一次函数与几何图形综合题
专题08 一次函数与几何综合的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)
专题08一次函数与几何综合的五种考法类型一、等腰三角形存在性问题(1)求直线CB的解析式;(2)点E在x轴上,【答案】(1)12y x =+(2)(4,0)、(16,0)-、当10BE AB ==时,1E 点的坐标为(4,0),2E 点的坐标为当AB AE =时,点B 与点E 是关于y 轴对称,E 当EA EB =时,设点E 坐标为(,0)x ,则2228(6)x x +=+,解得:73x =4E 点的坐标为7(,0)3,(1)当点P 在线段BO 上时,①求证:AOP BOQ ≌△△;②若点P 为BO 的中点,求△(2)在点P 的运动过程中,是否存在某一位置,的坐标;若不存在,请说明理由.当点P 在线段OB 上时,若OC OQ =,由于OP OQ =,则有在OCP △中,OPC AOP ∠=∠+OC OP ∴>,即OC OQ =不可能;若CQ OQ =,由于OP OQ =,则有过点C 作CH x ⊥轴于点H ,显然即CQ OQ =不可能,∴当COQ 是等腰三角形时,只有当点P在BO的延长线上时,同理可得:(0,424)P--,综上所述:(0,424)P-或P【点睛】本题考查了一次函数与几何图形综合,图形是解题的关键.【变式训练2】如图,在平面直角坐标系中,一次函数分别交于点B、A,点P为y(1)求点A、B的坐标;(2)当点P在y轴负半轴上,且ABP的面积为6时,求点(3)是否存在点P使得ABP为等腰三角形?若存在,求出点设()()0,0P n n <,则2PA =-所以()22224PA n n n =-=-+所以224416n n n -+=+解得3n =-,所以此时点P 的坐标为(0,3-综上所述,存在点P 使得ABP 例.如图,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,点C 是OB 的中点.(1)求点C 的坐标:(2)在x 轴上找一点D ,使得ACD ABC S S = ,求点D 的坐标;(3)在x 轴上是否存在一点P ,使得ABP 是直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.【答案】(1)()0,2C (2)点D 的坐标为()4,0-或()0,0(3)存在,满足条件的P 点的坐标为()0,0或()8,0(1)填空:b =,m =,k =;(2)如图2,点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交轴于点F .①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.【答案】(1)8,2-,12-(2)①45;②点E 的坐标为()0,4219-;③点D 的坐标为()20,或()254,0-【分析】(1)根据待定系数法求解即可;(2)①过点A 作AH y ⊥轴于点H ,作AG x ⊥轴于点G ,根据勾股定理得到()222262480AE AC ==++=,于是得到结论;②利用勾股定理求出219HE =,可得2194OE =-,即可得答案;③分两种情况讨论,当90EDF ∠=︒时,求出135ADC ∠=︒,得45ADO ∠=︒,得DG AD ==得点D 坐标;当90DFE ∠=︒时,设DF x =,则8DE DC x ==-,由勾股定理得:()()2228454x x -=+-,求出DF ,得点D 坐标.【详解】(1)解:把()40B -,代入2y x b =+,∵()024b =⨯-+,∴8b =,∴直线AB :28y x =+,把()4A m ,代入28y x =+,∴2m =-,∵ACD 翻折得到AED△∴()222262480AE AC ==++=,∴45AE =②当E 点落在y 轴上时,在Rt AHE △中,∵222AE AH HE -=∴222802HE AE AH =-=-=∴2194OE HE OH =-=-,∴点E 的坐标为()04219-,;③如下图,当90EDF ∠=︒时,由翻折得ADC ∠∴1359045ADO ∠︒︒=-=︒,∵4AG =,∴4DG AG ==,∴422OD DG OG =-=-=,∴点D 的坐标为()20,;如下图,当90DFE ∠=︒时,80AE AC ==设DF x =,则8DE DC x ==-,在Rt DEF △中,由勾股定理得:(解得:252x =-,∴254OD DF OF =-=-,∴点D 的坐标为()254,0-,综上,点D 的坐标为()20,或(2【点睛】本题考查了一次函数的综合题,勾股定理,角平分线的性质,直角三角形的性质和判定,翻折的性质,解题的关键是作辅助线.(1)如图1,求出AOP 的面积;(2)如图2,已知点C 是直线85y x =上一点,若APC △是以AP 为直角边的等腰直角三角形,求点C 的坐标.【答案】(1)AOP 的面积为40(2)点C 的坐标为()1016,或162,⎛⎫⎪∵直线l x ∥轴,点B ∴8PH OB ==,∴12AOP S OA PH == 故答案为:40;(2)设点(),8P n (n ≠过点P 作直线FE ,交APC 为等腰直角三角形,则90APE FPC ∴∠+∠=︒,APE FCP ∴∠=∠,90PEA CFP ∠=∠=︒ ,(AAS)PEA CFP ∴ ≌,同理可得:(AAS)AMP ANC ≌AM AM ∴=且MP NC =,8|10|m ∴=-或8105n m -=解得:2565m n =⎧⎪⎨=⎪⎩或181945m n =⎧⎪⎨=⎪⎩(1)求直线l 的解析式;(2)求证:ABC 是等腰直角三角形;(3)将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与在直线CD 上存在点P ,使得A △的坐标.【答案】(1)142y x =-+∴90DPE A PB ''∠=∠=︒,∴A PD B PE ''∠=∠,∵90A FP CEB ''∠=∠=︒,∴A FP CEB '' ≌,∴4,PE PF A F B E ''===,此时点P 的坐标为()44--,;如图,若以点P 为直角顶点时,过点同理此时点P 的坐标为()44-,;如图,若以点B '为直角顶点时,过点P 作同理A OB B GP ''' ≌,∴44OB PG OF t '====+,B '∴8t =-或0(舍去),∴8B G OA ''==,∴12OG =,∴此时点P 的坐标为()412--,;如图,若以点B '为直角顶点时,过点B '作B M CD '⊥轴于点M ,则4B M OF '==,OB MF '=,同理PB M A B O ''' ≌,∴44B M B O t ''===+,82PM OA t '==+,∴0=t (舍去);如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4482t t --=---,解得:8t =-,∴8PF =,此时点P 的坐标为()48-,;如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4824t t --=++,解得:163t =-,∴83PF =,∴此时点P 的坐标为84⎛⎫--,;(1)①A 的坐标是_____________②求直线AB 的表达式;(2)点P 是直线y =(3)当ABP 为等腰直角三角形时,请直接写出【答案】(1)①(0,3【分析】(1)把x(3)解:如图1,当点P 为顶点时,过点P 作PE x ⊥轴,过点A 作AF 垂直于PE 的延长线于点F ,∵ABP 是等腰直角三角形,AP PB ∴=,APB ∠=90︒,=90FAP APF +∠︒ ,=90APF BPE ∠+∠︒,=FAP BPE ∴∠∠,在AFP 和PEB △中,F E FAP EPB AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFP PEB AAS ∴≅ ,AF PE ∴=,BE PF =,===90O F E ∠∠∠︒ ,∴四边形AOEF 是矩形,==AF PE OB BE ∴+,===AO FE FP PE BE PE ++,==2AO BE OB BE BE OB +++,()0,3A 、()1,0B ,=3AO ∴,1OB =,21=3BE ∴+,=1BE ∴,==31=2PE AO BE --,==11=2OE OB BE ∴++,∴点P 的坐标为()2,2;如图2,当点B 为顶点时,过点P 作PG x ⊥轴,ABP 是等腰直角三角形,AB BP ∴=,=90ABO OAB ∠+∠︒ ,=90ABO PBG ∠+∠︒,=OAB PBG ∴∠∠,在AOB 和BGP 中,O PGB OAB PBG AB BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB BGP AAS ∴≅ ,=PG OB ∴,BG AO =,()0,3A 、()1,0B ,=3AO ∴,1OB =,==13=4OG OB BE ∴++,=1PG ,∴点P 的坐标为()4,1;如图3,当点A 为顶点时,过点P 作PM y ⊥轴,PAB △是等腰直角三角形,PA AB ∴=,=90PAB ∠︒,90MAP OAB ∠+∠=︒ ,90MAP MPA ∠+∠=︒,=MPA OAB ∴∠∠,在PMA △和AOB 中,M O MPA OAB AP AB ∠=∠⎧⎪∠=∠⎨⎪=⎩()PMA AOB AAS ∴≅ ,=MP AO ∴,=MA OB ,()0,3A 、()1,0B ,=3AO ∴,1OB =,3MP ∴=,==13=4OM MA AO ++,∴点P 的坐标为()3,4,故答案为:()2,2;()4,1;()3,4.【点睛】本题考查了一次函数的综合运用,等腰直角三角形的性质和矩形的性质及全等三角形的性质的判定,熟练求一次函数的解析式和构造全等三角形是解题的关键.类型四、全等问题(1)点A坐标为________,点B坐标为(2)当BOP△的面积是4时,求点(3)在y轴上是否存在点Q,使得以接写出所有符合条件的点P的坐标,否则请说明理由.【答案】(1)(3,0),(0,4),12 5(2)4(2,)20(2,)125OM OQ ==,12(0,)5Q 或12(0,)5-,6(5P ,12)5或24(5,12)5-;②如图3,图4,当OMP PQO ≌△△时,125PQ OM ∴==,12(5P ∴-,36)5或12(5,4)5;综上所述:P 点坐标为(65,12)5或24(5,12)5-或12(5-,36)5或12(5,4)5.【点睛】本题考查一次函数的图象及性质,判定及性质,分类讨论,数形结合是解题的关键.【变式训练1】如图,一次函数364y x =+的图象与于点C ,点P 在直线AB 上运动,点Q 在(1)求点A ,B 的坐标;(2)求OC 的长;(3)若以O ,P ,Q 为顶点的三角形与【答案】(1)()8,0A -,(B (3)Q 的坐标为120,5⎛⎫ ⎪⎝⎭或0,⎛ ⎝则OC PQ=,∴245PQ =,∴245m=-,∴33241266 4455m⎛⎫+=⨯-+=⎪⎝⎭,∵PQ OC=,∴245 PQ=.∴245=m,∴33244866 4455m+=⨯+=,∴48 0,5Q⎛⎫ ⎪⎝⎭;则245 OQ OC==,∴240,5Q⎛⎫ ⎪⎝⎭;综上所述,Q的坐标为12 0,5⎛⎫ ⎪⎝⎭或(1)求点B 的坐标及直线BC 的函数表达式;(2)在坐标系平面内,存在点D ,使以点A ,B ,D 为顶点的三角形与ABC 全等,画出ABD ,并求出点D 的坐标.【答案】(1)点B 的坐标为(0,3),33y x =-+;(2)图见解析,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【分析】(1)将点点(3A -,0)代入解析式得出3b =,继而得出点B 的坐标为(0,3),根据:3:1OB OC =得出1OC =,即点C 的坐标为(1,0),然后待定系数法求解析式即可求解;(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况,根据全等三角形的性质即可求解.【详解】(1)解:∵直线AB :y x b =+过点(3A -,0),03b ∴=-+,3b ∴=.当0x =时,3y x b b =+==,∴点B 的坐标为(0,3),即3OB =.OB :3OC =:1,1OC ∴=.点C 在x 轴正半轴,∴点C 的坐标为(1,0).设直线BC 的解析式为()0y kx c k =+≠,将(0B ,3)、(1C ,0)代入y kx c =+,得:30c k c =⎧⎨+=⎩,解得:33k c =-⎧⎨=⎩,∴直线BC 的函数表达式为33y x =-+.