菱形的性质公开课教案

合集下载

菱形的性质公开课教案

菱形的性质公开课教案

菱形的性质公开课教案一、教学目标1. 知识与技能:(1)理解菱形的定义及基本性质;(2)掌握菱形的对角线性质、四边形性质及与正方形的关系;(3)能够运用菱形的性质解决实际问题。

2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的观察能力和推理能力;(2)学会运用几何画板等工具,动态展示菱形的性质;(3)提高学生运用菱形性质解决几何问题的能力。

3. 情感态度与价值观:(1)培养学生对数学几何图形的兴趣;(2)培养学生合作、探究的学习态度;(3)培养学生运用数学知识解决实际问题的意识。

二、教学内容1. 菱形的定义及基本性质(1)引导学生观察菱形的图形,让学生描述菱形的特征;(2)介绍菱形的性质,如对角线互相垂直平分、四边相等等。

2. 菱形的对角线性质(1)引导学生探究菱形对角线的交点性质;(2)证明菱形对角线互相垂直平分。

3. 菱形的四边形性质(1)引导学生观察菱形的四边形性质;(2)证明菱形四边相等。

4. 菱形与正方形的关系(1)引导学生探讨菱形与正方形的联系;(2)证明正方形是特殊的菱形。

5. 菱形的实际应用(1)让学生运用菱形性质解决实际问题;(2)举例说明菱形在现实生活中的应用。

三、教学过程1. 导入新课(1)通过展示生活中的菱形图形,引导学生关注菱形;(2)提问:你们知道菱形有哪些性质吗?2. 探究菱形的性质(1)让学生观察、描述菱形的特征;(2)引导学生发现并证明菱形的对角线性质;(3)引导学生发现并证明菱形的四边形性质;(4)探讨菱形与正方形的关系。

3. 应用菱形的性质(1)让学生运用菱形性质解决实际问题;(2)举例说明菱形在现实生活中的应用。

4. 课堂小结(1)回顾本节课学习的菱形性质;(2)强调菱形性质在实际问题中的应用。

四、作业布置1. 总结菱形的性质,并写在日记本上;2. 找一找生活中的菱形图形,下节课分享。

五、教学反思课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度、作业完成情况等,以便对教学方法和教学内容进行调整和改进。

菱形的性质公开课教案

菱形的性质公开课教案
3. 第三章:菱形的角度性质
补充和说明:通过几何作图和计算,帮助学生发现和理解菱形内角相等和外角相等的性质。引导学生运用这些性质来解决相关问题。
4. 第四章:菱形的对称性质
补充和说明:通过实际操作和几何作图,让学生体验和理解菱形的轴对称性和中心对称性。展示一些实际应用例子,让学生欣赏和理解菱形的对称美。
第五章:菱形的应用与拓展
5.1 菱形的面积计算
引导学生回顾三角形和梯形的面积计算方法,引入菱形的面积计算方法。
解释菱形面积计算公式,并通过几何证明解释其正确性。
5.2 菱形的实际应用
引导学生思考菱形在实际生活中的应用,如图案设计、建筑装饰等。
展示一些菱形的实际应用例子,让学生欣赏并理解菱形的美丽和实用性。
9. 第九章:菱形的性质与几何证明
补充和说明:引导学生通过几何证明,深入理解和证明菱形的性质。提供一些几何题目,让学生应用菱形的性质来解决问题。
解释菱形对角线长度的性质,并证明其正确性。
2.2 菱形的对角线交点
引导学生观察菱形的对角线交点,发现交点将对角线分成相等的线段。
解释菱形对角线交点的性质,并证明其正确性。
第三章:菱形的角度性质
3.1 菱形的内角性质
引导学生观察菱形的内角,发现菱形的内角相等。
解释菱形内角性质,并证明其正确性。
3.2 菱形的外角性质
展示菱形的轴对称变换实例,并解释其几何性质。
8.2 菱形的中心对称变换
引导学生了解中心对称变换的概念,引入菱形的中心对称变换。
展示菱形的中心对称变换实例,并解释其几何性质。
第九章:菱形的性质与几何证明
9.1 菱形的性质证明
引导学生通过几何证明,证明菱形的性质,如对角线互相垂直、平分等。

菱形的性质教案

菱形的性质教案

菱形的性质教案教案标题:菱形的性质教案教案目标:1. 让学生了解菱形的定义和基本要素。

2. 探索菱形的性质,包括边长、角度和对角线。

3. 培养学生的观察能力和解决问题的能力。

教学步骤:步骤一:导入与激发兴趣1. 引导学生回顾正方形的性质,并询问学生是否了解其他类型的四边形。

2. 展示一些图形(其中包括菱形),并引导学生发现并讨论菱形的特点。

3. 提问:你能描述一下菱形的性质吗?菱形与其他四边形有何区别?步骤二:菱形的定义和要素1. 讲解菱形的定义:四条边相等, 对角线相等, 对角线互相垂直。

2. 引导学生观察和思考,理解菱形的定义,并把握住关键词汇和概念。

步骤三:菱形的性质探索1. 分组讨论:学生自由组成小组,每个小组分配一些菱形的图片或几何模型。

2. 学生观察,并提出关于菱形性质的问题,例如:每个角度的度数是多少?对角线长度有何规律?等等。

3. 学生归纳总结:每个小组汇报他们发现的共同点和规律,全班一起讨论并得出结论。

步骤四:菱形的性质验证1. 给学生一些举例菱形的问题,如:给出一条对角线的长度,能否确定菱形的面积?2. 学生通过计算和实践来验证并解答问题,展示他们对于菱形性质的理解与应用能力。

