1~3级(JB/T8837-2000)。

经检验,1号缸盖螺栓化学成分(质量分数)符合GB/T3077-1988之规定,见表1。

两螺栓基体组织均为细的回火索氏体,按JB/T8837-2000评定,组织为1级,符合其1~3级之技术条件规定。

边缘组织中晶界清晰可见,但其颜色明显比其它部位浅,估计表面存在脱碳层,其中2号螺栓更为明显,见图3。

两螺栓均残留带状组织,带状组织中还有非金属夹杂物,1号螺栓的带状组织见图4,其间的硫化物类夹杂物清晰可见,但均在规定范围之内。

2.3 显微硬度测试经磁粉探伤,未发现磁痕。

经测定,1号螺栓硬度值为34HRC,2号螺栓硬度值为36HRC和37HRC,符合32~38HRC技术条件规定。

由于螺栓已经过调质处理,所以仅根据金相组织来判定边缘是否存在脱碳层似乎尚缺证据。

为证实边缘是否存在脱碳层,对边缘和中心部位进行了显微硬度测试,结果见表2。

图3 2号螺栓组织,边缘颜色较浅65×图4 1号螺栓的带状组织130×4%硝酸酒精溶液浸蚀表2 螺栓边缘及中心处显微硬度值从表中可见,边缘硬度低于中心硬度,进一步证实了边缘存在脱碳层。

边缘碳含量的降低,使侵蚀程度下降,因而颜色较浅且晶界清晰可见。

虽然螺栓在调质后对其表面进行了机加工,以去除热加工所产生的脱碳层,但在杆部与头部交接处往往难以用机械加工去除脱碳层,结果在杆和头部的交接处保留了脱碳层。

2.4 分析与讨论由于最大应力位于螺栓边缘,而边缘存在脱碳,降低了边缘的强度。

虽然螺栓允许存在一定量的脱碳层,但脱碳层的存在对螺栓服役总是不利的。

由于裂纹源于脱碳处,那么脱碳则成为该螺栓断裂失效的主要因素之一。

3 主轴承盖螺栓断裂失效分析发动机主轴承盖螺栓,在装配拧紧时断裂失效。

螺栓材料牌号为40Cr钢,硬度要求30~35HRC,金相组织要求1~3级(JB/T8837-2000)。

3.1 理化分析观察三支断裂螺栓的断口,均存在回旋状塑性变形痕迹,为扭转断口,是以扭转为主的扭转和拉伸之混合断口。

裂纹起源于螺纹齿根处,断口处均有明显的缩颈。

而缩颈的产生,表明试样的载荷达到最大值(抗拉强度)后,在试样的某一部位截面开始急剧缩小,随后变形主要集中于缩颈附近。

所以缩颈的存在,一方面说明螺栓有良好的塑性和韧性,另一方面说明服役载荷很大,已超过试样的抗拉强度。

主轴承盖螺栓化学成分分析结果见表1,符合GB/T3077-1988之规定。

杆部硬度值为32HRC和33HRC,符合30~35HRC技术条件规定。

金相组织为细而均匀的回火索氏体,按JB/T8837-2000,组织级别为1级,符合其1~3级之技术条件规定。

经磁粉探伤未发现磁痕。

将三支断裂螺栓纵向剖开进行金相观察,螺纹表面无脱碳,但螺纹齿根处均存在微裂纹,长约0.05~0.10mm,裂纹均存在于距断口3~4个螺距范围的缩颈区,缩颈区以外的齿根处则无裂纹。

3.2 拉伸试验取与断裂螺栓同批供货的两支未使用的螺栓进行拉伸试验,其抗拉强度分别为1103MPa和1126MPa,符合10.9级的强度等级要求。

将试样纵向剖开进行金相分析,在距断口3~5个螺距范围内的缩颈区,其齿根处存在裂纹,而缩颈区以外的齿根处则无裂纹,可见该裂纹是拉伸时形成的。

取三支未使用的同批螺栓,也取其纵剖面进行金相分析,在螺纹齿根处均未发现裂纹。

3.3 分析与讨论断裂试样的硬度和强度均符合螺栓10.9级的强度等级要求,金相组织也正常,所以螺栓材质正常。

从拉伸试验和未使用的同批螺栓的金相分析结果看,缩颈不是由于材料强度不足而产生的。

由于裂纹均产生于断裂试样的缩颈处,缩颈以外的螺纹处无裂纹,则该裂纹是螺栓拧紧时载荷过大(超过材料的抗拉强度)所致。

经查,断裂螺栓的装配扭矩达146N·m,超过了120N·m的极限规定。

综上所述,螺栓断裂失效的原因是螺栓服役载荷(扭矩)过大,已超过其抗拉强度。

4 1110连杆螺栓断裂失效分析螺栓于装配时断裂,材料为35CrMo钢,强度等级10.9级,硬度要求30~35HRC,金相组织要求1~3级(JB/T8837-2000)。

经检验,1110连杆螺栓化学成分(质量分数)符合GB/T3077-1988之规定,见表1。

硬度为35HRC,符合32~38HRC技术条件规定。

经磁粉探伤,在螺栓表面发现细小裂纹。

将试样纵向剖开(0.5R处),显微镜下观察发现螺栓齿根部无脱碳,显微组织为细而均匀的回火索氏体,按JB/T8837-2000,组织级别为1级,符合其1~3级之技术条件规定。

但是,在纵剖面上有许多沿晶裂纹,裂纹两侧无脱碳。

绝大多数裂纹位于试样中心区域,断口处的数条裂纹也位于中心区域,估计螺栓中央存在裂纹。

对螺栓横向间隔取样进行金相分析,在数个磨面上均有裂纹,且裂纹存在于螺栓中央见图5。

由于裂纹位于螺栓的中央,较为封闭,虽经淬火、回火,但裂纹两侧无贫碳或脱碳。

图5 试样横截面裂纹形貌(未蚀,负片) 3×由于试样的回火索氏体组织细小,裂纹趋向很“柔”,且裂纹源于试样中心,可确定裂纹的产生与调质处理无关。

裂纹周围未发现夹杂类缺陷,裂纹存在位置和趋向确与“轴向晶间裂纹”类同,故该裂纹属原材料缺陷。

5 结论(1)所分析的螺栓的成分、牌号均符合GB/T3077-1988之规定,硬度、金相组织也符合技术条件要求,说明热处理工艺及其操作合理。

(2)螺栓失效原因:①195连杆螺栓断裂的直接原因是滚轮的滚齿能力下降导致产生裂纹,而滚轮超期服役则是关健因素;②缸盖螺栓断裂原因是其杆部和头部交接处的贫脱碳所致;③主轴承盖螺栓的断裂则是拧紧时扭矩过大造成;④1110连杆螺栓断裂是原材料存在裂纹所致。

(3)上述螺栓失效,很大程度上是源于质量管理的疏忽,如滚轮的超期服役、装配扭矩过大,理化检验的欠认真、细致等。

(4)连杆螺栓的金相检验按JB/T8837-2000进行,其它高强度螺栓也可参照进行。

虽然JB/T8837-2000对脱碳层未作规定,但在螺栓的技术条件中对脱碳层有明确规定。

因此,可根据要求在试样纵面上进行脱碳检验,方法有金相法和显微硬度法。

如果195连杆累栓按要求进行脱碳层的检验,其裂纹和缸盖螺栓的贫、脱碳则可检验出来。

相关文档
最新文档