(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况考虑:如图①:①当BAD ABC ≌时,3OA OB == ,45BAC ∴∠=︒.BAD ABC ≌,45ABD BAC ∴∠=∠=︒,4BD AC ==,BD ∴∥AC ,∴点D 的坐标为(4-,3);②当ABD ABC ≌时,45BAD BAC ∠=∠=︒,4AD AC ==,90DAC ∴∠=︒,∴点D 的坐标为(3-,4).如图②当ABD BCA ≌时,4BD AC ==,1OD ∴=,∴点D 的坐标为(0,1)-.综上所述,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【点睛】本题考查了一次函数与几何图形,坐标与图形,全等三角形的性质与判定,数形结合是解题的关键.【变式训练3】如图①,已知直线24y x =-+与x 轴、y 轴分别交于点A 、C ,以OA OC ,为边在第一象限内作长方形OABC .类型五、角度之间关系过点P 作EF y ⊥轴于点E ,过点H 作∴45POG ∠=︒,∵()3,1P ,∴1,3EP OE ==∵OA OB =,45AOB ∠=︒∴AOB 是等腰直角三角形,∵45APO EOP ∠+∠=︒,PQO APO∠=∠∴45PQO EOP ∠+∠=︒又∵9045EOP GOQ POG ∠+∠=︒-∠=∴GOQ GQO∠=∠∴GQ GO =,即点G 在OG 的垂直平分线上,∵90OEP PFH OPH ∠=∠=∠=︒,∴90OPE FPH PHF ∠=︒-∠=∠,(1)求直线AB的关系式;(2)连接PD,当线段PD AB⊥时,直线AD上有一点动M∴1284,2525S ⎛⎫-- ⎪⎝⎭,∵45,DKR DAO KT RK ∠=∠=︒⊥∴45DKR DKT ∠=︒=∠,∴KT KP =,∴P ,T 关于直线AD 对称,连接TS 交AD 于M ,交x 轴于N 4y x =-+12x =-得y =∵3,4OB OA ==,∴34PH PH AH HW==,设3PH t =,则4AH HW t ==∴5PW t OW ==,∵4OW HW AH OA ++==,∵12POA BAO ∠=∠,∴2POA APO POA ∠+∠=∠∴APO POA ∠=∠,∴4AO AP ==,∵34PF OB AF AF ==,∴165AF =36(1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线于点Q .①若PQB △的面积为83,求点M 的坐标.②连接BM ,如图2,在点M 的运动过程中是否存在点P ,使∠求出点P 坐标,若不存在,请说明理由.则113(3)22PQ m m m =-+-+=,则PQB ∆的面积21122PQ BD m =⋅=故点M 的坐标为43(3,0)或4(-②如图,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=︒ ,90BMC BCA ∴∠+∠=︒(1)求点A,B的坐标;(2)若直线AC⊥AB交y轴负半轴于点(3)在y轴上是否存在点P,使以求出点P的坐标;若不存在,请说明理由.【答案】(1)A(−1,0);B(0,2)(2)1.25;(3)y轴上存在点P,使以A,当BA=BP时,BP=∴点P1的坐标为(0,当PB=PA时,设OP ∴(2−x)2=1+x2,解得:∴点P3的坐标为(0,当AB=AP时,OP=∴点P4的坐标为(0,综上所述:y轴上存在点标为(0,2+5)或(0(1)填空:=a ______,b =______;(2)在射线CD 上有一动点E ,过点E 作EF 平行于y 轴交直线AB 时,求点E 的坐标;(3)点M 为直线AB 上一点,且45CDM ∠=︒,求点M 的坐标.【答案】(1)1,2-1112132⎛⎫∴90QCP QPC ∠+∠=︒,∵CP CD ⊥,∴90QCP DCL ∠+∠=︒∴QPC DCL ∠=∠,∴QPC LCP ≌△△,∵()1,1C -,()0,2D -,∴CG HK =,GH KD =,∵()1,1C -,()0,2D -,设(,H c d ∴2c =-,1d =-,∴()2,1H --,可得直线DH 的解析式为联立12213y x ⎧=--⎪⎪⎨,解得721x ⎧=-⎪⎪⎨(1)求点C的坐标;∥轴交AB于点(2)如图2,过点C作直线CD x①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),全等?若存在,请直接写出所有符合条件的点M DC≌△BDC时,当△1M和点B关于直线则点1M的坐标为:(-1∴点1M CD≌△BDC时,当△2。
(完整版)《一次函数与几何图形综合》专题
《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。
一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。
1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。
一次函数与几何综合(一)(讲义及答案).
一次函数与几何综合(一)(讲义)➢ 课前预习1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为.2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表达式为 .3.如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为.第 3 题图第 4 题图4.如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B .(1) 设点 A 的横坐标为 t ,则点 A 的坐标为,点 B的坐标为 ,线段 AB 的长为;(用含 t的式子表示)(2) 若 AB =4,则点 A 的坐标是.➢ 知识点睛1. 一次函数与几何综合的处理思路:从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2. 函数与几何综合问题中常见转化方式:(1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;(2) 研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程.表达线段长:横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.1➢ 精讲精练1.如图,直线 y = - 3x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C4是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为.第 1 题图第 2 题图2.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 .3.如图,直线l :y = 3x + 6 与 y 轴相交于点 N ,直线l :y = kx -31 42与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为.4.如图,一次函数 y = 1x + 2 的图象与 y 轴交于点 A ,与正比例3函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为.5. 如图,点A,B 的坐标分别为(-8,0),(0,4),点C(a,0)为x轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D,若CD=5,则a 的值为.6.如图,直线y=kx+6 与x 轴、y 轴分别交于点A,B,点A 的坐标为(6,0),点C 的坐标为(4,0).若点P 是直线y=kx+6 上的一个动点,当点P 的坐标为时,△OPC 的面积为4.7.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,与直2线y=x 交于点M,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D,交直线y=x 于点E.若ED=4CD,则点E 的坐标为.8.如图,直线l1:y=2x+1 与直线l2:y=mx+4 相交于点P(1,b),垂直于x 轴的直线x=a 与直线l1,l2 分别交于点A,B,若线段AB 的长为2,则a 的值为.9.如图,直线AB:y=-x+20 与y 轴交于点A,与直线OB:y =1 x 3交于点B.点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D,向y 轴作垂线,垂足为点E.若DC=2CE,则点C 的坐标为.10.如图,在平面直角坐标系中,点A,C 和B,D 分别在直线y=1x+3和x 轴上,若△OAB,△BCD 都是等腰直角三角形,2∠OAB=∠BCD=90°,则点C 的坐标为.11.如图,直线l1:y 3x 与直线l2:y=-x+7 相交于点A.点P 4在x 轴正半轴上,过点P 作x 轴的垂线,与直线l1,l2 分别交于点B,C.设点P 的横坐标为t.(1)当t=1 时,求线段BC 的长;(2)用含t 的式子表达BC 的长;(3)若三个点B,C,P 中恰有一点是其他两点所连线段的中点,则称B,C,P 三点为“共谐点”.请直接写出使得B,C,P 三点成为“共谐点”的t 的值.⎨ 【参考答案】➢ 课前预习1. y = 2x - 52. y = -2x + 63. y = x + 24. (1)(t ,3t ),(t ,t ),2t(2)(2,6)➢ 精讲精练1. y = 1x - 222. 63. y = - 3x - 32 4. - 13 5. 2 或-186. (4,2)或(8,-2)7. (4,4)8. 5 或 13 3 9. (6,2) 10. (30,18) 11. (1) BC =21;4 ⎧- 7t + 7(0 < t ≤ 4) (2) BC = ⎪4 ;7 ⎪ t - 7(t > 4) ⎩ 4(3)当 t 的值为14 ,56或 28 时,B ,C ,P 三点成为“共5 11谐点”⎪。
4.难点探究专题:一次函数与几何的综合问题(选做)
难点探究专题:一次函数与几何的综合问题(选做)◆类型一 一次函数与面积问题 一、由一次函数图象求面积1.(当涂县期末)直线y =2x -4与两坐标轴所围成的三角形面积等于( ) A .8 B .6 C .4 D .162.已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于A 点,A 点横坐标为-1,且直线l 1与x 轴交于B 点,与y 轴交于D 点,直线l 2与y 轴交于C 点.(1)求出A 点的坐标及直线l 2的解析式; (2)连接BC ,求出S △ABC .二、由面积求一次函数关系式3.若直线y =-2x +b (b >0)与两坐标轴围成的三角形的面积是1,则该直线的解析式为__________.4.在平面直角坐标系中,点O 是坐标原点,过点A (1,2)的直线y =kx +b 与x 轴交于点B ,且S △AOB =4.则该直线的解析式为____________________.三、一次函数上的动点与面积问题 5.(盐城中考)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )6.如图所示,直线y =kx -1与x 轴、y 轴分别交于B 、C 两点,OB OC =12.(1)求B 点坐标和k 的值; (2)若点A (x ,y )是直线y =kx -1在第一象限内的部分上的一个动点,试写出在点A 运动过程中,三角形AOB 的面积S 与x 的函数表达式;(3)探索:当动点A (x ,y )可在直线y =kx -1上任意移动时,若S △AOB =14,试确定点A的位置.【易错4】◆类型二 一次函数与几何图形综合的探究性问题7.如图所示,直线y =x +1与y 轴交于点A 1,以OA 1为边作正方形OA 1B 1C 1,然后延长C 1B 1与直线y =x +1交于点A 2,得到第1个梯形A 1OC 1A 2;再以C 1A 2为边作正方形C 1A 2B 2C 2,同样延长C 2B 2与直线y =x +1交于点A 3得到第2个梯形A 2C 1C 2A 3;再以C 2A 3为边作正方形C 2A 3B 3C 3,延长C 3B 3,得到第3个梯形……则第2个梯形A 2C 1C 2A 3的面积是________;第n (n 是正整数)个梯形的面积是____________(用含n 的式子表示).第7题图 第8题图8.★如图,直角坐标系中,点P (t ,0)是x 轴上的一个动点,过点P 作y 轴的平行线,分别与直线y =12x ,直线y =-x 交于A 、B 两点,以AB 为边向右侧作正方形ABCD .(1)当t =2时,正方形ABCD 的周长是________;(2)当点(2,0)在正方形ABCD 内部时,t 的取值范围是__________________.参考答案与解析1.C2.