步骤五:巩固和拓展1. 学生完成一些练习题,巩固对菱形性质的理解。

2. 对于学习较快的学生,引导他们进行拓展学习,可以探究菱形的特殊情况,如正菱形。

步骤六:课堂总结1. 学生和教师共同总结本节课学到的关于菱形性质的知识,强调关键点和要点。

2. 鼓励学生提出问题或分享有趣的观察结果。

教学资源:1. 图形展示板或幻灯片,展示菱形和其他四边形的图片。

2. 菱形的几何模型或实物,供学生观察和探索。

3. 小组讨论和汇报的活动工具。

4. 练习题和课堂练习材料。

评估方式:1. 教师观察学生参与讨论和合作的程度。

2. 学生在小组和全班中的表现和汇报。

3. 学生完成的练习题和课堂练习的正确性和深度。

拓展活动:1. 学生自行寻找关于菱形的实际应用场景,并进行展示和分享。

《菱形的性质》教学设计

《菱形的性质》教学设计

《菱形的性质》教学设计《菱形的性质》教学设计作为一名辛苦耕耘的教育工作者,通常需要用到教学设计来辅助教学,教学设计是对学业业绩问题的解决措施进行策划的过程。

那么优秀的教学设计是什么样的呢?以下是小编精心整理的《菱形的性质》教学设计,欢迎大家分享。

一、教学目标1、知识与技能:经历菱形的性质的探究过程,掌握菱形的两条性质.2、过程与方法:(1)经历菱形性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力.(2)根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力.3、情感态度:在探究菱形的性质的活动中获得成功的体验,通过运用菱形的性质,锻炼克服困难的意志,建立自信心.二、教学重点和难点重点:菱形性质的探求.难点:菱形性质的探求和应用.三、教学过程活动1:课题引入思考:给你一张长方形的纸片,可以通过折叠、裁剪等方法如何得到一个菱形?答案:教师演示,将纸对折、再对折,然后沿图中的虚线剪下,就会得到菱形。

【设计意图】用图片引入课题可以很快吸引学生的注意力,同时激发学生的学习兴趣,为什么这样得到的图形就是菱形?什么样的图形叫菱形?活动2:认识菱形1.展示出我收集到的一些生活中的菱形图案,毛衣上的菱形图案、菱形耳环、办公室窗子的防护栏、自动收缩门、操场上地砖拼成的图案。

2.利用多媒体演示,将平行四边形的一条边平移到一个固定的位置后,让学生观察图形,引导学生观察教具的变化情况,引出菱形的定义:有一组邻边相等的平行四边形叫做菱形。

通过等式“平行四边形”+“一组邻边相等”=菱形,强化菱形的概念。

【设计意图】:引入菱形的定义,激发学生探究的欲望.活动3:菱形性质的探究观察得到的菱形,它是轴对称图形吗?有几条对称轴?对称轴之间有什么位置关系?你能看出图中哪些线段或角相等?学生容易发现菱形是轴对称图形而且有两条对称轴互相垂直,根据图形的轴对称性让学生口头表述出探究的结果.在此过程中要深入学生中,了解、观察学生的探究方法,接受学生的质疑,并及时的指导学生正确地进行探究。

数学《菱形的性质》教案

数学《菱形的性质》教案

数学《菱形的性质》教案教学目标:1. 了解菱形的定义及性质,掌握菱形的周长和面积的计算方法;2. 理解菱形对称性的概念和应用;3. 能够运用学到的知识解决实际问题。

教学重点:1. 菱形的定义及常见性质;2. 菱形的周长和面积的计算方法;3. 菱形的对称性及其应用。

教学难点:1. 菱形的周长和面积的计算方法;2. 菱形的对称性及其应用。

教学方法:讲解+案例分析。

教学步骤:一、导入新知识通过引导学生回顾正方形的性质,进而引出菱形的概念及性质。

二、菱形的定义及性质的讲解1. 菱形的定义:四边形的特殊情形,是四个相等且相互垂直的线段连接起来的形状。

2. 菱形的性质:(1)对角线相等:菱形的对角线相等,相交于垂直平分线;(2)对角线平分角:菱形的对角线平分相交角;(3)对边平行:菱形的对边平行;(4)相邻角互补:菱形的相邻角互补,也就是说,相邻的两个角之和为180度。

三、菱形的周长和面积的计算方法1. 周长:菱形的周长等于四条边的长度之和,即$L=4a$,其中$a$为菱形的边长。

2. 面积:菱形的面积等于对角线之积的一半,即$S=\frac{1}{2}d_1d_2$。

四、对称性及其应用1. 菱形的中心对称:菱形的中心即对角线的交点,菱形可以通过旋转180度而重合;2. 菱形的轴对称:菱形可以通过一个轴线进行对称,将菱形分为两个完全相同的部分;3. 菱形的应用:如菱形牌、菱形码等。

五、练习与拓展1. 让学生通过练习理解和掌握菱形的性质和计算方法;2. 拓展菱形的应用场景,如学生可以通过制作菱形牌、菱形手工、菱形跑道等体会菱形的应用。

六、总结与归纳通过小组讨论或者个人思考,让学生总结归纳菱形的相关知识,回顾此次课程的内容,加深对菱形的认识。

菱形的性质公开课教案

菱形的性质公开课教案

菱形的性质公开课教案一、教学目标:1. 知识与技能:(1)理解菱形的定义及基本性质;(2)掌握菱形的对角线性质、四条边的相等性质以及菱形的对角性质;(3)能够运用菱形的性质解决实际问题。

2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的观察能力、操作能力和推理能力;(2)学会运用几何画板等工具,直观地展示菱形的性质。

3. 情感态度价值观:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生分析问题、解决问题的能力。

二、教学重点与难点:1. 教学重点:(1)菱形的定义及其性质;(2)菱形的对角线性质、四条边的相等性质以及菱形的对角性质。

2. 教学难点:(1)菱形性质的推导与证明;(2)运用菱形性质解决实际问题。

三、教学准备:1. 教师准备:(1)教学课件;(2)几何画板软件;(3)菱形模型或图片;(4)练习题。

2. 学生准备:(1)学习菱形的定义及基本性质;(2)预习本节课的相关内容。

四、教学过程:1. 导入新课:(1)展示菱形模型或图片,引导学生观察;(2)提问:你们知道菱形吗?它有什么特点?2. 探究菱形的性质:(1)学生分组讨论,探究菱形的性质;(3)引导学生运用几何画板软件,直观地展示菱形的性质。

