有机化学-烷烃和环烷烃
第二章烷烃和环烷烃
(1)乙烷的构象
H3C CH 3
当C-C键旋转时, 可产生无数个构象
有两种典型conformation:
乙烷的两种典型构象的表示方法
优势构象
交叉式 staggered
H
重叠式 eclipsed
作业:P130 /1, 6, 7 ,8; P105 / 8(3) (4) *C2-C3键旋转 阅读Section 1. Alkanes and Cycloalkanes 全文
翻译 1.1第一段,1.2.2第一段,1.2.3 第四段
CH3 CH3 CH C Br
CH3 CH3
四、环烷烃的异构现象
1. 顺反异构 cis-trans isomer (P84) 环烷烃环中C-C单键受环约束不能自由旋转,导致产生顺反异构
HH
H
CH 3
CH 3 CH 3
顺-1,2-二甲基环丙烷
CH 3 H
反-1,2-二甲基环丙烷
练习:写答出案: 1-甲基-3-乙H基环己烷的顺反异构体CH 3
伯碳(1°):一级碳原子,只与1个其他碳原子直接相连
仲碳(2°):二级碳原子,只与2个其他碳原子直接相连
叔碳(3°):三级碳原子,只与3个其他碳原子直接相连
季碳(4°):四级碳原子,只与4个其他碳原子直接相连
CH3
CH3
H3C
C CH2
3° 2°
H
伯氢(1°H):伯碳上的H
仲氢(2°H):仲碳上的H
练习:预测2-甲基丁烷在室温下进行氯代反应所得的一氯代物
Cl
答 案 : C3 C H H C2C H H 3 +C 2l 光 C3 C H C2 C H H 3
鉴别烷烃和环烷烃的方法
鉴别烷烃和环烷烃的方法一、前言烷烃和环烷烃是有机化合物中的两个重要类别,它们在实际应用中具有不同的特性和用途。
因此,正确鉴别烷烃和环烷烃对于化学工作者来说非常重要。
本文将介绍一些常见的鉴别方法。
二、外观1. 环状结构环状结构是环烷烃的一个显著特征。
环状结构使得环烷烃分子相对于线性分子更加紧密,因此其密度更大。
此外,在光学显微镜下观察样品时,环状结构会表现出圆形或椭圆形的形态。
2. 分子大小由于分子量不同,同样数量的分子量下,环状分子比线性分子更大。
因此,在实验中可以通过测量样品的密度或比表面积来区分两者。
三、物理性质1. 沸点由于环形结构使得其相互作用力增强,因此在相同条件下,环形化合物沸点通常较高。
2. 溶解度由于环形结构使得其相互作用力增强,在某些溶剂中(如水),环形化合物的溶解度可能会降低。
四、化学性质1. 氧化反应由于环状结构相对于线性结构更加稳定,因此在氧化反应中,环状分子通常比线性分子更难被氧化。
2. 反应活性由于环状结构使得其相互作用力增强,因此环状分子通常比线性分子具有更高的反应活性。
例如,环烷烃可以通过加氢反应转化为相应的烷基化合物。
五、色谱法色谱法是一种常用的鉴别方法。
在气相色谱中,可以通过样品在某些固定条件下从某个固定位置到达检测器的时间来区分两种不同类型的分子。
由于两者具有不同的物理和化学特征,因此它们在某些条件下会表现出不同的行为。
六、核磁共振法核磁共振是一种非常灵敏和精确的方法。
通过观察样品中不同原子核所发射出来的信号来确定样品中不同类型分子所占比例。
由于两种类型的分子具有不同的原子排列方式,因此它们会表现出不同的核磁共振信号。
七、总结鉴别烷烃和环烷烃的方法有很多种。
在实际应用中,我们可以根据不同的需要选择不同的方法。
总体来说,通过观察样品的外观、物理性质和化学性质,以及使用色谱法和核磁共振法等高级方法,我们可以准确地区分两种不同类型的分子。
烷烃、环烷烃
烷烃烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。
烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。
烷烃分子中,氢原子的数目达到最大值,它的通式为CnH2 n+2。
分子中每个碳原子都是sp3杂化。
最简单的烷烃是甲烷。
烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。
连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。
为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedro n)。
甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。
理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。
但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。
由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。
直链烷烃是最基本的结构,理论上这个链可以无限延长。
在直链上有可能生出支链,这无疑增加了烷烃的种类。
所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。
随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。
当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。
烷烃失去一个氢原子剩下的部分叫烷基[1],一般用R-表示。
因此烷烃也可以用通式RH来表示。
烷烃最早是使用习惯命名法来命名的。