解:(1)当x =-1时,y 1=-2+3=1,∴A 点的坐标为(-1,1).∵直线l 2:y 2=kx -1经过点A (-1,1),∴1=-k -1,∴k =-2,∴y 2=-2x -1;(2)∵直线y 1=2x +3与y 轴交于D (0,3),直线y 2=-2x -1与y 轴交于C (0,-1),∴CD =4,∴S △ADC =12×4×1=2.∵直线y 1=2x +3与x 轴交于B ⎝⎛⎭⎫-32,0,∴S △BCD =12×4×32=3,∴S △ABC =S △BCD -S △ACD =3-2=1.3.y =-2x +24.y =-23x +83或y =25x +85 解析:设B 点坐标为(m ,0),则S △AOB =12·|m |·2=|m |.又∵S △AOB=4,∴|m |=4,∴m =±4.当m =4时,由直线y =kx +b 过点A (1,2),B (4,0),得⎩⎪⎨⎪⎧2=k +b ,0=4k +b ,解得⎩⎨⎧k =-23,b =83.此时该直线的解析式为y =-23x +83;当m =-4时,由直线y =kx +b 过点A (1,2),B (-4,0),得⎩⎪⎨⎪⎧2=k +b ,0=-4k +b ,解得⎩⎨⎧k =25,b =85.此时该直线的解析式为y =25x +85.综上所述,该直线的解析式为y =-23x +83或y =25x +85.5.B 解析:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的增大而减小;当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的增大而减小.故选B.6.解:(1)设B 点坐标为(m ,0).∵OB OC =12,∴C 点坐标为(0,-2m ).由直线y =kx -1与y 轴交于点C 可得C 点坐标为(0,-1),∴-2m =-1,∴m =12,∴B 点坐标为⎝⎛⎭⎫12,0.由12k -1=0得k =2; (2)∵A (x ,y )在第一象限,且y =2x -1,∴S △AOB =12OB ·y =12×12(2x -1)=12x -14⎝⎛⎭⎫x >12; (3)由题意,得12OB ·|y |=14.∵OB =12,∴y =±1.当y =1时,x =1;当y =-1时,x =0.∴A点坐标为(1,1)或(0,-1). 7.6 (2n -1+2n )·2n -28.(1)12 (2)t <-4或45<t <2解析:当t <0时,AB =-32t ,即正方形ABCD 的边长为-32t .∵点(2,0)在正方形ABCD 内部,∴-32t >2-t ,解得t <-4;当t >0时,AB =32t ,即正方形ABCD 的边长为32t ,则⎩⎪⎨⎪⎧t <2,t +32t >2,解得45<t <2.故当点(2,0)在正方形内部时,t <-4或45<t <2.。
中考数学专题复习:一次函数与几何变换综合
中考数学专题复习:一次函数与几何变换综合1.如图,已知点A(﹣1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.4.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.5.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+36.已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|P A﹣PB|最大时,点P的坐标为()A.B.C.D.(1,0)7.如图,若直线P A的解析式为y=x+b,且点P(4,2),P A=PB,则点B的坐标是()A.(5,0)B.(6,0)C.(7,0)D.(8,0)8.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为__________.9.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.(1)求出点C的坐标__________;(2)若△OQC是等腰直角三角形,则t的值为__________;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式__________.10.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E 是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为__________.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=__________.12.若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为__________.13.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是__________.14.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为__________.15.如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为__________.16.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为__________.17.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为__________.18.如图,在直角坐标系中有一个缺失了右上格的九宫格,每个小正方形的边长为1,点A 的坐标为(2,3).要过点A画一条直线AB,将此封闭图形分割成面积相等的两部分,则直线AB解析式是__________.19.如图,在直角坐标系中,矩形ABCD的边OA在x轴上,边OC在y轴上,点B的坐标为(3,4),直线CD分别交OB、AB于点D、E,若BD=BE,则点D的坐标为__________.20.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为__________,点D的坐标为__________.21.如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=x+b的图象交于点C(﹣2,m).(1)求m和b的值;(2)函数y=x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.①当△ACE的面积为12时,求t的值;②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.22.如图,在平面直角坐标系中,直线AB:y=﹣x+4交x轴于点A,交y轴于点B,OC ⊥AB于点C,点P从B点出发,以每秒4个单位的速度沿BA运动,点Q从O点出发,以每秒3个单位的速度沿OC向终点C运动,当Q点到达点C时,点P也随之停止运动,连接OP,连接AQ并延长交OP于点H,设运动时间为t秒.(1)BP=__________,OQ=__________;(用含t的代数式表示)(2)求证:AH⊥OP.(3)当△APH为等腰直角三角形时,求t的值.23.如图,长方形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=10,OC=6.在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.(1)B'点的坐标是__________.(2)求折痕CM所在直线的解析式.(3)在x轴上是否能找到一点P,使△B'CP的面积为12?若存在,直接写出点P的坐标?若不存在,请说明理由.24.如图,已知直线l1经过点B(0,3)、点C(2,﹣3),交x轴于点D,点P是x轴上一个动点,过点C、P作直线l2.(1)求直线l1的表达式;(2)已知点A(7,0),当S△DPC=S△ACD时,求点P的坐标;(3)设点P的横坐标为m,点M(x1,y1),N(x2,y2)是直线l2上任意两个点,若x1>x2时,有y1<y2,请直接写出m的取值范围.25.已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.26.在如图的平面直角坐标系中,直线n过点A(0,﹣2),且与直线l交于点B(3,2),直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若△ABC的面积为9,求点C的坐标;(3)若△ABC是等腰三角形,求直线l的函数表达式.27.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC 的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系xOy中,直线l1:y=x+1与x轴交于点A,直线l2:y=3x ﹣3与x轴交于点B,与l1相交于点C.(1)请直接写出点A、点B、点C的坐标:A__________,B__________,C__________.(2)如图2,动直线x=t分别与直线l1,l2交于P,Q两点.①若PQ=2,求t的值.②若存在S△AQC=2S△ABC,求出此时点Q的坐标;若不存在,请说明理由.参考答案1.解:①以A为直角顶点,可过A作直线垂直于AB,与y轴交于一点,这一点符合点P 的要求;②以B为直角顶点,可过B作直线垂直于AB,与y轴交于一点,这一点也符合P点的要求;③以P为直角顶点,与y轴共有2个交点.所以满足条件的点P共有4个.故选:B.2.解:过A作AB⊥直线y=2x﹣4,垂足为B,过B作BD⊥x轴,令y=0,得到x=2,即C(2,0),设B(a,2a﹣4)(a>0),即BD=|2a﹣4|,|OD|=a,∵∠ABD+∠BAD=90°,∠ABD+∠DBC=90°,∴∠BAD=∠DBC,∵∠BDC=∠ADB=90°,∴a=或a=2(不合题意,舍去),则B(,﹣).故选:D.3.解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.4.解:对于直线y=﹣x+8,令x=0,求出y=8;令y=0求出x=6,∴A(6,0),B(0,8),即OA=6,OB=8,根据勾股定理得:AB=10,在x轴上取一点B′,使AB=AB′,连接MB′,∵AM为∠BAO的平分线,∴∠BAM=∠B′AM,∵在△ABM和△AB′M中,,∴△ABM≌△AB′M(SAS),∴BM=B′M,设BM=B′M=x,则OM=OB﹣BM=8﹣x,在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,根据勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴OM=3,即M(0,3),设直线AM解析式为y=kx+b,将A与M坐标代入得:,解得:,则直线AM解析式为y=﹣x+3.故选:B.5.解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.6.解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,1),∴C的坐标为(1,﹣1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=﹣2x+1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|P A﹣PB|=|PC﹣PB|<BC,∴此时|P A﹣PB|=|PC﹣PB|=BC取得最大值.故选:A.7.解:过点P作PC⊥AB,∵解析式y=x+b过点P(4,2),∴2=×4+b,∴b=﹣,∴A(1,0),又∵P(4,2),∴AC=3,∵P A=PB,∴BC=3,∴点B的坐标是(7,0).故选:C.8.解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).9.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.10.解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DA=AG=2,在RT△ADF和RT△AGF中,,∴RT△ADF≌RT△AGF(HL),∴DF=FG,∵点E是BC边的中点,∴BE=CE=1,∴AE==,∴GE==1,∴在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2﹣DF)2+1,解得DF=,∴点F(,2),把点F的坐标代入y=kx得:2=k,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.11.