3. 讲解菱形的性质:(1)教师讲解菱形的对角线性质、四条边的相等性质以及菱形的对角性质;(2)引导学生通过举例、证明等方式,加深对菱形性质的理解。

4. 巩固练习:(1)学生独立完成练习题,检测对菱形性质的掌握程度;(2)教师点评答案,针对错误进行讲解。

五、课堂小结:2. 学生分享学习收获,教师给予鼓励和评价。

六、教学拓展:1. 引导学生思考:菱形在实际生活中有哪些应用?3. 课堂互动:学生分组,利用菱形性质设计有趣的几何图案。

七、课后作业:1. 完成练习题,巩固菱形性质的理解;2. 调查生活中应用菱形的地方,下节课分享。

八、教学反思:2. 学生评价学习收获,提出改进意见。

九、课堂评价:1. 学生自评:评价自己在课堂上的学习表现;2. 同伴评价:评价同伴在课堂上的表现;3. 教师评价:评价学生的学习效果,给予鼓励和指导。

第1课时 菱形的性质教案精选教案1

第1课时  菱形的性质教案精选教案1

第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质一、教学目的:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.三、例题的意图分析本节课安排了三个例题,例1是教材P3中的例2,例2是一道补充题,是为了巩固菱形的性质,例3一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.四、课堂引入1.(复习)什么叫做平行四边形?2.(引入)我们已经学习了平行四边形请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.五、例题分析例1 (教材P3例1)略例2(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例3 (教材P8例3)略六、随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.七、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.。

九年级数学上册《菱形的性质》教案、教学设计

九年级数学上册《菱形的性质》教案、教学设计
1.教学方法:
-采用启发式教学法,通过问题驱动引导学生主动探索菱形的性质。
-运用直观演示法,结合实际图形和模型,帮助学生形象理解菱形的特征。
-实施分组合作学习,鼓励学生互相交流,共同解决难题,培养团队协作能力。
-利用信息技术,如多媒体课件和数学软件,增强课堂教学的互动性和趣味性。
2.教学步骤:
-引入新课:通过生活中的实物或图片,如菱形饰品、建筑结构等,引发学生对菱形的关注。
-进一步提问:“我们已经学过很多四边形,那么菱形与其他四边形有什么不同呢?”激发学生的好奇心,为新课的学习做好铺垫。
2.教学目标:
-使学生了解菱形在生活中的广泛应用,感受几何图形的美。
-激发学生学习菱形性质的兴趣,为新课的学习打下基础。
(二)讲授新知
1.教学内容:
-讲解菱形的定义:菱形是指四条边长度相等的四边形。
-鼓励学生提问,耐心解答,帮助学生克服学习中的困难,增强学习的积极性。
-注重情感教育,鼓励学生面对挑战,培养坚持不懈、勇于探索的精神。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示一组生活中的菱形图案,如菱形装饰品、建筑设计中的菱形元素等,引导学生观察并思考这些图案的特点。
-提问:“大家是否能发现这些图案的共同之处?”通过学生回答,引出菱形的概念。
(五)总结归纳
1.教学活动设计:
-与学生一起回顾本节课所学的内容,总结菱形的性质及其应用。
-让学生尝试用自己的话概括菱形的特点,提高语言表达能力。
-对学生在课堂上的表现给予评价和鼓励,激发学生的学习积极性。
2.教学目标:
-帮助学生巩固所学知识,形成系统的知识结构。
-培养学生总结归纳的能力,提高学习的自主性。

菱形的性质 公开课获奖教案

菱形的性质  公开课获奖教案

18.2.2菱形第1课时菱形的性质1.掌握的定义和性质及菱形面积的求法;(重点)2.灵活运用菱形的性质解决问题.(难点)一、情境导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.二、合作探究探究点一:菱形的性质【类型一】利用菱形的性质证明线段相等如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD 延长线于F.求证:CE=CF.解析:连接AC.根据菱形的性质可得AC 平分∠DAB,再根据角平分线的性质可得CE=FC.证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAB.∵CE⊥AB,CF⊥AD,∴CE=CF.方法总结:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.【类型二】利用菱形的性质进行有关的计算如图,O是菱形ABCD对角线AC 与BD的交点,CD=5cm,OD=3cm.过点C 作CE∥DB,过点B作BE∥AC,CE与BE 相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.解析:(1)在直角三角形OCD中,利用勾股定理即可求解;(2)利用矩形的定义即可证明四边形OBEC为矩形,再利用矩形的面积公式即可直接求解.解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在直角三角形OCD中,OC=CD2-OD2=52-32=4(cm);(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形.又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形.∵OB=OD,∴S矩形OBEC=OB·OC=4×3=12(cm2).方法总结:菱形的对角线互相垂直,则菱形对角线将菱形分成四个直角三角形,所以可以利用勾股定理解决一些计算问题.【类型三】运用菱形的性质证明角相等如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.解析:根据“菱形的对角线互相平分”可得OD=OB,再根据“直角三角形斜边上的中线等于斜边的一半”可得OH=OB,∠OHB=∠OBH,根据“两直线平行,内错角相等”求出∠OBH=∠ODC,然后根据“等角的余角相等”证明即可.证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB,∴OH=1 2BD=OB,∴∠OHB=∠OBH.又∵AB∥CD,∴∠OBH=∠ODC,∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠DCO=90°.在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.方法总结:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.【类型四】运用菱形的性质解决探究性问题感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE =DF ,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB =BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE =DF,∠ADB=50°,∠AFB=32°,求∠ADE 的度数.解析:探究:△ADE与△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.解:探究:△ADE与△DBF全等.∵四边形ABCD是菱形,∴AB=AD.∵AB=BD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠DAB=∠ADB=60°,∴∠EAD =∠FDB=120°.∵AE=DF,∴△ADE≌△DBF;拓展:∵点O在AD的垂直平分线上,∴OA=OD.∴∠DAO=∠ADB=50°,∴∠EAD=∠FDB=130°.∵AE=DF,AD=DB,∴△ADE≌△DBF,∴∠DEA=∠AFB =32°,∴∠EDA=∠OAD-∠DEA=18°.方法总结:本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质的综合运用,解题时一定要熟悉相关的基础知识并进行联想.探究点二:菱形的面积已知菱形ABCD中,对角线AC 与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.163B.83C.43 D.8解析:∵四边形ABCD是菱形,∴AB =BC,OA=12AC=2,OB=12BD,AC⊥BD,∠BAD+∠ABC=180°.∵∠BAD=120°,∴∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=4,∴OB=AB2-OA2=42-22=23,∴BD =2OB =43,∴S 菱形ABCD =12AC ·BD =12×4×43=8 3.故选B. 方法总结:菱形的面积有三种计算方法:①将其看成平行四边形,用底与高的积来求;②对角线分得的四个全等三角形面积之和;③两条对角线的乘积的一半.三、板书设计 1.菱形的性质菱形的四边条都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.菱形的面积S 菱形=边长×对应高=12ab (a ,b 分别是两条对角线的长)通过剪纸活动让学生主动探索菱形的性质,大多数学生能全部得到结论,少数需要教师加以引导.但是学生得到的结论,有一些是他们的猜想,是否正确还需要证明,因此问题就上升到证明这个环节.在整个新知生成过程中,探究活动起了重要的作用.课堂中学生始终处于观察、比较、概括、总结和积极思维状态,切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础,更增强了敢于实践,勇于探索,不断创新和努力学习数学知识的信心和勇气.17.1 勾股定理第1课时 勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长; (2)S △ABC ; (3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2);(3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD=AC ·BC AB =6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE +S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