但是这种命名法对于碳数多,异构体多的烷烃很难使用。
于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-一甲基丙烷。
现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。
有机化学第章烷烃和环烷烃
脂环烃:碳原子之间相互连成环,其性质类似链烃 的碳氢化合物。
脂环烃
饱和脂环烃,又称环烷烃,通式:CnH2n
不饱和脂环烃
环烯烃 环炔烃
单环脂环烃:分子中只有1个碳环。 环丙烷
环丁烷
分子中含有两个或两个以上碳环结构的脂环烃称为双环或 多环脂环烃。
两个碳环共用一个碳原子的脂环烃,称为螺环烃(spiro hydrocarbon)。“螺”字表示两个碳环只共用一个碳原子,此 碳原子称为螺原子。
Alkyl group names are obtained by removing the –ane from the alkane name , and replacing it with -yl
中文名 英文名 中文名 英文名 甲烷 methane 甲基 methyl 乙烷 ethane 乙基 ethyl 丙烷 propane 丙基 propyl 丁烷 butane 丁基 butyl
2. 编号:从第一桥头(共用碳原子)开始,沿最长桥路到第二桥 头,再沿次长桥路回到第二桥头,然后编最短的桥路。(先编大 桥,再编小桥)。取代基的位置最小。
3.命名: 某基二环[n.m.p]某烷。 n.m.p---指各桥路上碳原子数。
2 1
3
7
4
6
5
8 6
4 5
7 1
2
3
1-甲基二环[4.1.0]庚烷
Homolog
同系物: 同系列中各化合物互称同系物。
同系列差:相邻两个同系物在组成上的不变差数 CH2。
烷烃中的伯、仲、叔、季碳原子。
伯碳原子:只与1个碳原子直接相连的碳原子。 (primary) 也称一级碳原子,以1° 表示。 仲碳原子:只与2 个碳原子直接相连的碳原子。 (secondary) 也称二级碳原子,以2 ° 表示。 叔碳原子:只与3 个碳原子直接相连的碳原子。 (tertiary) 也称三级碳原子,以3 ° 表示。 季碳原子:与4个 碳原子直接相连的碳原子。 (quaternary) 是四级碳原子,以4 ° 表示。
有机化学课件第-二-章烷烃和环烷烃_图文
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较
有机化学-第二章-烷烃和环烷烃(二)
英文简写 Me Et n-Pr i-Pr n-Bu s-Bu i-Bu t-Bu
neo-Pentyl
有机化学 第二章
13
烷烃的命名
有机化学 第二章
14
普通命名法
有机化学 第二章
15
普通命名法
局限:复杂 的烷烃无法 命名。
有机化学 第二章
16
衍生命名法
以甲烷为母体,把其它的烷烃都看作是甲 烷的烷基衍生物。
有机化学 第二章
65
CH3
1
H 2H
H
CH3 H 1 2 CH2
H
CH2
H
H
1
2 HCH3 H
H
H 1 2 CH2
CH3
CH2
H
取代基处在e 键上稳定。
有机化学 第二章
66
有机化学 第二章
12
一些烷基(alkyl)结构及名称
烷基 CH3 CH3CH2 CH3CH2CH2 CH3CHCH3 CH3CH2CH2CH2 CH3CH2CHCH3
(CH3)2CHCH2 (CH3)3C (CH3)3CCH2
烷基名称 甲基 乙基 正丙基 异丙基 正丁基 仲丁基 异丁基 叔丁基 新戊基
有机化学 第二章
62
环己烷可以由一种椅型构象翻转成另一 种椅型构象,原来的a键变为e键,原来的e键 变为a键:
翻转
一种椅型构象经半椅型、纽船型、船型翻转 成另一种椅型构象。在能量上:
椅型构象 < 纽船型构象 < 船型构象 < 半椅型构象
有机化学 第二章
63
环己烷的有构机化象学 第翻二章转
64
2.4.4 取代环己烷的构象
稳定性:
有机化学第四章烷烃和环烷烃
1. 乙烷的构象
小于两个H 的 von der waals 半 径(1.2Å)之和, 有排斥力
<60o
2 H
H C H H
2.3 Å
H C H H
60o
H H H H 1 1 2 H H H
C1旋转
H H
1 1 H
C1旋转
H H
2H 11 H H H
H
交叉式构象 staggered conformer 原子间距离最远 内能较低 (最稳定)
奇数碳
沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低(非极性,只有色散力)。 (2)随相对分子质量增大而增大(运动能量增大,范德华引力增大)。 (3)相对分子质量相同、叉链多、沸点低。(叉链多,分子不易接近)
密度
烷烃的密度均小于1(0.424-0.780) 偶极矩均为0。
饱和烃的偶极矩 溶解度
自由基型链反应(chain reaction)
甲烷的溴代反应机理
(1) (2) (3)
Br Br Br +
hv or
Br
+ Br Br H + CH3
链引发 chain initiation
H
CH3
CH3 + Br
Br
CH3 Br + Br
第(2), (3)步反应重复进行 (4) (5) (6) Br Br CH3 + + + Br CH3 CH3 Br Br
扭曲式构象 skewed conformer (有无数个)
重叠式构象 eclipsed conformer 键电子云排斥, von der waals排斥力,内能较高 (最不稳定)