解:∵将矩形OABC分成面积相等的两部分,∴直线经过矩形的中心,∵B点坐标为B(12,5),∴矩形中心的坐标为(6,),∴×6+b=,解得b=1.故答案为:1.12.解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.13.解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).故答案为:(31,16).14.解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).故答案为:(﹣,﹣).15.解:当x=0时,y=k;当y=0时,x=.∴直线y=﹣2x+k与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB==9,∴k=±6.故填空答案:±6.16.解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)或(3,0),∵A(0,2),点B(3,4)关于直线AP的对称点B′恰好落在x轴上,∴点B(3,4)关于直线y=2的对称点B′(3,0),∴B′点坐标为(3,0)不合题意舍去,设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().17.解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).18.解:设直线AB与x轴交于B(x,0),依题意,得×(x+2)×3=4,解得x=,∴B(,0),设直线AB:y=kx+b,则,解得,∴直线AB:y=x﹣.故答案为:y=x﹣.19.解:∵四边形ABCD是矩形,点B的坐标为(3,4),∴BC=OA=3,OC=AB=4,∴C(0,4),∵BD=BE,∴∠BDE=∠BED,∵∠OCE=∠BED,∠CDO=∠BDE,∴∠OCD=∠ODC,∴OD=OC=4,∵OB==5,∴BD=BE=1,∴E(3,3),∴直线CE的解析式:y=﹣,直线OB的解析式:y=x,解得,∴D(,),故答案为:(,).20.解:由折叠的性质得:△ADB≌△ADC,∴AB=AC,BD=CD,对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得:AB=5,∴OC=AC﹣OA=AB﹣OA=5﹣4=1,即C(﹣1,0);在Rt△COD中,设CD=BD=x,则OD=3﹣x,根据勾股定理得:x2=(3﹣x)2+1,解得:x=,∴OD=,即D(0,).故答案为:(﹣1,0);(0,)21.解:(1)∵点C(﹣2,m)在直线y=﹣x+2上,∴m=﹣(﹣2)+2=2+2=4,∴点C(﹣2,4),∵函数y=x+b的图象过点C(﹣2,4),∴4=×(﹣2)+b,得b=,即m的值是4,b的值是;(2)①∵函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,∴点A(2,0),点B(0,2),∵函数y=x+的图象与x轴交于点D,∴点D的坐标为(﹣14,0),∴AD=16,由题意可得,DE=2t,则AE=16﹣2t,由,得,则点C的坐标为(﹣2,4),∵△ACE的面积为12,∴=12,解得,t=5.即当△ACE的面积为12时,t的值是5;②当t=4或t=6时,△ACE是直角三角形,理由:当∠ACE=90°时,AC⊥CE,∵点A(2,0),点B(0,2),点C(﹣2,4),点D(﹣14,0),∴OA=OB,AC=4,∴∠BAO=45°,∴∠CAE=45°,∴∠CEA=45°,∴CA=CE=4,∴AE=8,∵AE=16﹣2t,∴8=16﹣2t,解得,t=4;当∠CEA=90°时,∵AC=4,∠CAE=45°,∴AE=4,∵AE=16﹣2t,∴4=16﹣2t,解得,t=6;由上可得,当t=4或t=6时,△ACE是直角三角形.22.解:(1)BP=4t,OQ=3t.(2)∵OC⊥AB,∴∠CAO+∠COA=90°.又∵∠CAO+∠B=90°,∴∠COA=∠B.∵直线AB:y=﹣x+4,∴直线与x轴交点A(3,0),B(0,4).Rt△ABO中,OA=3,OB=4,AB=5.∴∠BOP=∠QAO.∴∠AHO=∠POA+∠QAO=∠POA+∠BOP=90°.∴AH⊥OP.(3)当△APH为等腰直角三角形时,∠CAQ=45°,△QCA也为等腰直角三角形.Rt△ABO中,OA=3,OB=4,AB=5.∵.∴OC=.∴OQ=3t=.即t=.23.解:(1)∵长方形OABC,∴BC=OA,∵OA=10,∴BC=10,∵△CBM沿CM翻折,∴B′C=BC=10,在Rt△B′OC中,B′C=10,OC=6,∴B′O==8,∴B′(8,0),故答案为:(8,0);(2)设AM=x,则BM=AB﹣AM=6﹣x,∵OA=10,B′O=8,∴B′A=2,∵△CBM沿CM翻折,∴B′M=BM=6﹣x,在Rt△AB′M中,B′A2+AM2=B′M2,∴22+x2=(6﹣x)2,解得x=,∴M(10,),设CM所在直线的解析式为y=kx+b,将C(0,6)、M(10,)代入得:,解得k=﹣,b=6,∴CM所在直线的解析式为y=﹣x+6;(3)∵△B'CP的面积为12,∴B′P•OC=12,∴B′P×6=12,∴B′P=4,∵B′(8,0),∴P(12,0)或P(4,0).24.解:(1)设直线l1的解析式为y=kx+b(k≠0),∵B(0,3)、点C(2,﹣3)在直线l1上,∴,解之得,,∴直线l1的表达式为y=﹣3x+3;(2)∵直线y=﹣3x+3交x轴于D,∴D(1,0),∵A(7,0),∴AD=6,过点C作CE⊥x轴于E,∵C(2,﹣3),∴CE=3,∴,∴,∴S△DPC=3,设点P(x,0),∴,∴x=3或x=﹣1,∴P的坐标(3,0)或(﹣1,0);(3)如图,过点C作CE⊥AO于E,∵x1>x2时,有y1<y2,∴直线l1的图象从左向右成下降趋势,∴m<2.25.解:根据题意可画出图形,如图所示,∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴.(1)当线段PC与线段AB平行时,可画出图形,设PC所在直线为:y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,,∴.故答案为:P(0,1);△POC的面积与△AOB的面积的比值为.(2)由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴,解得,,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)根据题意,需要分类讨论:①当点P在线段AB上时,如图所示,此时,过点P作PD⊥x轴于点D,∴S△APC==,解得PD=,∴AD=PD=,∴OD=OA﹣AD=2﹣=,∴P(,),设线段PC所在直线的解析式:y=k1x+b1,∴,解得,,∴线段PC所在直线的解析式:y=2x﹣2;②当点P在线段OB上时,如图所示,此时,∴=,解得,OP=,∴P(0,),设线段PC所在直线的解析式:y=k2x+b2,∴,解得,,∴线段PC所在直线的解析式:y=﹣x+;综上可知,线段PC所在直线的解析式为:y=2x﹣2或y=﹣x+.26.解:(1)设直线n的解析式为:y=kx+b,∵直线n:y=kx+b过点A(0,﹣2)、点B(3,2),∴,解得:,∴直线n的函数表达式为:y=x﹣2;(2)∵△ABC的面积为9,∴9=•AC•3,∴AC=6,∵OA=2,∴OC=6﹣2=4或OC=6+2=8,∴C(0,4)或(0,﹣8);(3)分四种情况:①如图1,当AB=AC时,∵A(0,﹣2),B(3,2),∴AB==5,∴AC=5,∵OA=2,∴OC=3,∴C(0,3),设直线l的解析式为:y=mx+n,把B(3,2)和C(0,3)代入得:,解得:,∴直线l的函数表达式为:y=﹣x+3;②如图2,AB=AC=5,∴C(0,﹣7),同理可得直线l的解析式为:y=3x﹣7;③如图3,AB=BC,过点B作BD⊥y轴于点D,∴CD=AD=4,∴C(0,6),同理可得直线l的解析式为:y=﹣x+6;④如图4,AC=BC,过点B作BD⊥y轴于D,设AC=a,则BC=a,CD=4﹣a,根据勾股定理得:BD2+CD2=BC2,∴32+(4﹣a)2=a2,解得:a=,∴OC=﹣2=,∴C(0,),同理可得直线l的解析式为:y=x+;综上,直线l的解析式为:y=﹣x+3或y=3x﹣7或y=﹣x+6或y=x+.27.解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,∴S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=2,∴点M的横坐标为2或﹣2;当M的横坐标是2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,x=2则y=4,则M的坐标是(2,4).则M的坐标是:M1(2,1)或M2(2,4).当M的横坐标是﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:M的坐标是:M1(2,1)或M2(2,4)或M3(﹣2,8).28.解:(1)对于直线l2:y=3x﹣3①,令y=3x﹣3=0,解得x=1,故点B(1,0),对于l1:y=x+1,同理可得:点A(﹣1,0),则,解得,故点C的坐标为(2,3),故答案为:(﹣1,0)、(1,0)、(2,3);(2)①点P在直线l1上,则设点P(t,t+1),同理点Q(t,3t﹣3),则PQ=|t+1﹣3t+3|=2,解得t=1或3;②当点Q在x轴下方时,如下图,设直线l1交y轴于点K,过点B作直线n∥AC交y轴于点N,在y轴负半轴取点M使NM=2NK,过点M作直线m∥AC交l2于点Q,则点Q为所求点,理由:∵M、Q在直线m上,且m∥AC,则S△MAC=S△QAC,同理S△NAC=S△BAC,而MN=2KN,则m、l1之间的距离等于2倍n、l1之间的距离,故S△AQC=2S△ABC,由直线l1的表达式知点K(0,1),设直线n的表达式为y=x+b,将点B的坐标代入上式并解得b=﹣1,故点N(0,﹣1),则NK=1﹣(﹣1)=2,则MN=2NK=4,故点M(0,﹣3),在直线m的表达式为y=x﹣3②,联立①②并解得,故点Q(0,﹣3);②当点M在x轴上方时,同理可得点M(0,5),同理可得,过点M且平行于AC的直线表达式为y=x+5③,联立①③并解得,故点Q的坐标为(4,9);综上,点Q的坐标为(0,﹣3)或(4,9)。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
2023一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版)
专题12一次函数与几何图形综合题 (与三角形、与平行四边形、最值问题)类型一与三角形有关1.(2022·天津)如图,△OAB 的顶点O(0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB=6,OA=OB=5,则点A 的坐标是( )A .(5,4)B .(3,4)C .(5,3)D .(4,3)2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.4.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________; (2)请在图中画出A B C '''.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为3CODE 向右平移的距离为___________.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(73,0)-,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.操作中发现:①"当点为弧的中点时, ".则上中的值是 ②"线段的长度无需测量即可得到".请简要说明理由;D BC 8,BC cm =A BC C //CF BD DA F DCF ∆BD ()1D BC ,,BD CDFD D BC 5.0BD cm =a CF将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).()2BD x CD ,FD x CD y FD y xOy FD y CD y ()3DCF ∆BD11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.xOy ABC ∆BC x 8BC =A y 2OA =E (3,0)CB OB F C CB O E F EF EFGH EFGH ABC ∆BC t 0t ≥H AC t EFGH ABC ∆S t 9136S =t AC D OD E F M O 5OD DC CD DO ---O E M EFGH M EFGH13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A ,与轴的负半轴交于点B , ,过点A 作轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为,过点C 作轴,垂足为.