菱形性质教学设计公开课

菱形性质教学设计公开课

菱形性质教学设计公开课引言:在数学教学中,菱形是一个重要的几何图形。

菱形有许多独特的性质和特点,通过对菱形性质的教学,可以帮助学生培养逻辑思维、几何直观等方面的能力。

本文将针对菱形的性质设计一堂公开课,旨在帮助教师更好地教学,让学生更好地理解和掌握菱形的性质。

一、教学目标:1. 初步了解菱形的定义和性质;2. 掌握菱形的判定方法;3. 熟练运用菱形的性质解决相关问题。

二、教学准备:1. 教师准备:黑板、彩色粉笔、黑色粉笔;2. 学生准备:笔、纸。

三、教学过程:第一步:引入新知识(5分钟)教师挂黑板上的问题:“菱形有哪些特点?”引导学生回答,激发学生思考兴趣。

第二步:引入定义和性质(10分钟)教师简要介绍菱形的定义:“四边形的四条边相等,且相邻的两条边互相垂直。

”然后,分别讲解菱形的性质:1. 任意菱形的两组对角线互相垂直;2. 任意菱形的对角线平分相互垂直的角;3. 任意菱形的对角线平分菱形的内角、外角;4. 任意菱形的对角线相等。

第三步:判定菱形(15分钟)教师通过黑板上画出的图形,让学生判断是否为菱形。

通过让学生自己发现规律,教师引导学生总结判定菱形的方法:1. 一组对角线互相垂直;2. 对角线相等。

第四步:运用菱形的性质解决问题(15分钟)教师提供一些关于菱形的问题,让学生利用所学到的菱形性质进行解答:1. 若菱形ABCD的对角线AC和BD的交点为E,则证明AE=EC;2. 若菱形PQRS的对角线PQ和RS的交点为O,则证明∠POS=∠POR。

第五步:归纳总结(5分钟)教师和学生一起总结刚才学到的菱形性质,并让学生将这些性质写在笔记本上,以便课后复习。

第六步:设计练习题(5分钟)教师设计几道菱形性质相关的练习题,让学生进行自主练习。

然后,教师布置相关的作业,要求学生独立完成。

四、教学反思:通过设计这堂公开课,我试图通过引入问题和创设情境,让学生主动参与到菱形性质的学习中来。

在教学过程中,我注重激发学生的思考和发现能力,通过让学生自己总结规律,增强了学生的学习兴趣。

菱形的性质教案教学设计

菱形的性质教案教学设计

菱形的性质教案教学设计一、教学目标1. 知识与技能:(1)理解菱形的定义及基本性质;(2)学会运用菱形的性质解决几何问题。

2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的观察能力和动手能力;(2)培养学生运用几何推理和证明的能力。

3. 情感态度与价值观:(1)激发学生对几何学的兴趣;(2)培养学生的团队合作意识和勇于探索的精神。

二、教学内容1. 菱形的定义:(1)引导学生观察菱形的图形,让学生描述菱形的特征;(2)总结菱形的定义,即四条边相等的四边形。

2. 菱形的性质:(1)引导学生发现菱形的对角线互相垂直且平分;(2)引导学生发现菱形的对角相等;(3)引导学生发现菱形的四条边相等。

三、教学过程1. 导入:(1)利用实物或图片引导学生观察菱形;(2)让学生尝试描述菱形的特征,激发学生的好奇心。

2. 新课导入:(1)介绍菱形的定义;(2)引导学生探究菱形的性质。

3. 课堂讲解:(1)讲解菱形的对角线互相垂直且平分的性质;(2)讲解菱形的对角相等的性质;(3)讲解菱形的四条边相等的性质。

4. 课堂练习:(1)让学生完成相关的练习题,巩固所学知识;(2)引导学生运用菱形的性质解决实际问题。

四、教学评价1. 课堂讲解评价:(1)评价学生对菱形性质的理解程度;(2)评价学生对菱形性质的应用能力。

2. 课堂练习评价:(1)评价学生对练习题的完成情况;(2)评价学生在解决问题时的思维过程。

五、教学拓展1. 引导学生探究其他图形的性质,如正方形、矩形等;2. 引导学生运用菱形的性质解决更复杂的几何问题;3. 组织学生进行几何图形的设计和创作,提高学生的创新能力。

六、教学策略1. 采用问题驱动的教学方法,引导学生主动探究菱形的性质;2. 利用几何图形和实物模型,帮助学生直观地理解菱形的性质;3. 通过小组合作、讨论交流的方式,促进学生之间的互动和思考。