有机化学-烷烃和环烷烃
24/64
2.2 烷烃和环烷烃的命名 2.2.4 环烷烃的命名 (1)分类
单环脂环烃
2. 烷烃和环烷烃
二环脂环烃
多环脂环烃 当碳环为饱和碳环时则为环烷烃。
25/64
2.2 烷烃和环烷烃的命名 2.2.4 环烷烃的命名 (2)单环环烷烃
(a)碳链较短
2. 烷烃和环烷烃
根据成环碳原子总数,称为“环(cyclo)某烷” 环上有1个取代基时,取代基名称放在“环某烷”之前 环上有不止1个取代基时,与烷烃命名类似 1 2 3
CH3
1’
CH3
C CH2CH3 CH3
2’
3’
CH3CH2CH2CH2CH2CHCH2CH2CHCH3
2-甲基-5- 1’,1’-二甲基丙基癸烷 2-甲基-5-(1,1-二甲基丙基)癸烷
23/64
2.2 烷烃和环烷烃的命名 练习
1. 给下列分子式命名
2. 烷烃和环烷烃
2,5,7-三甲基-7-乙基-3-氯壬烷 2. 写出“2,3,4,6-四甲基-6-乙基壬烷”的分子式。
烷烃和环烷烃分子从形式上去掉一个氢原子后余下的基
团称为烷基(R—)和环烷基。
(2)亚烷基
烷烃分子从形式上去掉两个氢原子后余下的基团称为亚 烷基。
14/64
2.2 烷烃和环烷烃的命名 2.2.2 烷基和环烷基
烷 基 CH3 CH3CH2 CH3CH2CH2 CH3CHCH3 CH3CH2CH2CH2 CH3CH2CHCH3 (CH3)2CHCH2 (CH3)3C (CH3)3CCH2 烷基名称 甲基 乙基 正丙基 异丙基 正丁基 仲丁基 异丁基 叔丁基 新戊基
何谓“饱和”? 烃分子中的碳原子之间都以单键(C-C)相连, 其余的价键都与氢原子相连。 烷烃(烷): 饱和烃 【烷wan】取完全之意,碳被氢完全饱和
有机化学 第2章烷烃和环烷烃
CH3 H3C CH
3 H(叔氢)
CH3 H3C C CH3 CH3
CH3
3 (叔碳,三级碳)
4 (季碳,四级碳)
tertiary carbon
quaternary carbon
CH 1。 3
3。 CH CH3 1。
2。 CH2 C CH3 4。 1。 CH3 1。
1。 CH3
二、烷烃的构造异构和命名( Constitutional
碳链异构—由于碳链结构的不同而产生的异
构现象称为碳链异构现象,简称碳链异构。异构
体互称为碳链异构体。如:C4H10
H H C H H C H H C H H C H H H H C H H H C C H H C H H H
正丁烷
异丁烷
mp bp
-138℃ -0.5℃
-160℃ -12℃
随着分子中碳原子数目的增加,异构体的数
第二章 烷烃和环烷烃
(Alkanes and Cycloalkanes)
学习要求:
1.掌握烷烃和环烷烃的基础理论和基本知识。
2.掌握构象异构的基本概念。 烃的概念: 烃—指分子中只含C、H两种元素的化合物,又称碳 氢化合物。
烃 碳氢化合物 (hydrocarbons)
烃的分类:
饱和烃——烷烃 链烃 烯烃 不饱和烃 脂肪烃 炔烃 环烷烃 脂环烃 环烯烃 环炔烃 苯型芳香烃 芳香烃 非苯型芳香烃
较稳定。
C C H
(一)稳定性(Stability) 一般情况下烷烃化学 性质不活泼、耐酸碱、不与强氧化剂和还原剂作用。 (常用作低极性溶剂,如正己烷、正戊烷、石油醚 等) (二)卤代反应(Halogenation reation)
和含碳原子数较少的烷烃。
医用有机化学-烷烃和环烷烃
烷烃和环烷烃药物合成方法的优化与创新
开发高效、绿色的合成方法,提高药物合成的效率和可持续性。
烷烃和环烷烃药物作用机制的深入研究
揭示药物与生物大分子的相互作用机制,为药物优化和设计提供理论支持。
面临的挑战与机遇
面临的挑战
烷烃和环烷烃药物的生物利用度、稳定 性和毒性问题;合成方法的复杂性和成 本问题;临床试验的严格性和不确定性 。
化学性质
烷烃的化学性质相对稳定,主要发生取代反应,如卤代反应、硝化反应等。在 高温或催化剂作用下,烷烃可发生裂解反应,生成较小的烷烃和烯烃。此外, 烷烃还可与氧气发生燃烧反应,生成二氧化碳和水。
02 环烷烃概述
定义与结构特点
环烷烃定义
环烷烃是一类具有环状结构的饱和烃,分子中只含有碳和氢两种元素,且碳原子 之间以单键相连。
药物合成中的应用
01
作为合成原料
02
作为合成中间体
03
作为合成催化剂
烷烃和环烷烃是合成许多药物的 重要原料,如合成抗生素、激素、 维生素等。
在药物合成过程中,烷烃和环烷 烃常用作合成中间体,通过化学 反应转化为目标药物。
某些烷烃和环烷烃可用作药物合 成中的催化剂,促进反应的进行 并提高产率。
生物活性物质中的应用
结构特点
环烷烃的分子结构中含有一个或多个环状结构,环的大小和形状因分子而异。与 开链烷烃相比,环烷烃的分子结构更加紧凑,具有较高的熔点和沸点。
命名与分类
命名
环烷烃的命名遵循系统命名法,以环 作为母体,将环上的取代基按照优先 顺序编号,并注明环的大小和取代基 的位置。
分类
根据环的大小和形状,环烷烃可分为 单环烷烃、双环烷烃和多环烷烃等。 其中,单环烷烃又可分为脂环烃和芳 香烃两类。
人卫有机化学5-2第二章--烷烃和环烷烃
⼈卫有机化学5-2第⼆章--烷烃和环烷烃第⼆章烷烃和环烷烃有机化合物(简称有机物)中有⼀类数量众多,组成上只含碳、氢两种元素的化合物,称为碳氢化合物,简称烃(hydrocarbon )。
烃分⼦中的氢原⼦被其他种类原⼦或原⼦团替代后,衍⽣出许多其他类别的有机物。
因此,烃可看成是有机物的母体,是最简单的⼀类有机物。
根据结构的不同,烃可分为如下若⼲种类。