(1)如图1,求直线的解析式;(2)如图2,点N 在线段上,连接ON ,点P 在线段ON 上,过P 点作轴,垂足为D ,交OC 于点E ,若,求的值; (3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作轴的平行线交BQ 于点G ,连接PF 交轴于点H ,连接EH ,若,求点P 的坐标.类型二与平行四边形有关O AB x y OA OB =x 34y x =CM y ⊥,9M OM =AB MC PD x ⊥NC OM =PEODx x ,2DHE DPH GQ FG ∠=∠-=14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A 3B .3C .33D .4316.(2020·黑龙江牡丹江?中考真题)如图,已知直线与x 轴交于点A ,与y 轴交于点B ,线段的长是方程的一个根,.请解答下列问题:(1)求点A ,B 的坐标;(2)直线交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线于点C .若C 是的中点,,反比例函数图象的一支经过点C ,求k 的值; (3)在(2)的条件下,过点C 作,垂足为D ,点M 在直线上,点N在直线AB OA 27180x x --=12OB OA=EF AB EF 6OE =ky x=CD OE ⊥AB CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q 是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A .55B 5C .523D .5518.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d 可用公式0021kx y bd k -+=+C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C上的动点,则PQ 的最小值是( )A 35B 351-C 651D .219.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x轴上平移,当AD BC +的值最小时,点C 的坐标为________.20.(2020•连云港)如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为 .21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】222.(2020·北京中考真题)在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦(分别为点A ,B的对应xOy A B '',A B ''点),线段长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线AB 到⊙O 的“平移距离”为,求的最小值; (3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围.AA '12PP 34P P 1234,,,P P P P 33y x =+1d 1d 32,2⎛⎫ ⎪⎝⎭2d 2d。
一次函数与几何综合
一次函数与几何综合例1:如图,在平面直角坐标系xOy 中,已知矩形纸片ABCO 的顶点AC 分别在x 轴、y 轴的正半轴上,且BC =15.将纸片沿过点C 的直线折叠后,点B 恰好落在x 轴上的点B ′处,折痕交AB 于点D .若34OC OB'=则直线CD 的表达式为____________. 【思路分析】1. 由折叠性质得,△BCD ≌△B′CD ,则B′C =BC =OA =15,=2. 设AD =t ,则B′D =BD =9-t ,在Rt △B′AD 中利用勾股定理可求出t =4,故D (15,4);3. 由C (0,9),D (15,4),可通过k ,b 的几何意义得到直线CD 的表达式:193y x =-+.例2:如图,点A 的坐标为(-2,0),点B 在直线122y x =-+上运动,则当线段AB 最短时,点B 的坐标为_____________.【思路分析】1. 如图,当AB ⊥l 时,线段AB 最短;2. 因为AB ⊥l ,所以1()12AB k ⋅-=-,故k AB =2,设l AB :y =2x +b ,把A (-2,0)代入,得b =4; 3. 联立可求得点B 的坐标为(-一、知识点睛1. 一次函数表达式:y =kx +b (k ,b 为常数,k ≠0)①k 是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为____________,BM 即为____________,则=AM k BM.②b 是截距,表示直线与y 轴交点的纵坐标.MAB2. 设直线l 1:y 1=k 1x +b 1,直线l 2:y 2=k 2x +b 2,其中k 1,k 2≠0.①若k 1=k 2,且b 1≠b 2,则直线l 1_____l 2; ②若k 1·k 2=_________,则直线l 1_____l 2.3. 一次函数与几何综合解题思路①要求坐标,______________________________________; ②要求函数表达式,________________________________; ③要研究几何图形,________________________________.二、精讲精练1. 如图,点B ,C 分别在直线y =2x 和y =kx 上,A ,D 是x轴上的两点,若四边形ABCD 是正方形,则k 的值为________.第1题图 第2题图 第3题图2. 如图,已知直线l:y x =x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线AC 的表达式为__________________.3. 如图,在平面直角坐标系xOy 中放入一张长方形纸片ABCO ,点D 在AB 边上,将纸片沿CD4. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.5. 如图,直线483y x =-+分别交x 轴、y 轴于A ,B 两点,线段AB的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为____________.坐标几何图形一次函数6. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:若已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________.7. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点DE 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________.8. 如图,已知点A 的坐标为(2,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(-1,1)B . ,C .(1,-1)D .( 9. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0)B (0,-4),P 为y 轴上B 点下方的一点,且PB =m (m >0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt △APM . (1)求直线AB 的解析式;(2)用含m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,求点Q 的坐标.1. 点B ,C 分别在直线y =2x 和直线y =kx 上,A ,D 是x 轴上的两点.若四边形ABCD 是长方形,且AB :AD =1:2,则k 的值为____________.2. 如图,一次函数y =-2x +4的图象与坐标轴分别交于A ,B 两点,把线段AB绕着点A 沿逆时针方向旋转90°,点B 落在点B ′处,则直线AB ′的表达式为______________________.3. 如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面_____________,直线CP 的表达式为___________________.第3题图 第4题图4. 如图,点A 的坐标是(-2,0),点B 的坐标是(6,0),点C 在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE ⊥BD ,垂足为点E ,交OC 于点F ,则点C 的坐标为_______,直线AE 的表达式为______________.5. 如图,在平面直角坐标系中,函数y =-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(-2,0),请在图中分别标出B (-5,-3),C (-2,5)关于直线l 的对称点B ′,C ′的位置,并写出它们的坐标:B ′_________,C ′_________. 归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (m ,n )关于第二、四象限的角平分线l 的对称点P ′的坐标为______________. 运用与拓广:已知两点D (0,-3),E (1,-4),试在直线l 上确定一点Q ,使点Q 到D ,E 两点的距离之和最小,并求出点Q 的坐标.。
部编数学八年级下册专题09一次函数与几何图形综合的七种考法(解析版)含答案
专题09 一次函数与几何图形综合的七种考法类型一、面积问题例.如图,直线AB 的表达式为364y x =-+,交x 轴,y 轴分别与B ,A 两点,点D 坐标为()4,0-点C 在线段AB 上,CD 交y 轴于点E .(1)求点A ,B 的坐标.(2)若CD CB =,求点C 的坐标.(3)若ACE △与DOE V 的面积相等,在直线AB 上有点P ,满足DOC △与DPC △的面积相等,求点P 坐标.∵CD CB =,∴DF BF =,∵点D 坐标为()4,0-,点B 的坐标为(∴12BD =,8OB =,∴6BF =,∴2OF =,∵DOC △与DPC △的面积相等,∴点O 和点P 到距离相等,此时OP ∥∴直线OP 的解析式为35y x =,联立得:36435y x y xì=-+ïïíï=ïî,解得:x y ì=ïïíï=ïî【变式训练1】如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)填空:k =________;b =________;m =________;(2)在x 轴上是否存在一点E ,使BCE V 的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(3)若动点P 在射线DC 上从点D 开始以每秒1个单位的速度运动,连接AP ,设点P 的运动时间为t 秒.是否存在t 的值,使ACP △和ADP △的面积比为1:2?若存在,直接写出t 的值;若不存在,请说明理由.(3)∵点P 在射线DC 上从点∴(2,0)D -,∵(2,2)C ,∴22(22)225CD =++=,∵点P 的运动时间为t 秒.②点P 在线段DC 的延长线上,∵ACP △和ADP △的面积比为1:∴12CP DP =,∴22545DP =´=,综上:存在t 的值,使ACP △和【变式训练2】在平面直角坐标系中,O 为原点,点()4,0A ,()2,0B -,()3,2C -,点D 是y 轴正半轴上的动点,连接CD 交x 轴于点E .(1)如图①,若点D 的坐标为()0,2,求ACD V 的面积;(2)如图②,若12ABD ABC S S =V V ,求点D 的坐标.(3)如图③,若BDE ACE S S =△△,请直接写出点D 的坐标.【变式训练3】如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点()0,1A ,交x 轴于点B .过点()1,0E 且垂直于x 轴的直线DE 交AB 于点D ,P 是直线DE 上一动点,且在点D 的上方,设()1,P n .