七、教学资源1. 几何图形和实物模型;2. 教学PPT和相关的教学素材;3. 练习题和答案解析。

菱形的性质公开课教案

菱形的性质公开课教案

菱形的性质公开课教案第一章:菱形的定义与性质1.1 菱形的定义引导学生回顾四边形的定义,引入菱形的概念。

通过实物展示或图形绘制,让学生观察并描述菱形的特征。

1.2 菱形的性质引导学生通过观察和推理,探索菱形的性质。

引导学生发现菱形的四条边相等,对角线互相垂直且平分。

引导学生证明菱形的对角线将菱形分成的角是直角。

第二章:菱形的面积计算2.1 菱形的面积公式引导学生回顾平行四边形的面积公式,引入菱形的面积公式。

通过实例演示或引导学生推理,让学生理解并掌握菱形的面积公式。

2.2 应用菱形的面积公式引导学生运用菱形的面积公式解决实际问题。

提供一些练习题,让学生练习计算菱形的面积。

第三章:菱形的对角线3.1 菱形的对角线性质引导学生回顾平行四边形的对角线性质,引入菱形的对角线性质。

通过图形绘制或实物展示,让学生观察并描述菱形的对角线性质。

3.2 菱形的对角线与菱形的性质引导学生探索菱形的对角线与菱形的性质之间的关系。

引导学生发现菱形的对角线互相垂直平分,且对角线的长度相等。

第四章:菱形的对称性4.1 菱形的轴对称性引导学生观察菱形的对称性,引入菱形的轴对称性。

通过实物展示或图形绘制,让学生观察并描述菱形的轴对称性。

4.2 菱形的中心对称性引导学生观察菱形的对称性,引入菱形的中心对称性。

通过实物展示或图形绘制,让学生观察并描述菱形的中心对称性。

第五章:菱形的实际应用5.1 菱形的在日常生活中的应用引导学生观察和举例菱形在日常生活中的应用,如珠宝、建筑等。

让学生分享自己发现的菱形应用实例,并进行讨论。

5.2 菱形的在数学中的应用引导学生探索菱形在数学中的运用,如菱形的对称性在坐标系中的应用。

提供一些数学问题,让学生运用菱形的性质进行解决。

第六章:菱形的构造与作图6.1 菱形的构造方法介绍菱形的构造方法,如使用直尺和圆规。

演示如何使用直尺和圆规构造一个菱形。

让学生尝试自己构造一个菱形,并互相检查。

6.2 菱形的作图技巧引导学生学习菱形的作图技巧,如如何画出菱形的对角线。

菱形的性质公开课教案

菱形的性质公开课教案

第一章特殊平行四边形1.1.1菱形的性质一、教学目标1、知识与技能:经历菱形的性质的探究过程,熟练掌握菱形的两条特有的性质。

2、过程与方法:(1)经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力.(2)根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力.3、情感态度:在探究菱形的性质的活动中获得成功的体验,通过运用菱形的性质,锻炼克服困难的意志,建立自信心.二、教学重难点教学重点:菱形性质的探求.教学难点:菱形性质的探求和应用.三、教具学具准备教具准备:多媒体矩形纸片直尺(或三角板)四、教学过程:(一)情境引入多媒体展示:生活中的菱形板书:菱形的性质(二)探索新知1、定义运用多媒体动态地展示将平行四边形的一边进行平移,即由平行四边形变菱形的过程。

学生活动:思考、交流、在老师指导下、归纳菱形的定义板书:一、菱形的定义:强调:菱形(1)是平行四边形;(2)一组邻边相等.2、探索性质(1).做一做下面我们一起做一个菱形(2).小组讨论。

引导学生从边、角、线及对称性方面进行探讨。

问题:1、从边来看(位置关系与数量关系)?2、从角来看(对角,邻角间有什么关系)?3、从对角线来看(位置关系与数量关系)?4、对角线分得的每组对角有什么关系?5、菱形是中心图形吗?如果是,对称中心在哪里?6、 菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴在哪里?对称轴之间有什么位置关系?(学生可能先大胆猜想或根据问题的提示,进而通过折叠、旋转各自手中菱形来推理验证自己的猜想,对于学生可能出现的合情的方法,老师应给予鼓励与肯定。

) (3)小组交流成果,概括菱形的性质1、菱形边的性质。

2、菱形角的性质。

3、菱形的对角线的性质。

4、菱形对称性。

教师强调,并板书:二、菱形的性质:(让学生动手操作后,有意识地利用自己的知识储备进行合理的研究,并合情地做出猜想.最后学由生口头表述性质,如所用的语言表述不恰当时及时给予纠正。

菱形的定义及其性质(教案)

菱形的定义及其性质(教案)

教案:菱形的定义及其性质第一章:菱形的定义1.1 引言向学生介绍菱形的概念,并提出问题:“你们认为菱形是什么样的图形?”引导学生通过观察实物或图片来猜测菱形的特征。

1.2 菱形的定义给出菱形的正式定义:“菱形是一个四边形,它的四条边都相等,且对角线互相垂直且平分。

”解释菱形的名称来源,菱形的特点像菱角一样。

1.3 菱形的性质引导学生观察菱形的图形,发现其性质:四条边相等对角线互相垂直对角线平分对方每个角都是直角第二章:菱形的对称性2.1 引言提出问题:“你们认为菱形有什么特殊的对称性吗?”引导学生思考菱形的对称性。

2.2 菱形的对称性给出菱形的对称性定义:“菱形具有轴对称和中心对称的性质。

”解释菱形的轴对称性:菱形有两组对边平行,可以沿两条对角线进行折叠,两边重合。

解释菱心的概念:菱形的中心点是两条对角线的交点,它是菱形的中心对称点。

2.3 菱形的对称性应用引导学生通过实际操作,画出菱形的轴对称和中心对称图形。

让学生尝试解决与菱形对称性相关的问题,如:如果给出一个菱形的一部分,能否确定整个菱形的形状?第三章:菱形的面积计算3.1 引言提出问题:“你们认为如何计算菱形的面积?”引导学生思考菱形面积的计算方法。

3.2 菱形的面积计算公式给出菱形面积的计算公式:“菱形的面积等于对角线之积的一半。

”解释公式背后的原理,通过实际操作或几何证明来说明。

3.3 菱形的面积计算应用引导学生通过实际操作,计算给定菱形的面积。

让学生尝试解决与菱形面积相关的问题,如:如果给出一个菱形的对角线长度,能否计算出其面积?第四章:菱形的构造4.1 引言提出问题:“你们认为如何构造一个菱形?”引导学生思考菱形的构造方法。