烃在⾃然界中主要存在于天然⽓、⽯油和煤炭中,是古⽼⽣物埋藏于地下经历特殊地质作⽤形成的,是不可再⽣的宝贵资源,是社会经济发展的主要能源物质,也是合成各类⽣活⽤品和临床药物的基础原料。
本章讨论两类饱和烃——烷烃和环烷烃。
第⼀节烷烃分⼦中碳原⼦彼此连接成开放的链状结构的烃称为开链烃,因其结构与⼈不饱和开链烃烃饱和开链烃—烷烃脂环烃(环烷烃、环烯烃等)闭链烃(环烃) 开链烃(脂肪烃) 芳⾹烃烯烃炔烃体脂肪酸链状结构相似⼜称脂肪烃,具有这种结构特点的有机物统称脂肪族化合物。
分⼦中原⼦间均以单键连接的开链烃称为饱和开链烃,简称烷烃(alkane)。
⼀、烷烃的结构、分类和命名(⼀)烷烃的结构1.甲烷分⼦结构甲烷是家⽤天然⽓的主要成分,也是农村沼⽓和煤矿⽡斯的主要成分,⼴泛存在于⾃然界中,是最简单的烷烃。
甲烷分⼦式是CH,由⼀个碳原⼦与四个氢原⼦分别共⽤⼀对电⼦,以四个4共价单键结合⽽成。
如下图2-1(a)所⽰。
图2-1 甲烷分⼦结构⽰意图结构式并不能反映甲烷分⼦中的五个原⼦在空间的位置关系。
原⼦的空间位置关系属于分⼦结构的⼀部分,因⽽也是决定该物质性质的重要因素。
化学学科常借助球棍模型来形象地表⽰有机物分⼦的空间结构(不同颜⾊和⼤⼩的球表⽰不同原⼦,⼩棍表⽰共价键)。
根据现代物理⽅法研究结果表明,甲烷分⼦空间结构如图2-1(b)所⽰。
但是球棍模型这种表⽰书写起来极不⽅便,要将甲烷的⽴体结构在纸平⾯上表⽰出来,常通过实线和虚线来实现。
如图2-1(c)所⽰,虚线表⽰在纸平⾯后⽅,远离观察者,粗实线(楔形)表⽰在纸平⾯前⽅,靠近观察者,实线表⽰在纸平⾯上,这种表⽰⽅式称透视式。
大学有机化学第二章 烷烃和环烷烃
hv
CH3CH2CH3+Br2 CH3 CH3C—H +Br2 CH3
Br CH3CH2CH2Br+CH3CHCH3
hv
3% CH3
CH2Br 1%<
CH3 CH3
97%
第二章
学习目的与要求
烷烃和环烷烃
掌握烷烃、环烷烃的结构、命名及物理性质化学性 质;掌握构象异构现象。了解桥环化合物、螺环化 合物(二环)的结构、命名方法。了解环已烷直立键、 平伏键规律及稳定性分析。
烃——只含有碳和氢两种元素的化合物称为烃。 饱和烃 烷烃 CH3CH3 烯烃 CH2=CH2 不饱和烃 炔烃 CH≡CH 脂环烃 环戊烯 环戊烷
螺原子
螺环化合物 桥环化合物
C C H2
C
螺环化合物
两个碳环共用一个碳原子的双环化合物。
螺原子 两环共用的碳原子为螺原子。
桥环化合物—两个碳环共用两个或更多个碳原子的双 环化合物。 桥头碳原子 两环联接处的那两个碳原子
CH2 CH2 CH2 命名
※ 桥头碳原子
CH CH2 CH
CH2
CH2
※ 桥头碳原子
(二)命名
1 3
环丙烷
环戊烷 CH3
3
1-甲基环己烷
1-甲基-3-乙基
环己烯
2 1
环己烷 CH3CH2CHCH2CH(CH3)2
3-甲基环己烯
H3C
H
CH3 H
2 - 甲基 – 4 - 环戊基己烷
H
H3C
CH3
顺-1,2-二甲基环丙烷
有机化学第2章_烷烃和环烷烃
以甲烷的氯代反应为例,有如下反应事实: (1)在室温、黑暗中不反应;加热或光照下 进行,一经开始便可自动进行; (2)产物中有少量乙烷; (3)如有氧或有一些能捕捉自由基的杂质存 在,会推迟反应的进行。
以上实验事实,说明该反应是为自由基反应! 自由基反应大多可被光照、高温、过氧化物 所催化,一般在气相或非极性溶剂中进行。
H 一氯甲烷
生成的一氯甲烷还会继续被氯代,生成二氯甲 烷、三氯甲烷和四氯化碳四种产物的混合物。
CH2Cl2
二氯甲烷
CHCl3
三氯甲烷
CCl4
四氯甲烷
(二)卤代反应 2、卤代反应的反应机制
反应机制(反应历程):化学反应所经历的途 径或过程 ,是根据实验事实,对反应做出的 详细描述和理论解释。
研究反应机理的目的是认清反应本质,掌握反 应规律,从而达到控制和利用反应的目的。
σ(s-sp3)
键角为109.5°
σ(s-sp3)
(2)乙烷(CH3CH3)分子的结构
除了H原子的s轨道电子与C原子的sp3轨道 电子以“头碰头”方式重叠形成s-sp3共价键外 ,也存在两个C原子的sp3轨道电子之间的配对
。σ(s-spσσ3) 键键可:沿旋键转轴不“影自响由轨道”重转叠动程;度重叠,程即
自由基
概念:带有孤电子的原子或原子团称为自由基
结构特点:三种可能结构(1)刚性角锥体, (2)迅速翻转的角锥体,(3)平面型。
C
C
C
自由基非常活泼,具有很强的反应活性。
CH2 > CH2 CHCH2 > (CH3)3C > (CH3)2CH
> CH3CH2 > CH3 >
烷烃和环烷烃
(2)熔点
• 基本上随分子量 的增加而增加。 (奇数和偶数碳) • 烷烃的熔点变化: 是因为晶体分子 直链烷烃的熔点与分子中所含 间的作用力不仅 碳原子数目的关系 取决于分子的大 小,也取决于他们在晶格中的排列。 分子的对称性增加,它们在晶格中的排列越紧 密,熔点也越高。
例: (正戊烷-129.8 ℃ ,异戊烷-159.9 ℃,新戊烷-16.8 ℃)
2.3.2 其它烷烃的结构
•乙烷的C- C 键
Stuart模型
乙烷分子中C-C键(C-H键用直线表示)
其他烷烃:据测定,除乙烷外,烷烃分子的碳链并不排 布在一条直线上,而是曲折地排布在空间。这是烷烃碳 原子的四面体结沟所决定的。如丁烷的结构:
注意:键线式书写烷烃的分子结构:
•为了方便,只要写出锯齿形骨架 , 用锯齿形线的 角 (120º )及其端点代表碳原子.不写出每个碳上所连的氢 原子.但其它原子必须写出.