(1)求直线AB 的解析式和点B 的坐标;(2)求ABP V 的面积(用含n 的代数式表示);(3)当ABP V 的面积为2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.,则90PEB BP CGB Ð=Ð=Ð=°,PB BC =,∴90PBE BPE Ð+Ð=°,90BPE CPG Ð+Ð=°,∴BPE CPG Ð=Ð,∴()AAS BEP PGC ≌V V ,∴2BE PG ==,2PE CG ==,∴点()3,4C ;②以PB 为底时,如图,过点C 作CG PE ^于点G ,作CH x ^轴于点H ,则90PGC CGE CHB PEB PCB Ð=Ð=Ð=°=Ð=Ð,CP CB =,∴90GCH PCB Ð=°=Ð,∴PCG BCH Ð=Ð,∴∴()AAS BCH PCG ≌V V ,∴BH PG =,CH CG =,∴BE BH PE PG +=-,即22BH BH +=-,∴0BH PG ==,∴点()3,2C ;综上,符合题意的点C 坐标为()5,2或()3,4或()3,2.类型二、最值问题例.如图,在平面直角坐标系xOy 中,一次函数()0y kx b k =+¹的图像经过()4,0A 、()0,4B 两点.(1)k =______,b =______.(2)已知()1,0M -、()3,0N ,①在直线AB 上找一点P ,使PM PN =.用无刻度直尺和圆规作出点P (不写画法,保留作图痕迹);②点P 的坐标为______;③点Q 在y 轴上,那么PQ NQ +的最小值为______.【答案】(1)1-,4;(2)①见解析;②()1,3;③5【详解】(1)解:将()4,0A 、()0,4B 代入()0y kx b k =+¹中,得:044k b b =+ìí=î,解得;14k b =-ìí=î,故答案为:1-,4;(2)①如图,点P 即为所求;【变式训练1】在平面直角坐标系中,已知直线l经过1,32Aæöç÷èø和()3,2B-两点,且与x轴,y轴分别相交于C,D两点.(1)求直线l的表达式;V的面积等于2时,求点E的坐标;(2)若点E在直线AB上,当ODE-的值最小,则点P的坐标为______;(3)①在x轴上找一点P,使得PA PB-的值最大,则点Q的坐标为______.②在x轴上找一点Q,使得QA QB【变式训练2】如图,一次函数2y x =+的图象分别与x 轴和y 轴交于C ,A 两点,且与正比例函数y kx=的图象交于点()1,B m -.(1)求正比例函数的表达式;(2)点D 是一次函数图象上的一点,且OCD V 的面积是4,求点D 的坐标;(3)点P 是y 轴上一点,当BP CP +的值最小时,若存在,点P 的坐标是______.取点C 关于y 轴的对称点C ¢,则PC PC =CP BP C P BP C B ¢¢\+=+³,即点P 位于C B ¢与x 轴的交点时,BP +∵点(2,0)C - ,【变式训练3】如图,在平面直角坐标系内,()3,4A -,()3,2B ,点C 在x 轴上,AD x ^轴,垂足为D ,BE x ⊥轴,垂足为E ,线段AB 交y 轴于点F .若AC BC =,ACD CBE Ð=Ð.(1)求点C 的坐标;(2)如果经过点C 的直线y kx b =+与线段BF 相交,求k 的取值范围;(3)若点P 是y 轴上的一个动点,当PA PC -取得最大值时,求BP 的长.类型三、等腰三角形存在性问题例.如图,在平面直角坐标系中,一次函数21y x =--的图像分别交x 轴、y 轴于点A 和B .已知点C 的标为()3,0-,若点P 是x 轴上的一个动点.(1)A 的坐标是______,B 的坐标是______;(2)过点P 作y 轴的平行线交AB 于点M ,交BC 于点N ,当点P 恰好是MN 的中点时,求出P 点坐标.(3)若以点B 、P 、C 为顶点的BPC △为等腰三角形时、请求出所有符合条件的P 点坐标.【变式训练1】直线8y kx =-与x 轴、y 轴分别交于B C 、两点,且43OC OB =.(1)求OB 的长和k 的值:(2)若点A 是第一象限内直线8y kx =-上的一个动点,当它运动到什么位置时,AOB V 的面积是12?(3)在(2)成立的情况下,y 轴上是否存在点P ,使POA V 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(写过程)由题意得,12OB AD ´´=6OB =Q ,\解得,AD当21294OA OP =+==当397OA OP ==时,3P 当22AP OP =时,作2P H ^22AP OP =Q Q 2P 为线段OA 垂直平分线与【变式训练2】在平面直角坐标系中,直线MN 交x 轴正半轴于点M ,交y 轴负半轴于点()0,3N -,30Ð=°ONM ,作线段MN 的垂直平分线交x 轴于点A ,交y 轴于点B .(1)如图1,求直线MN 的解析式和A 点坐标;(2)如图2,过点M 作y 轴的平行线l ,P 是l 上一点,若ANP S =△P 坐标;(3)如图3,点Q 是y 轴的一个动点,连接QM 、AQ ,将MAQ V 沿AQ 翻折得到1M AQ △,当1M MN △是等腰三角形时,求点Q 的坐标.过T 作TS AM ^于S ,则AT ∴22333322AS æö=-=ç÷èø,同理2315Q P y x =--:,综上:()3,6P ,(3,P -(3)①如图,当MN MM =由轴对称的性质可得:AM ∵()223323AN =+=,∴()0,1Q .②当1NM NM =时,如图,由23AN NM AM ===,∴ANM V 为等边三角形,此时Q ,N 重合,∴()0,3Q -;③当11M M M N =时,1M 在直线∵30OAB Ð=°,【变式训练3】如图,一次函数()0y kx b k =+¹的图象与x 轴交于点C ,与y 轴交于点()0,5A ,与正比例函数12y x =的图象交于点B ,且点B 的横坐标为2,点P 为y 轴上的一个动点.(1)求B 点的坐标和k 、b 的值;(2)连接CP ,当ACP △与AOB V 的面积相等时,求点P 的坐标;(3)连接BP ,是否存在点P 使得PAB V 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.③当PA PB =时,如图2,设(0,P m 22(5)PA m =-,1PH m =-,所以PB 所以222(5)(1)2m m -=-+,解得m类型四、直角三角形存在性问题例.如图1,在平面直角坐标系xOy 中,点O 为坐标原点,直线AB :3y 4x b =+与直线AC :9y kx =+交于点(2,)A n ,与x 轴分别交于点0()6,B -和点C .点D 为线段BC 上一动点,将ABD △沿直线AD 翻折得到ADE V ,线段AE 交x 轴于点F .(1)直线AC 的函数表达式.(2)当点D 在线段BO 上,点E 落在y 轴上时,求点E 的坐标.(3)若DEF V 为直角三角形,求点D 的坐标.【变式训练1】综合与探究:如图,在平面直角坐标系中,直线2y x =+与x 轴,y 轴分别交于点A ,B ,与直线11433y x =-+交于点C .直线11433y x =-+与x 轴交于点D ,若点P 是线段AD 上的一个动点,点P 从点D 出发沿DA 方向,以每秒2个单位长度匀速运动到点A (到 A 停止运动).设点P 的运动时间为s t .(1)求点A 和点B 的坐标;△的面积为12时,求t的值;(2)当ACP△为直角三角形?若存在,请直接写出t的值;(3)试探究,在点P运动过程中,是否存在t的值,使ACP若不存在,请说明理由.【变式训练2】如图,平面直角坐标系中,直线AB 与x 轴交于点()30A -,与y 轴交于点()06B ,,点C 是直线AB 上的一点,它的坐标为()4m ,,经过点C 作直线CD x ∥轴交y 轴于点D .(1)求点C 的坐标;(2)已知点P 是直线CD 上的动点,①若POC △的面积为4,求点P 的坐标;②若POC △为直角三角形,请求出所有满足条件的点P 的坐标.②Q OCP Ð一定不是直角,当90OPC Ð=°时,点P 恰好在点D ,\()04P ,,当90POC Ð=°时,,由题可得221417OC =+=,2222416OP DP DP =+=+,()221CP DP =+,Q 222CP OC OP =+,\()2211716DP DP +=++,\16DP =,\()164P ,,综上所述,所有满足条件的点P 的坐标为()04,或()164P ,.【变式训练3】如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点()0,1B -,与x 轴以及1y x =+的图象分别交于点C ,D ,且点D 的坐标为()1,n .(1)则k =______,b =______,n =______;(2)关于x ,y 的二元一次方程组y =x +1,y =kx +b的解为______;(3)求四边形AOCD 的面积;(4)在x 轴上是否存在点P ,使得以点P ,C ,D 为顶点的三角形是直角三角形,请求出点P 的坐标.①当P D DC ¢^时,22P C P D ¢¢=类型五、等腰直角三角形存在性问题例.模型建立:如图1,等腰直角三角形ABC 中,90ACB Ð=°,CB CA =,直线ED 经过点C ,过A 作AD ED ^于D ,过B 作BE ED ^于E .(1)求证:BEC CDA V V ≌.(2)模型应用:已知直线14:43l y x =+与y 轴交与A 点,将直线1l 绕着A 点顺时针旋转45°至2l ,如图2,求2l 的函数解析式.(3)如图3,矩形ABCO ,O 为坐标原点,B 的坐标为()8,6,A 、C 分别在坐标轴上,P 是线段BC 上动点,设PC m =,已知点D 在第一象限,且是直线26y x =-上的一点,若APD △是不以A 为直角顶点的等腰直角三角形,请直接写出点D 的坐标.∵45BAC Ð=°,∴ABC V 为等腰直角三角形,由(1)得:CBD BAO V V ≌∴BD AO =,CD OB =,∵直线4:4l y x =+,∴()626122AE x =--=-由(1)得:ADE DPF △△≌∴DF AE =,即1228x x -=-,解得:4x =;∴()4,2D ;∴266212BF x x =--=-;同(1)得,APB PDF △≌△∴8AB PF ==,PB DF ==∴()88BF PF PB x =-=--=∴21216x x -=-,解得:283x =;∴2838,33D æöç÷èø;【变式训练1】综合与探究:如图1,平面直角坐标系中,一次函数334y x =-+的图像分别与x 轴、y 轴交于点A ,B ,点C 是线段OA 的中点,点D 与点C 关于y 轴对称,作直线BD .(1)求A ,B 两点的坐标;(2)求直线BD 的函数表达式;(3)若点P 是直线BD 上的一个动点.请从A ,B 两题中任选一题作答.我选择______题.A .如图2,连接AP ,CP .直接写出ACP △为直角三角形时点P 的坐标.B .如图3,连接CP ,过点P 作PQ x ^轴于点Q .直接写出CPQ V 为等腰直角三角形时点P 的坐标.【变式训练2】如图,平面直角坐标系中,直线1:3AB y x b =-+交y 轴于点()0,1A ,交x 轴于点B .直线1x =交AB 于点D ,交x 轴于点E ,P 是直线1x =上一动点,且在点D 的上方,设()1,P n .(1)求直线AB 的解析式;(2)当2ABP S =△时,在第一象限内找一点C ,使BCP V 为等腰直角三角形,求点C 的坐标.∵1x =时,12133y x =-+=,P 在点∴23PD n =-,∴12PAB APD BPD S S S PD AM =+=×+V V V ∵2ABP S =△,3∵90,45CPB EPB Ð=°Ð=°,∴45NPC EPB Ð=Ð=°.又∵90,CNP PEB BP PC Ð=Ð=°=,∴CNP BEP ≌V V ,∴2PN =NC =EB =PE =,∴224NE NP+PE ==+=,∴()3,4C ;若90,PBC BP BC Ð=°=,如图,过点C 作CF x ^轴于点F .∵90,45PBC EBP Ð=°Ð=°,∴45CBF PBE Ð=Ð=°.又∵90,CFB PEB BC BP Ð=Ð=°=,∴CBF PBE ≌V V .∴2BF CF PE EB ====,∴325OF OB BF =+=+=,∴()5,2C ;若90,PCB CP EB Ð=°=,如图,∴45CPB EBP Ð=Ð=°,∵,,CP EB CPB EBP BP BP =Ð=Ð=,∴PCB PEB ≌V V ,∴2PC CB PE EB ====,∴()3,2C ;∴点C 的坐标是()3,4或()5,2或()3,2.【变式训练3】如图,在平面直角坐标系xOy 中,直线AP 交x 轴于点(),0P p ,与y 轴交于点()0,A a ,且a ,p ()230a +=.