4.2 菱形的构造方法给出菱形的构造方法:“通过画两条互相垂直的线段,在对角线上分别标记四个点,连接相邻点即可得到菱形。

”解释菱形构造的原理,通过实际操作或几何证明来说明。

4.3 菱形的构造应用引导学生通过实际操作,尝试构造一个菱形。

菱形的性质教案

菱形的性质教案

菱形的性质教案
课题:菱形的性质
目标:学生能够理解并掌握菱形的性质,能够通过问题解决的方式运用菱形的性质。

教学过程:
第一步:导入
教师出示一张菱形的图片,引导学生观察并描述菱形的特点,如四条边长度相等,对角线相互垂直等。

第二步:概念解释
教师向学生解释菱形的定义:一个几何图形,有四条相等的边,并且对角线相互垂直。

第三步:菱形的性质
1. 四条边相等:教师向学生解释四条边相等的原因,并提供相应的例子进行验证。

2. 对角线相互垂直:教师讲解对角线的概念,并通过示意图说明对角线相互垂直的原因。

3. 对角线相等:教师向学生解释对角线相等的原因,通过相应的例子进行验证。

4. 内角之和:教师引导学生思考并发现菱形内角之和为360°,
并通过问题解决的方式进行验证。

第四步:例题练习
教师提供若干个菱形的例题,让学生通过运用菱形的性质进行解答,并在黑板上进行讲解和解答。

第五步:归纳总结
教师与学生一起总结菱形的性质,并进行概念的梳理和归纳。

第六步:拓展练习
教师提供更复杂的问题和练习,让学生通过综合运用菱形的性质进行解答,并在讲解过程中引导学生思考和发现。

第七步:小结复习
教师对菱形的性质进行小结复习,帮助学生巩固所学内容。

教学资源:菱形的图片、教学课件、例题练习题。

菱形的性质公开课教案

菱形的性质公开课教案

16.2.2菱形的性质(公开课教案)一、教学目标1、知识与技能:经历菱形的性质的探究过程,熟练掌握菱形的两条特有的性质。

2、过程与方法:(1)经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力.(2)根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力.3、情感态度:在探究菱形的性质的活动中获得成功的体验,通过运用菱形的性质,锻炼克服困难的意志,建立自信心.二、教学重难点教学重点:菱形性质的探求.教学难点:菱形性质的探求和应用.三、教具学具准备教具准备:多媒体矩形纸片直尺(或三角板)四、教学过程:(一)情境引入多媒体展示:生活中的菱形板书:菱形的性质(二)探索新知1、定义运用多媒体动态地展示将平行四边形的一边进行平移,即由平行四边形变菱形的过程。

学生活动:思考、交流、在老师指导下、归纳菱形的定义板书:一、菱形的定义:强调:菱形(1)是平行四边形;(2)一组邻边相等.2、探索性质(1).做一做下面我们一起做一个菱形将一个矩形的纸对折两次,沿图中虚线剪下,再打开(同桌互相帮助)B(2).小组讨论。

引导学生从边、角、线及对称性方面进行探讨。

问题:1、从边来看(位置关系与数量关系)?2、从角来看(对角,邻角间有什么关系)?3、从对角线来看(位置关系与数量关系)?4、对角线分得的每组对角有什么关系?5、菱形是中心图形吗?如果是,对称中心在哪里?6、菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴在哪里?对称轴之间有什么位置关系?(学生可能先大胆猜想或根据问题的提示,进而通过折叠、旋转各自手中菱形来推理验证自己的猜想,对于学生可能出现的合情的方法,老师应给予鼓励与肯定。

)(3)小组交流成果,概括菱形的性质1、菱形边的性质。

2、菱形角的性质。

3、菱形的对角线的性质。

4、菱形对称性。

教师强调,并板书:二、菱形的性质:(让学生动手操作后,有意识地利用自己的知识储备进行合理的研究,并合情地做出猜想.最后学由生口头表述性质,如所用的语言表述不恰当时及时给予纠正。

《菱形的性质》优秀教案

《菱形的性质》优秀教案

学习目标:1通过折、剪纸张的方法,探索菱形独特的性质。

2通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。

学习重点难点:重点:菱形的概念和菱形的性质,菱形的面积公式的推导。

难点:菱形的性质的理解及菱形性质的灵活运用。

学习方法:自主探究与合作交流学习过程:一、预习导学1. 什么叫平行四边形?平行四边形有哪些性质?二、学习探究:1.探究1:菱形的意义归纳: 的四边形叫做菱形,生活中的菱形有 。

2.探究2菱形的性质既然菱形是平行四边形,那么它具有平行四边形的哪些性质?边:角:对角线:对称性:(2)但菱形是特殊的平行四边形,它还具有一些特殊性质。

下面我们来进一步探究菱形其他性质。

归纳:性质1: 符号语言性质2: 符号语言已知:求证:证明:探究2:对比菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:归纳:菱形的性质:边: 满都户九年一贯制学校九年(上)数学导学案 课 题:111菱形的性质 课 时:1角:对角线:对称性:2.例题解析例1如图1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长。

3应用如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,已知AB=5cm ,AO=4cm ,求BD 的长三、巩固延伸1填空(1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。

(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。

(3)已知:菱形的周长是2021,两个相邻的角的度数比为1:2,则较短的对角线长是 。

(4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。

2解答题:如图,在菱形ABCD 中,周长为8cm ,∠BAD=12021对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。

四、疑难反馈:(1)你有哪些收获?(2)你还有哪些疑惑? 作业:习题11 AB CDO。

菱形的性质教案教学设计

菱形的性质教案教学设计

菱形的性质教案教学设计一、教学目标1. 知识与技能:(1)理解菱形的定义及性质;(2)学会运用菱形的性质解决几何问题。

2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)培养学生的逻辑思维能力和几何直观能力。

3. 情感态度与价值观:(1)激发学生对几何图形的兴趣;(2)培养学生的团队合作精神,提高学生的问题解决能力。

二、教学内容1. 菱形的定义:介绍菱形的定义,即四条边相等的四边形。

2. 菱形的性质:(1)四条边相等;(2)对角线互相垂直平分;(3)对角相等;(4)邻边垂直。

3. 菱形的判定:介绍判定一个四边形为菱形的条件。

三、教学过程1. 导入:通过展示实物或图片,引导学生观察并提问:“你们认为什么样的四边形可以称为菱形?”2. 新课讲解:(1)讲解菱形的定义,引导学生通过观察、操作,发现菱形的性质;(2)讲解菱形的性质,引导学生通过推理、证明,验证菱形的性质;(3)讲解菱形的判定,引导学生运用判定条件判断一个四边形是否为菱形。