Cl2 光
57/43=2x/6
x=4
*异丁烷氯代反应:
CH3 CH3 CH3 CH3CH + Cl2 CH3-C-Cl + CH3-CH CH3 CH3 CH2Cl 叔丁基氯36% 异丁基氯64% •设y为叔氢原子的相对活泼性 则: 36/64 = y/9 y=5.06
产物混合,复杂,一 般不用氯代来制备卤 代烃
分子式 C3H8
构造式
构造式的简写式
CH3CH2CH3 CH3(CH2)2CH3
丁烷
C4H10
戊烷
C5H12
CH3(CH2)3CH3
(2)烷烃的通式 —— 直链烷烃分子中,一个或几
个 -CH 2 - 基团(亚甲基)连成碳链,碳链的两端再连 有两个氢原子,因此直链烷烃的通式可写为:
有机化学-烷烃和环烷烃的化学性质及制备
烷烃和环烷烃的化学性质及制备一、烷烃的主要化学性质总体:稳定,自由基型反应居多。
(一)燃烧和氧化一般条件下不与普通氧化剂反应,剧烈可燃烧,C→CO2,H→H2O,(杂→氧化物)。
有机化学中:氧化——加氧or 去氢还原——加氢or 去氧(二)卤代反应(实质:取代反应)取代反应(substitution reaction)是指有机化合物受到某类试剂的进攻,致使分子中一个原子(或基团)被这个试剂所取代的反应。
分为亲电取代、亲核取代、自由基取代三类。
探讨一类有机反应主要从以下四个方面展开:反应产物、反应类型、反应历程、反应活性(反应活性又可从试剂和底物两个方面讨论)。
烷烃的取代属于自由基取代反应。
反应产物:一~多卤代烷反应类型:自由基型(反应条件:光照or 高温)反应历程:链引发、增长、终止反应活性:试剂角度考虑:氟〉〉氯〉溴〉〉碘底物角度考虑:叔氢〉仲氢〉伯氢二、烷烃的来源和制备1、烷烃是其他有机物的母体,一般不经人工合成,而是从天然气和石油中获得。
2、天然来源烷烃是相当复杂的混合物,难以分离。
若需纯粹烷烃,可人工合成来制备。
3、工业生产采用柯尔伯电解羧酸盐来制取4、实验室通过武兹、科瑞-郝思合成法以及还原反应来获得。
(1)武慈反应(制备对称烷烃)2RX(乙醚)+ Na → R-R + 2NaX ( X = Br、I ) (2)科瑞-郝思反应R2CuLi(二烷基铜锂)+ R’X → R-R’ + RCu(烷基铜)+ LiX(3)还原卤代烃、醇、醛、酮、酸等还原制得(见以后章节)三、环烷烃的主要化学性质总体:大环像烷,小环像烯。
(一)取代反应(卤代,自由基型)+ Br + HBrBr日光环己烷溴代环己烷(二)氧化反应1、可燃 → CO 2 + H 2O2、特殊条件 → 开链二元羧酸+ O2Co HOOC(CH 2 )4 COOH 己二酸(合成尼龙66之主要原料)3、常温、常压、普通氧化剂 → 不反应应用:环烷烃常温下不能使酸性高锰酸钾褪色(开链烷烃也不能),可用于鉴别(见以后章节)。
烷烃与环烷烃的鉴别
烷烃与环烷烃的鉴别
烷烃和环烷烃是有机化合物中最简单的两种结构类型,但在实验
室中常常需要通过一系列的方法来鉴别它们。
首先,我们可以通过它们的化学式来区分。
烷烃的化学式为
CnH2n+2,而环烷烃的化学式为CnH2n。
也就是说,环烷烃相对于烷烃
来说少了两个氢原子。
其次,我们可以通过它们的物理性质来鉴别。
例如,烷烃的沸点
随碳数上升而增加,而环烷烃的沸点与其分子中的环数及分子量有关。