(1)求直线AP 的解析式;(2)如图1,直线2x =-与x 轴交于点N ,点M 在x 轴上方且在直线2x =-上,若MAP △的面积等于6,请求出点M 的坐标;(3)如图2,已知点()2,4C -,若点B 为射线AP 上一动点,连接BC ,在坐标轴上是否存在点Q ,使BCQ △是以BC 为底边,点Q 为直角顶点的等腰直角三角形,若存在,请直接写出点Q 坐标;若不存在,请说明理由.∵MD AP P ,MAP △的面积等于∴DAP V 的面积等于6,∴162A DP y ××=,即12DP ×∴4DP =,∴()3,0D -,y∴,33OE t BE t ==-,∵BCQ △是以BC 为底边的等腰直角三角形,∴BQ CQ =,90BQC Ð=∴90BQE NQC Ð=°-Ð=又∵BEQ QNC Ð=Ð,∴()AAS BEQ QNC V V ≌,∴BG t =,33OG t =-,∴BT t =,33OT t =-,同②可证CFQ QTB V V ≌∴QF BT t ==,QT CF =∴OQ OT QT OF =+=+∴52t =,∴513422OQ =+=,类型六、平行四边形存在性问题例.在平面直角坐标系xOy 中,直线36y x =+分别与x 、y 轴相交于A 、B 两点,将线段AB 绕点A 顺时针旋转90°得到线段AC .连接BC 交x 轴于点D .(1)求点C 的坐标;(2)P 为x 轴上的动点,连接PB ,PC ,当PB PC -的值最大时,求此时点P 的坐标.(3)点E 在直线AC 上,点F 在x 轴上,若以B 、D 、E 、F 为顶点的四边形是平行四边形,请直接写出点F 的坐标;【答案】(1)点C 的坐标为()4,2-(2)()6,0P (3)点F 的坐标为()17,0-或()13,0或()23,0【详解】(1)解:令0y =,则2x =-,()2,0A \-,令0x =,则6y =,()0,6B \,26OA BO \==,,过点C 作CH x ^轴于H ,9090CAD BAO BAO ABO ÐÐÐÐ+=°+=°Q ,,CAD ABO ÐÐ\=,90AHC BOA ÐÐ\==°,由旋转得AB AC =,()AAS ABO CAH \V V ≌,26CH OA AH BO \====,,4OH AH OA \=-=,\点C 的坐标为()4,2-;(2)作点C 关于x 轴的对称点C ¢,连接BC ¢延长交x 轴于点P ,则点P 就是所求的最大值点,\()4,2C ¢设直线BC ¢的解析式为y kx b =+,\642b k b =ìí+=î,解得16k b =-ìí=î,6y x \=-+,()6,0P \;(3)()()()2,04,20,6A C B --Q ,,,设直线AC 的解析式为y mx n =+,则2042m n m n -+=ìí+=-î【变式训练1】如图1,在平面直角坐标系中,直线AB 与x 轴交于点(),0A m ,与y 轴交于点()0,B n ,且m n ,满足:()260m n n ++-=.(1)求:AOB S V 的值;(2)D 为OA 延长线上一动点,以BD 为直角边作等腰直角BDE V ,连接EA ,求直线EA 与y 轴交点F 的坐标;(3)在(2)的条件下,当2AD =时,在坐标平面内是否存在一点P ,使以B E F Р、、、为顶点的四边形是平行四边形,如果存在,直接写出点Р的坐标,若不存在,说明理由.∵EDB △为等腰直角三角形,∴,90DE DB EDB =Ð=°,∴18090EDG ODB Ð+Ð=°-。
一次函数与几何综合一
一次函数与几何综合(一)标模块一一次函数与线段长例1(2017江岸区八下期末)如图,直线l: y=2x+4.(1)①直接写出直线l关于y轴对称的直线l i的解析式:;②直接写出直线l向右平移2个单位得到的直线12的解析式: ;(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l i于点Q、交直线l2于点P,若PM = 2PQ,求M 点的坐标.例2(2017斫口区八下期末)图1中两条经过原点O的射线组成的图形E表示y关于x的函数关系式.(1)直接写出图形E表示的函数解析式;(2)如图2,过直线y=3上一点P(m, 3)作x轴的垂线交图形E于点C,交直线y=- x- 1于点D.①若m>0,试比较PC与PD的大小,并证明你的结论;②若CD <3,求m的取值范围.图图2挑战压轴题(2017黄陂区八下期末第24题)如图,直线l i经过点P(2, 2),分别交x轴、y轴于点A(4, 0)、B.(1)求直线l i的解析式;(2)点C为x轴负半轴上一点,过点C的直线l2:y=mx+ n交线段AB于点D.①如图1,当点D恰与点P重合时,点Q(t, 0)为x轴上一动点,过点Q作QM,x轴,分别交直线11、12于点M、N,若m= - , MN = 2MQ,求t 的值;2②如图2,若BC=CD,试判断m、n之间的数量关系并说明理由.模块二一次函数与特殊三角形知识导航1.等腰直角三角形一三垂直全等如图,△ ABC中,AB = AC, / BAC=90°,可构造如图所示的三垂直全等模型,“△ ACD^A BAE",从而可以转化为水平线段长度与点坐标的基本计算.若已知等腰直角三角形三个顶点坐标中的两个便可通过此方法求第三顶点坐标.2.等腰三角形的存在性一两圆一中垂已知A、B为定点,C为动点,△ ABC为等腰三角形,则分下列情况:(1)若CA = CB,则点C在AB中垂线上(不与AB共线).(2)若AC = AB,则点C在以A为圆心,AB为半径的圆上(不与点B重合).(3)若BA=BC,则点C在以B为圆心,AB为半径的圆上(不与点A重合).3.直角三角形的存在性一两垂一圆已知A、B为定点,C为动点,△ ABC为直角三角形,则分下列情况:(1)若/ CAB = 90°,则点C在过点A且垂直AB的直线上(不与点A重合).(2)若/ CBA = 90°,则点C在过点B且垂直AB的直线上(不与点B重合).(3)若/ ACB = 90°,则点C在以AB为直径的圆上(不与点A、B重合).八下会把特殊三角形的顶点放在一次函数背景下讨论、计算.例3如图,在直角坐标系中,矩形OABC的两边在坐标轴上,其中点B的坐标为(4, 3),过点A的直线AD 的解析式为y=2x+3,点P是直线AD上一动点,点Q是线段BC(包才B, C两点)上一动点.若AP = AQ 且AP^AQ,求点P的坐标及直线AQ的解析式;练习如图1,在平面直角坐标系中,A(a, 0), B(0, b),且b= "a -4+”5 +16a 2(1)求直线AB的解析式;(2)如图2,若点M为直线y=mx在第一象限上一点,且^ ABM是等腰直角三角形,求m.图1 图2例4在平面直角坐标系中,直线y=kx— k经过一定点P.(1)直接写出P点坐标;(2)在y轴上有一点A(0, 2),当k = 2时,将直线y=kx—k向上平移2个单位得到直线1,在直线l上找点C,使得△ ACO为等腰三角形,求点C的坐标.练习3 ........................................... 如图,在平面直角坐标中,一次函数y= — x+ 2的图象与x轴交于A点,与y轴交于B点,在x轴上是3否存在点P,使^ PAB为等腰三角形?若存在,求出符合条件的P点的坐标;若不存在,请说明理由.3 ............... ............................ 例5如图,在平面直角坐标系中,直线y=- ^r-x+ 6与x轴、y轴分别交于B、A点,已知点C从点A出3发沿AO以每秒1cm的速度向点O运动,同时点D从点B出发沿BA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DELOB于点E.连接DC,当t为何值时,△ DEC为直角三角形?模块三一次函数与特殊四边形例61如图,已知函数y=- -x+ b的图象与x轴、y轴分别交于点A, B,与函数y=x的图象交于点E,点E的3横坐标为3.⑴求点A的坐标.1(2)在x轴上有一点F(a, 0),过点F作x轴的垂线,分别交函数y=—-x+b和y=x的图象于点C、D.若3以点B, O, C, D为顶点的四边形为平行四边形,求a的值.练习如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2, 1).⑴求k、b的值;(2)P为直线AB上一点,PC^x轴于点C, PD^y轴于点D,若四边形PCOD为正方形,求点P的坐标.例7(2017东湖高新区八下期末)平面直角坐标系中,直线y=ax+b与x轴分别交于点B、C,且a、b满足a= *6-b + J b — 6 +3,不论k为何值,直线l: y=kx—2k都经过x轴上一定点A.(1)a =, b =, 点A 的坐标为;(2)如图1,当k= 1时,将线段BC沿某个方向平移,使点B、C对应的点M、N恰好在直线l和直线y= 2x—4上.请你判断四边形BMNC的形状,并说明理由;(3)如图2,当k的取值发生变化时,直线l: y=kx—2k绕着点A旋转,当它与直线y=ax+b相交的夹角为450时,求出相应的k的值.图1 图2拓展1平面直角坐标系中,直线li: y= —/x+3与x轴交于点A,与y轴交于点B,直线12:y=kx+2k与x轴父于点C,与直线l i交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE^x轴于点巳交直线12于点F,若DF=2DE,求k的值.(3)如图2,点P在第二象限内,PM^x轴于M,以PM为边向左作正方形PMNQ, NQ的延长线交直线11 于点R,若PR= PC,求点P的坐标.课后作业A基础巩固1.已知点A的坐标是(2, 2),若点P在x轴上,且^ APO是等腰三角形,则点P的坐标为 .1 2.如图,P是y轴上一动点,是否存在平行于y轴的直线x=t(t>0),使它与直线y=x和直线y=-2x+2分别交于点D、E(E在D的上方),且4 PDE为等腰直角三角形.若存在,求t的值及点P的坐标;若不存在,请说明理由.3.如图,直线y=kx+b与坐标轴分别交于点A, B,且A(—4, 0), &AOB =4.(1)求直线y= kx+ b的解析式;(2)若点P为直线y=kx+b上一点,PC^x轴于C, PD^y轴于D,若四边形PCOD为正方形,求点P坐标.4 .如图,在平面直角坐标系中,直线 y=- — x+ 6与x 轴、y 轴分别交于A 、B 点,已知点C 从点A 出 3发沿AO 以每秒1cm 的速度向点O 运动,同时点D 从点B 出发沿BA 以每秒2cm 的速度向点A 运动,运 动时间为t 秒(0<t<6),过点D 作DELOB 于点E.(1)①直接写出/ ABO 的度数为②证明在C 、D 运动过程中,四边形 ACED 是平行四边形; 5 . (2017洪山区八下期末)3y=— —x+b 分别与x 轴、y 轴父于点 A 、B,且点A 坐标为(8, 0),点 4C 为AB 的中点.⑴写出点B 的坐标(2)如图1,点P 为直线AB 上的一个动点,过点 P 作x 轴的垂线,与直线 OC 交于点Q,设点P 的横坐标 为m,线段PQ 的长度为d,求d 与m 的函数解析式(请直接写出自变量 m 的取值范围);数学故事为什么2187是个幸运的数字尽管不符合常规理解的“幸运”含义,2187这个数字仍有一系列让人吃惊的特征.在纪念马丁 加德纳 100周年诞辰之际,我们来回顾他在 1997年为《数学信使》(MathematicalIntelligencer)写的一篇文章.在这篇文章中,他问他想象中的好友欧文约书亚矩阵博士(Dr. Irving JoshuaMatrix)关于数字2187的问题.欧文 约书亚 矩阵博士是“世界最著名的数字命理学家”,也是在《科学美国人》(Scientific American )"数学游戏”(Mathematical Games)专栏中经常出现的角色;而 2187,则是加德 纳儿时在美国俄克拉荷马州(Okla)塔尔萨(Tulsa)老家的门牌号码.矩阵博士立刻列举了一系列关于 2187的事实,这让加德纳感到非常兴奋: 2187,是3的7次方,它的.三进制写法是 10000000; 9999减去2187等于7812,恰好与其顺序相反;21乘以87等于1827, 27乘以81又刚好等于2187.“每个数字都有数不 尽的独特的特征,”矩阵博士点评说,同时补充道, 2187也是一个幸运数.幸运数是素数的远亲,素数是只能被1和它本身整除的正整数.尽管这两者在很多方面都不同,但它们都可以利用被称为“筛法”的方法得到.希腊数学家埃拉托斯特尼 (Eratosthenes)设计了一种在正整数序列中寻找素数的方法一一著名的埃拉托斯特尼筛法:首先删除所有除2以外2的倍数,然后删除3的倍数,然后是5, 7, 11等等.这样不断删除到无穷大,就可以得到所有素数.波兰裔美国数学家斯塔尼斯拉夫 乌拉姆(Stanislaw Ulam)在20世纪50年代中期开发出了另一种筛法:同样是从正整数序列开始,先将数列 中的第 2n 个数 (偶数 )删除,只留下奇数;这样剩下的数列中第二项是 3,因此将新数列的第 3n 个数删除;(2)当 t = 时,四边形ACED 是菱形.如图,在平面直角坐标系中,直线(3)如图2,当点P 在线段 AB 上,在第一象限内有一点 N,使得四边形 OBNP 为菱形,求出N 点坐标.B 综合训练再剩下的新数列中的第三项为7,因此将新数列的第7n 个数删除;再剩下的新数列中的第四项为9,因此将新数列的第9n 个数删除;这样继续下去,最终有一些数永远地逃离了被删除的命运而留下来,这就是为什么乌拉姆把它们称作“幸运数”.幸运数和素数有一些由奇妙的筛法得到的数字的共同特征.比如说,在小于100 的数中,有25 个素数和23 个幸运数,其中有八对孪生素数(之差为 2 的两个素数)以及七对孪生幸运数.关于素数,尚未解决的最有名的问题之一就是哥德巴赫猜想——任一大于2 的偶数,都可表示成两个素数之和.同样另一个未解决的问题是一个相似的命题——任一大于2 的偶数,都可表示成两个幸运数之和.关于2187,还有另一个有趣的事实——如下所示,等号右边的数字之和等于左边与2187 相加的排列不同的数字之和.2187 + 1234=34212187+12345= 145322187 + 123456= 1256432187 + 1234567= 12367542187+ 12345678=123478652187+ 123456789= 123458976。