3. 练习与讨论:(1)出示练习题,让学生独立完成,巩固菱形的性质;(2)组织学生进行小组讨论,分享解题心得,提高学生的合作能力。

四、教学评价1. 课堂问答:检查学生对菱形定义和性质的理解程度;2. 练习题:评估学生对菱形性质的掌握情况;3. 小组讨论:评价学生的团队合作精神和问题解决能力。

五、教学资源1. 实物或图片:用于导入和引导学生观察;2. 练习题:用于巩固知识和评估学生的掌握情况;3. 几何画图工具:用于引导学生操作和推理。

六、教学策略1. 利用几何画图工具,动态展示菱形的性质,增强学生对菱形性质的理解;2. 通过小组讨论、互动交流,激发学生的思考,提高学生的参与度;3. 设计具有梯度的练习题,让学生在解决问题中巩固菱形的性质。

七、教学重点与难点1. 教学重点:掌握菱形的定义、性质及判定;2. 教学难点:理解菱形性质的证明及应用。

八、教学计划1. 课时安排:本节课计划课时为45分钟;2. 教学步骤:(1)导入(5分钟):展示实物或图片,引导学生观察并提问;(2)新课讲解(15分钟):讲解菱形的定义、性质及判定;(3)练习与讨论(15分钟):出示练习题,组织学生进行小组讨论;(4)总结与评价(10分钟):总结本节课的主要内容,进行教学评价;(5)课后作业(5分钟):布置相关作业,巩固所学知识。

菱形的性质教案

菱形的性质教案

菱形的性质教案一、教学目标1.了解菱形的定义和性质;2.能够判断图形是否为菱形;3.能够找出菱形的特征,并运用相关性质解决问题。

二、教学重难点1.菱形的定义和性质;2.菱形的判定和特征的运用。

三、教学准备学生教材、白板、黑板笔、教学PPT。

四、教学过程1.引入新知识(7分钟)上演一段以菱形为主题的小电影,激发学生学习的兴趣,引出菱形的主题。

2.导入新知识(8分钟)教师将“菱形”这一词展示在黑板上,请学生读出这个词,并思考它是什么意思。

(板书)菱形:指四条边长度相等,且对角线相互垂直的四边形。

3.理论学习(15分钟)(1)通过PPT展示菱形的定义,并请学生朗读定义。

(2)教师示范如何查找、判断图形是否为菱形,并通过例题解释方法。

然后,由学生自己完成其他几个题目的判断。

(3)教师板书菱形的性质(如果方便,可以画图演示):a.菱形的两条对角线相等;b.菱形的两条对角线互相垂直;c.相邻的两个角是锐角,相对的两个角是钝角;d.菱形是正方形的特例。

4.巩固练习(15分钟)请学生认真阅读教材上关于菱形的知识点,并完成相关练习题。

5.拓展运用(15分钟)(1)请学生自行在教室或身边环境中找出含有菱形特征的图形,并将其记录在作业本上。

(2)设想一些与菱形相关的情景,让学生运用菱形的性质解决问题。

例如:小明手绘的两个形状非常相似,但无法确定是否为菱形,请你判断并说明理由。

某地有一块菱形石碑,已知一条对角线长为12米,请推测该菱形的周长。

6.课堂小结(5分钟)教师进行课堂小结,强调学生应该掌握的重点和难点。

并布置下节课的预习任务。

五、教学反思本节课通过引入新知识、导入新知识、理论学习、巩固练习、拓展运用和课堂小结等环节,有助于学生对菱形的定义和性质有更加深入的了解和掌握。

在学生的学习过程中,教师应多给予学生一些实际问题的启发,来激发学生的思维和动手实践的能力。

在教学过程中,也要对学生的实际操作进行指导和监督,引导学生在实际问题中应用菱形的性质进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)第一章特殊平行四边形1.1.1菱形的性质一、教学目标1、知识与技能:经历菱形的性质的探究过程,熟练掌握菱形的两条特有的性质。

2、过程与方法:(1)经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力.(2)根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力.3、情感态度:在探究菱形的性质的活动中获得成功的体验,通过运用菱形的性质,锻炼克服困难的意志,建立自信心.二、教学重难点教学重点:菱形性质的探求.教学难点:菱形性质的探求和应用.三、教具学具准备教具准备:多媒体矩形纸片直尺(或三角板)四、教学过程:(一)情境引入多媒体展示:生活中的菱形板书:菱形的性质(二)探索新知1、定义运用多媒体动态地展示将平行四边形的一边进行平移,即由平行四边形变菱形的过程。

学生活动:思考、交流、在老师指导下、归纳菱形的定义板书:一、菱形的定义:强调:菱形(1)是平行四边形;(2)一组邻边相等.2、探索性质(1).做一做下面我们一起做一个菱形将一个矩形的纸对折两次,沿图中虚线剪下,再打开(同桌互相帮助)(2).小组讨论。

引导学生从边、角、线及对称性方面进行探讨。

问题:1、从边来看(位置关系与数量关系)?2、从角来看(对角,邻角间有什么关系)?3、从对角线来看(位置关系与数量关系)?4、对角线分得的每组对角有什么关系?5、菱形是中心图形吗?如果是,对称中心在哪里?6、菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴在哪里?对称轴之间有什么位置关系?(学生可能先大胆猜想或根据问题的提示,进而通过折叠、旋转各自手中菱形来推理验证自己的猜想,对于学生可能出现的合情的方法,老师应给予鼓励与肯定。

)(3)小组交流成果,概括菱形的性质1、菱形边的性质。

2、菱形角的性质。

3、菱形的对角线的性质。

4、菱形对称性。

教师强调,并板书:二、菱形的性质:(让学生动手操作后,有意识地利用自己的知识储备进行合理的研究,并合情地做出猜想.最后学由生口头表述性质,如所用的语言表述不恰当时及时给予纠正。

)(三)、例题精讲教师活动:屏幕呈现例题,指导学生观看问题,并点评解题思路及过程,最后屏幕呈现详细解题过程,供学生参考。

例1:如图,在菱形ABCD中,∠BAD=2∠B,试求出∠B的度数,并说明△ABC是等边三角形解:(1)在菱形ABCD中,∠B+∠BAD=180°(两条线平行,同旁内角互补)又∵∠BAD=2∠B ∴∠B=60°(2)在菱形ABCD中,AB=BC(菱形的四条边都相等)又∵∠B=60°∴△ABC是等边三角形(一个角为60º的等腰三角形是等边三角形)例2:如图,已知菱形ABCD的对角线AC=8cm,BD=6cm,求这个菱形的周长。