此外,环烷烃的密度比烷烃的密度更高,因为环状分子形成更紧密的
排列,分子间的吸引力更强。
另外,我们还可以通过光谱分析来鉴别烷烃和环烷烃。
一般来说,环烷烃的红外光谱中会出现环张缩模式、-CH2-吸收峰和骨架伸缩模式
等特征性吸收峰。
而烷烃的红外光谱中则没有这些峰。
此外,环烷烃
的质谱图中也会出现环张缩子离子的分子峰。
最后,我们还可以通过化学反应来鉴别烷烃和环烷烃。
例如,环
烷烃和烯烃经过裂解反应后会生成相应的烷烃。
此外,环烷烃和烷基
锂反应时,通常会发生开环反应,生成亚烷基锂和烷基锂等中间体。
总之,烷烃和环烷烃的鉴别需要综合运用多种方法,进行分析对比,才能得出准确的结论。
因此,在实验操作中需要谨慎认真,以确
保实验结果的准确性。
有机化学总结:烷烃和环烷烃
Ø 选主链,确定取代基:
a. 选最长的碳链为主链
1 2 3 45 6
CH3CH2CH2CHCH2CH3
1 23 4
C5 H2C6H2C7H3
主链:七个碳原子
b. 选取代基最多的碳链为主链
6 5 4 3 C2H31 C6 H3C5H2C4H2C3HCHCH3
CH2CH3
21
✅ 红色:2-甲基-3-乙基;2个取代基
三、烷烃的命名
3、系统命名法(IUPAC命名法)
Ø 选主链,确定取代基;
Ø 取代基位次编号;
Ø 名称书写。
• 取代基以阿拉伯数字编号,写在最前面; • 相同取代基要合并,以二、三、四(di, tri, tetra)等表示; • 相同取代基的编号,数字之间以“,”隔开; • 数字与汉字(英文)之间以“-”隔开; • 不同取代基顺序按“取代基次序规则”列出(英文命名以首字母顺序排列); • 最后加上主链名称(直链烷烃名称,碳数目+烷)。
Ø 中文系统命名法: • 由中国化学会(CCS)根据与IUPAC命名法的原则,结 合汉字的特点而制定的。
三、烷烃的命名
1、普通命名法:只能命名简单化合物
l 中文: 词头+碳原子数目+烷 英文: 词头+碳原子数目+词尾(- ane)
l 碳原子数目:
1~10个碳的烷烃------甲、乙、丙、丁、戊、己、庚、辛、壬、 癸、十一、十二 ……
Ø 同系差:CH2
一、烷烃的同系列和同分异构
Ø 同分异构现象:
正丁烷:bp. -0.5 oC 异丁烷:bp. -11.7 oC
• 同分异构体:具有相同的分子式,但是原子(团)的连接顺 序不同。
• 构造:原子或基团在分子中排列方式。 • 构造异构体:因构造不同而产生的异构体。
有机化学烷烃和环烷烃
2.2 烷烃和环烷烃的命名
练习: 1) 5-丙基-4-异丙基壬烷 4-isopropyl-5-propylnonane
8
6
4
9
7
5
2
3
1
CH3
2) CH3CH2CHCH2CHCH2CH3
CH3CHCH3
2,5-二甲基-3-乙基庚烷 3-Ethyl-2,5-dimethylheptane
思考:为什么不是3-甲基-5-异丙基庚烷?
再沿次长桥回到“桥头”碳,最短的桥最后编号。
9
8
4
5
H3C CH3
4 5
6 CH3
6
3
21
3
CH3 7 CH3
2
1
7
(稠环烷烃同二环命名)
1,7-二甲基二环 [3.2.2]壬烷
8, 8-二甲基二 环[3.2.1]辛烷
6-甲基二环[3.2.0]庚烷
2.2 烷烃和环烷烃的命名
(B)螺环烷烃——两个环共用一个碳原子的多环烷烃.
2.2 烷烃和环烷烃的命名
(D)支链上有取代基,从和主链相连的碳原子开始将支链碳原子 依次编号,并将取代基位号、名称连同支链名写在括号内。
1 2 3 4 5 6 7 8 9 10
CH3CHCH2CH2CHCH2CH2CH2CH2CH3 CH3 CH3—C1—' C2'H2—C3'H3 CH3
2-甲基 -5-(1,1 – 二甲基丙基)癸烷 或 2-甲基 -5-1’,1’ – 二甲基丙基癸烷
2.3 烷烃和环烷烃的结构
2.3.1 烷烃的结构 (1)甲烷结构
正四面体,所有C—H键长和 H-C-H键角均相等。
sp3杂化
鉴别烷烃和环烷烃的方法
鉴别烷烃和环烷烃的方法引言在有机化学中,烷烃和环烷烃是两类常见的碳氢化合物。
虽然它们在化学性质上有些相似,但它们的结构和特性却有很大差异。
因此,鉴别烷烃和环烷烃是有机实验室中一项基本且重要的任务。
本文将介绍一些常用的方法来鉴别烷烃和环烷烃。
这些方法包括外观观察、物理性质测定、化学性质测试等。
外观观察外观观察是最直观的方法之一,通过观察样品的外观特征,我们可以初步判断样品是烷烃还是环烷烃。
1. 观察物理形态烷烃通常为无色液体或无色晶体,也有少数是气体,比较常见的烷烃有甲烷、乙烷等。
而环烷烃通常在室温下为无色液体,如环己烷、环庚烷等。
2. 观察熔点和沸点烷烃的熔点和沸点通常较低,在常温下易挥发。
而环烷烃的熔点和沸点通常较高,比烷烃要高。
通过测定样品的熔点和沸点,可以初步判断是烷烃还是环烷烃。
物理性质测定物理性质测定是鉴别烷烃和环烷烃常用的方法之一,通过测定样品的密度、折射率等性质,可以进一步确定样品的性质。
1. 测定密度烷烃通常具有较小的密度,而环烷烃的密度较大。
通过测定样品的密度,可以初步判断是烷烃还是环烷烃。
2. 测定折射率烷烃的折射率通常较小,而环烷烃的折射率较大。
通过测定样品的折射率,可以进一步确定是烷烃还是环烷烃。
化学性质测试化学性质测试是鉴别烷烃和环烷烃的重要方法之一,通过一系列的化学反应,可以确定样品的结构和性质。
1. 高温燃烧实验烷烃和环烷烃在高温下燃烧时,会产生不同的产物。
烷烃完全燃烧生成的主要产物是水和二氧化碳,而环烷烃在燃烧时会产生少量的一氧化碳和碳烟。
通过观察样品燃烧时产生的气体和颜色变化,可以初步判断是烷烃还是环烷烃。
2. 酸性试剂反应测试烷烃和环烷烃对酸性试剂的反应不同。
烷烃不会和酸发生反应,而环烷烃会和酸发生缩合反应,并生成环状产物。
通过将样品与酸性试剂反应,可以区分是烷烃还是环烷烃。
3. 溴水反应测试烷烃与溴水反应,通常需要加热和紫外灯照射才会发生反应。
而环烷烃与溴水反应时,通常在室温下就会发生反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成键的电子云并不沿轴向重叠,而是形成一种弯曲键。 造成重叠程度小, 键能下降,产生角张力。
开链或较大脂环化合物 中轨道可达到最大重叠
Banana bond
环丙烷分子中 轨道部分重叠
H
H
C
105.5°
H
60°
H
C
C
CH2
亚甲基
CH
次甲基
系统命名法
关键是如何确定主链和处理取代基的位置
分三步:一选主链、二编号、三写全称。 1.选主链(母体):选取代基最多的最长碳链 2.编号: 从靠近取代基一端开始 3.写全称:按先小后大,把取代基的位次、数
目及名称列在母体前。
在英文命名中,取代基按词首的字母排列顺序先后列出
烷烃系统命名法的要点:
张力学说:
1885年,Baeyer AV 假定,环烷烃具有平面正多边形的结构 :
60° 90° 108° 120°
128.6 135°
• 环上C-C之间的键角偏离正常键角109°28′,
•环丙烷每个键必须向内偏转24.75°,就会产生角张力。
•环丁烷、环己烷分别向内偏转9.75°, 0.75°。
•环己烷每个键向外偏转5.25°。
第二节、烷烃的命名
(一)普通命名法 (二)系统命名法(IUPAC法)
(一)普通命名法
• 1~10以内的碳原子数用天干字表示:
甲、乙、丙、丁、戊、己、庚、辛、 壬、癸。从十一个碳原子开始用中文数
字表示。
• 直链的烷烃称“正某烷”,“正”(n-)一般 略去。如:
CH3CH2CH3
丙烷
CH3(CH2)10CH3 十二烷
CH3 CH3
伯碳(1°):只与1个C直接相连, 一级碳原子
仲碳(2°):只与2个C直接相连, 二级碳原子
叔碳(3°):只与3个C直接相连, 三级碳原子
季碳(4°):只与4个C直接相连, 四级碳原子
伯氢(1°H):伯碳上பைடு நூலகம்H 仲氢(2°H):仲碳上的H 叔氢(3°H):叔碳上的H
不同类型的氢 反应活性不一样
烃(Hydrocarbons)
仅有C、H元素的有机化合物
烃的分类
饱和烃—烷烃
烯烃 脂肪烃 不饱和烃
炔烃 脂环烃 烃
芳香烃
苯型芳香烃 非苯型芳香烃
第一节 同系列和同分异构现象
一、同系列和同系物
烷烃(alkane):只有C、H元素 组成,碳原子均以单键相连而成化合 物。
• 烷烃的分子通式为CnH2n+2 • 相邻两同系物之间的组成差别(CH2)
(CH3)2CHCHCH(CH3)2
3-环丙基戊烷 3-cyclopropylpentane
2,4-二甲基-3-环戊基戊烷 3-cyclopentyl-2,4-dimethylpentane
2、单环螺环烷烃的系统命名
脂环烃分子中两个碳环共用一个碳原子称为 螺环烃,共用的碳原子称为“螺原子”。
螺[3.4]辛烷
•偏差角越大张力越大,分子越不稳定。
张力学说得出结论:
三、四元环为张力环,所以不稳定, 易开环;