解:∵AC=8cm,BD=6cm∴AO=4cm, BO=3cm(菱形的对角线互相平分)∴AB=5cm(勾股定理)∴菱形ABCD的周长=4AB=20cm(菱形的四条边都相等) (四)知识检测,学习反馈学生活动:完成屏幕上展示的练习,并每题由一名学生来说出答案及原因。

教师活动:屏幕展示练习:1、对于以下图形(1)矩形(2)等边三角形(3)平行四边形(4)菱形(5)圆(6)线段,既是轴对称图形又是中心对称图形的有( D )A、1个B、2个C、3个D、4个2、已知菱形的两条对角线长分别是10和24,则菱形的周长为__52___。

3、如图,在菱形ABCD中,AB=5cm, AO=4cm,求这一菱形的周长与两条对角线的长度。

解:这一菱形的周长=4AB=4×5=20cm 对角线AC=2AO=2×4=8cm ∵BO=3cm(勾股定理)∴BD=2BO=2×3=6cm(五)、课堂小结这堂课你学到了什么?1、菱形的定义:一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:(1)、菱形边的性质。

(2)、菱形角的性质。

(3)、菱形的对角线的性质。

(4)、菱形对称性。

3、应用:1.1.2菱形的判定一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.二、教学重点: 菱形判定方法的探究.三、教学难点: 菱形判定方法的探究及灵活运用.四、教学过程:活动1、引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。

(2)菱形的性质1 菱形的两组对边分别平行,四条边都相等;性质2 菱形的两组对角分别相等,邻角互补;性质3 菱形的两条对角线互相平分,菱形的两条对角线互相垂直,且每一条对角线平分一组对角。

2、导入(1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么?根据菱形的定义可知:一组邻边相等的平行四边形是菱形.所以只要再有一组邻边相等的条件即可.(2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法【问题牵引】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。

问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形。

教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在□ABCD中,对角线AC⊥BD,求证:□ABCD是菱形。

分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO,由∠AOB=∠AOD=90º及AO=AO,得ΔAOB≌ΔAOD,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD是菱形。

【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1):对角线互相垂直的平行四边形是菱形。

提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。

对角线互相垂直且平分的四边形是菱形。

活动3、菱形第二个判定方法的应用例3 如图,如图,□ABCD的对角线AC、BD相交于点O,且AB=5,AO=4,BO=3,求证:□ABCD是菱形。

思路点拨:由于平行四边形对角线互相平分,构成了△ABO是一个三角形,•而AB=5,AO=4,BO=3,由勾股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。

活动4、探究与归纳菱形的第三个判定方法【操作探究】过程: 先画两条等长的线段AB、AD,然后分别以B、D 为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。

得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。

学生进行几何论证,教师规范学生的证明过程。

【归纳定理】从一般的四边形直接判定菱形的方法(判定定理2):四边相等的四边形是菱形。

活动5、菱形第三个判定方法的应用如图,顺次连接矩形ABCD各边的中点,得到四边形EFGH,求证:四边形EFGH是菱形。

思路点拨:方法一,由中点联想到连接矩形对角线BD、AC,可得AC=BD。

利用三角形中位线等于底边的一半,证明EF=FG=GH=EH。

根据判定定理,所以四边形EFGH是菱形。

方法二:通过证明图中四个Rt△全等,得到EF=FG=GH=EH。

活动6、随堂练习练习1:判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.练习2:填空。

如图:□ABCD的对角线AC与BD相交于点O,(1)若AB=AD,则□ABCD是形;(2)若AC=BD,则□ABCD是形;(3)若∠ABC是直角,则□ABCD是形;(4)若∠BAO=∠DAO,则□ABCD是形。

活动7、评价和反思1、通过探究,本节课你得到了哪些结论?有什么认识?2、菱形的判定方法有哪些?2.1矩形的性质与判定一、教学目标:1. 知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法;掌握矩形的判定方法,能根据判定方法进行初步运用。

2. 过程与方法:在探索判定方法的过程中发展学生的合理推理意识、主动探究的习惯,在画矩形的过程中,培养学生动手实践能力,积累数学活动经验。

3. 情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索的精神和独立思考合作交流的良好习惯,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

通过与他人的合作,培养学生的合作意识和团队精神。

二、教学重点与难点:教学重点:探索矩形的判定方法、突破方法:为了突出重点,以学生自主探索、合作交流为主,提出问题,让学生动眼观察,动脑猜想,动手验证,进而掌握矩形的判定方法。

教学难点:判定方法的理解和初步运用,突破方法采用教师引导和学生合作的教学方法,及化归的数学思想。

三、教具准备:教师:三角板、圆规学生:三角板、圆规、白纸四、教学过程(一)自学导纲1、创设情境导入新课师:请同学们观察教室的门窗是什么形状?工人师傅在制作这些门窗时,是怎样验证它们是矩形的?大家想不想知道?本节老师将带领大家一起探讨这一问题。

(板书课题 20.2 矩形的判定)2、出示导纲,学生自学师:请同学们自学教材P107,独立完成下列问题导纲知识性问题1~4。

(二)合作互动探究新知1、师:哪们同学愿意将你自学的成果展示给大家,其他同学注意倾,看有没有与自己不同的在方。

生、汇报师:大家完成的很好,请猜想它是真命题还是假命题?你能证明一下你的猜想吗?请同学们用圆规和直尺画对角线相等的平行四边形,并与同桌交流一下,这是个什么图形?生:汇报师:这像个矩形,如何用逻辑推理的方法验证,请同学们小组合作,讨论验证。

生:小组合作交流师:请同学们说说你的证明过程(学生回答)你们为什么想到用这种方法?通过动手操作和逻辑推理明白它是个真命题,我们把它做为矩形的判定定理1(板书定理1)判定定理1 对角线相等的平行四边形是矩形。

2、用几何符号应怎样表示?3 、刚才我们验证了猜想1,那么猜想2呢?还请同学们小组之间相互交流讨论合作完成导纲探究性问题3。

请同学们将你思考的结果告诉大家。

有没有不同的意见。

有三个角是直角的四边形是矩形吗?为什么?学生独立思考并回答。

相关文档
最新文档