五、六元环键角接近109°28′,所 以不易开环,化学性质稳定。
七、八元环也为张力环。 实际上七、八元环化学性质较稳定。
张力学说是错误的。
现代理论解释:
环烷烃分子中的碳原子采取sp3杂化;除了环丙烷以外, 其它环烷烃的碳原子都不在同一平面上。
CH3
新己烷 (neohexane)
(二) 系统命名法
系统命名法是根据国际纯粹和应用 化学联合会(IUPAC)命名原则,并 结合我国的文字特点而制定的《有机 化学命名原则》
1. 常见烃基的命名
烃基:烃分子中去掉一个氢原子所剩下的原 子团称为烃基。
脂肪烃基:用“R-”表示。
芳香烃基:用“Ar-”表示。
CH3CH2CHCH2CHCH3 CH3CH2 CH3
2-甲基-4-乙基己烷 (4-ethyl-2-methylhexane)
(三)含复杂支链的烷烃
1 2 3 4 5 6 7 8 9 10
CH3CH2CHCH2CH2CHCH2CH2CH2CH3
CH3
CH3
1' 2' 3'
C CH2CH3
CH3
3-甲基-6-(1,1-二甲基丙基)癸烷
环炔烃
2).根据环数多少分
C3-C4 小环
C5-C6 普通环
根 单环烷烃
据
C7-C12 中环
环
C13以上 大环
数
多
少 分
多环烷烃 桥环 螺环
1、单环烷烃的系统命名
环丙烷 cyclopropane
乙基环戊烷 ethylcyclopentane
CH3CH2CHCH2CH3
1-甲基-4-异丙基环己烷 1-isopropyl-4-methylcyclohexane
306
289
乙烷交叉式构象称为优势构象。
Ⅱ
Ⅲ
12.6kj/mol
Ⅰ
Ⅳ
乙烷分子是处于交叉、重叠以及介于两者之间的无数构 象的动态平衡混合体系,但各种构象体存在的比率不同。
2. 丁烷的构象
丁烷构象的能量曲线
全重叠式 邻位交叉式 部分重叠式 对位交叉式 各种构象的能差不大,室温下可迅速转化。对位交
叉式约占70%,邻位交叉式约占30%,其他构象所占
称同系差。
二、同分异构现象
同分异构现象(isomerism)是指分子
式相同,因分子中各原子间的连接顺序和方 式不同或空间位置不同而产生异构的现象。
构造异构:分子中原子间的连接次序、结合方式
异
构
碳架异构
现 象
位置异构
官能团异构(包括互变异构)
立体异构:构造相同,原子在空间排布方式不同
构型异构 构象异构
或3-甲基-6-1',1'-二甲基丙基癸烷
练习:命名或写结构:
CH3 CH2CH3 CH3-CH-CH-CH2-CH-CH3
CH3
2,5-二甲基-3-乙基己烷 (3-ethyl-2,5-dimethylhexane)
(四)、环烷烃的系统命名
环烷烃的分类
环烷烃 1).根据分子的不饱和程度分 环烯烃
1
9
3
8
6
4
7
5
双环[4.4.0]辛烷 bicyclo[4.4.0]decane
1 2
7 83
Cl 6 5 4
1-甲基-2-乙基-6-氯二环[3.2.1]辛烷 6-chloro-2-ethyl-1-methyl bicyclo[3.2.1]octane
第三节、烷烃结构
烷烃(alkane):只有C、H元素 组成,碳原子均以单键相连而成化合 物。
构造异构:分子中原子间的连接次序、结合方式
异
构
碳架异构
现 象
位置异构
官能团异构(包括互变异构)
立体异构:构造相同,原子在空间排布方式不同
构型异构 构象异构
顺反异构 旋光异构
构象异构(conformational isomerism)
因单键旋转而使分子中原子或基团在空间产生不 同的排列形象称为构象。
透视式
5 3
4
1 6
2
纽曼投影式
1
2
6
3
4
5
4
1
56
3
2
1
2 4
6
3
5
椅式
船式
P54-55 扭船式得内容不要求!
椅式构象:所有相邻的氢都处于交叉式构象, 再加上环的对角上的氢原子距离最大,有较高的 稳定性。
船式构象:C2-C3、C5-C6之间的氢处于重 叠式状态,产生的相斥力较大。因此船式不如椅 式稳定。
带 有 支 链 时 , 可 用 “ 异 ” ( iso- ) 、 “新” (neo-) 等字表示:
含有 CH3 CH 基,而别无其它支链的
CH3
烷烃,则按碳原子总数称“异某烷”。
烷烃的英文名称(了解): 表示碳原子数的词头+ane词尾组成。
methane(甲烷) heptane (庚烷) ethane (乙烷) octane (辛烷) propane(丙烷) nonane (壬烷) butane (丁烷) decane (癸烷) pentane (戊烷) undecane(十一烷) hexane (己烷) dodecane (十二烷)
环己烷船式的内能要比椅式高29.7kJ/mol。
H H
CH2
H H
H
H
CH2
椅式
2、 椅式构象中的a、e键
在12个碳氢键中,有6个键与对称轴平 行,叫直立键或称a键。另外6个键几乎垂 直于对称轴,叫做平伏键或e键。
3、翻环作用
当环己烷的一个椅式构象转变为另一个椅
式构象时,原来的a键将转变为e键,而
• 直链烷烃:与普通命名法相似。 • 支链烷烃: “长”、“多”、“小”。
即选择最长的碳链作为主链,使 主链上有尽可能多的取代基,使 取代基的位次较小。
编号:从靠近取代基的一端开始编号。
CH3CH2CHCH2CHCH3 CH3 CH3
2,4-二甲基己烷 2,4-dimethylhexane
(相同的取代基合并)
命名时按成环碳原子总数称: “螺[x.y]某烷 / 烯” (x < y) 。
编号从小环中与螺原子相邻的一个碳原子开始,经 螺原子再到大环.
81 7
2
6
4
5
3
Cl
5-氯螺[3.4]辛烷
7
61 2