一次函数与几何图形结合的问题习题
一次函数与几何图形的综合问题类型一 一次函数与面积问题1.如图,一次函数y =- x +m 的图象和y 轴交于点B ,与正比例函数y =12x 的图象交于点P (2,n ).(1)求m 和n 的值;(2)求APOB 的面积.2.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 .3.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B .[易错7](1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.4.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P (x ,y )是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.图类型二一次函数与几何图形的规律探究问题1. (2017●安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,..在直线l上,点B1,B2,B3,...在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,...依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn-1Bn,顶点Bn的横坐为.2.(2016●潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,.. ,正方形AnBnCnC n-1,使得点A1,A2,A3…在直线l上,点C1 ,C2,C3,...在y轴正半轴上,则点Bn的坐标是.类型三一次函数与新定义几何图形的探究1.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2, y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q 的“相关矩形”.下图①为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点B在直线x=3上.若点A,B的“相关矩形”面积是4,求点B的坐标;(2)一次函数y=-2x+b的图象经过点A,交y轴于点C,若在线段AC上存在一点D,使得点D、B的对角矩形是正方形,求m的取值范围;(3)一次函数y=k x+4的图象交y轴于点C,点A、B的对角矩形且面积是12,且m>0,要使得一次函数y=k x+4的图象与该对角矩形有交点,求k的取值范围.图①。
一次函数与几何及动点综合题(含解析)
一、选择题(题型注释)1.如图反映的过程是:矩形ABCD 中,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x , ABP S y △.则矩形ABCD 的周长是(P )D A BC61295Oy xA .6B .12C .14D .15 【答案】C 【解析】试题分析:结合图象可知,当P 点在AC 上,△ABP 的面积y 逐渐增大,当点P 在CD 上,△ABP 的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD 的周长为:2×(3+4)=14.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP 的面积和函数图象,求出AC 和CD 的长.2.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s (米)与行进时间t (分钟)的函数图象的示意图.你认为正确的是( )【答案】C 【解析】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD 两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,C 对3.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )A.121nn++B.31nn-C.221nn-D.221nn+【答案】D.【解析】试题分析:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,∴A1(1,0),A2(2,0),A3(3,0),…A n(n,0),A n+1(n+1,0),∵分别过点A1、A2、A3、…、A n、A n+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6),…B n(n,2n),B n+1(n+1,2n+2),根据题意知:P n是A n B n+1与 B n A n+1的交点,设:直线A n B n+1的解析式为:y=k1x+b1,直线B n A n+1的解析式为:y=k2x+b2,∵A n(n,0),A n+1(n+1,0),B n(n,2n),B n+1(n+1,2n+2),∴直线A n B n+1的解析式为:y=(2n+2)x﹣2n2﹣2n,直线B n A n+1的解析式为:y=﹣2n x+2n2+2n,∴P n(22221n nn++,24421n nn++)∴△A n B n P n的A n B n边上的高为:22221n nnn+-+=21nn+,△A n B n P n的面积S n为:21222121n nnn n⨯⋅=++.故选D .考点:一次函数图象上点的坐标特征. 4.如图,已知直线l :x y 33,过点A (0,1)作y 轴的垂线 交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过 点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 A.(0,64) B.(0,128) C.(0,256) D.(0,512)【答案】C. 【解析】试题分析:∵直线l 的解析式为;3, ∴l 与x 轴的夹角为30°, ∵AB ∥x 轴, ∴∠ABO=30°, ∵OA=1, ∴OB=2, ∴3,∵A 1B ⊥l ,∴∠ABA 1=60°, ∴A 1O=4, ∴A 1(0,4),同理可得A 2(0,16), …∴A 4纵坐标为44=256, ∴A 4(0,256). 故选C .考点:一次函数综合题.5.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是【答案】A . 【解析】试题分析:作OE ⊥BC 于E 点,OF ⊥CD 于F 点,如图,设BC=a ,AB=b ,点P 的速度为x ,点F 的速度为y , 则CP=xt ,DQ=yt ,所以CQ=b-yt , ∵O 是对角线AC 的中点,∴OE 、OF 分别是△ACB 、△ACD 的中位线, ∴OE=12b ,OF=12a , ∵P ,Q 两点同时出发,并同时到达终点, ∴a bx y=,即ay=bx , ∴S=S △OCQ +S △OCP =12•12a•(b-yt )+12•12b•xt=14ab-14ayt+14bxt=14ab (0<t <a x), ∴S 与t 的函数图象为常函数,且自变量的范围为0<t <ax).故选A .考点:动点问题的函数图象.6.函数321+=x y 的图象与x 、y 轴分别交于点A 、B ,点P )(y x ,为直线AB 上的一动点(0>x )过P 作PC ⊥y 轴于点C ,若使PBC ∆的面积大于AOB ∆的面积,则P的横坐标x 的取值范围是( )A 、30<<xB 、3>xC 、63<<xD 、6>x【解析】试题分析:由题意知:PC=x ,OC=132x + ∴BC=12x ∵PBC ∆的面积大于AOB ∆的面积∴x >6. 故选D.考点: 一次函数综合题.7.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为 ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .6 【答案】A 【解析】 试题分析:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,则△ABP 面积y 在BC 段随x 的增大而增大;在CD 段,△ABP 的底边不变,高不变,因而面积y 不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是12×2×3=3. 故选A .考点:动点问题的函数图象.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .【解析】当点P 由点A 向点D 运动时,y 的值为0; 当点p 在DC 上运动时,y 随着x 的增大而增大; 当点p 在CB 上运动时,y 不变;当点P 在BA 上运动时,y 随x 的增大而减小。
一次函数与几何综合(通用版)(含答案)
一次函数与几何综合(通用版)试卷简介:一次函数与几何综合一、单选题(共10道,每道10分)1.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移与x轴,y轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:由题意可求得直线AB的解析式为y=-2x+2,AB∥CD.由DB=DC,DO⊥BC可得,OC=OB=1,∴C(-1,0).由AB∥CD可设直线CD的解析式为y=-2x+b,把C点坐标代入可得,b=-2,∴直线CD的函数解析式为y=-2x-2.试题难度:三颗星知识点:一次函数图象与几何变换2.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B 经过的路径长为( )A. B.C. D.5答案:D解题思路:如图,延长AC交x轴于点B′.则点B,B′关于y轴对称,CB=CB′.作AD⊥x轴于点D,则AD=3,DB′=3+1=4,AB′=5.∴AC+CB=AC+CB′=AB′=5.即光线从点A到点B经过的路径长为5.试题难度:三颗星知识点:坐标与图形性质3.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是( )A. B.C. D.答案:B解题思路:根据三角形内心的定义可知∠ABO=∠CBO,∵C(2,0),B(0,2),∴OB=OC,∠CBO=∠ABO=45°,,∴∠ABC=90°即AB⊥BC,可求得直线AB的表达式为:,由得,,即A(-6,-4),∴,在Rt△ABC中,.试题难度:三颗星知识点:一次函数综合题4.如图,直线⊥x轴于点(1,0),直线⊥x轴于点(2,0),直线⊥x轴于点(3,0)…,直线⊥x轴于点(n,0).函数y=x的图象与直线,,,…,分别交于点,…,;函数y=2x的图象与直线,,,…,分别交于点,…,.如果△的面积为,四边形的面积为,四边形的面积为,…,四边形的面积为,那么=( )A.4025B.4023C. D.答案:C解题思路:∵函数y=x的图象与直线,,,…,分别交于点,∴∵函数y=2x的图象与直线,,,…,分别交于点∴,,…….当n=2013时,.试题难度:三颗星知识点:一次函数综合题5.如图,在平面直角坐标系中,直线经过原点O,且与x轴正半轴的夹角为30°.点M在x轴上,⊙M的半径为2,⊙M与直线相交于A,B两点.若△ABM为等腰直角三角形,则点M的坐标为( )A. B.C. D.答案:B解题思路:如图,当点M在原点右边时,过点M作MN⊥AB,垂足为N,则,∵△ABM为等腰直角三角形,∴AN=MN,∴,∵AM=2,∴,∴,∵直线与x轴正半轴的夹角为30°,∴,∴点M的坐标为,由对称性可知,点M′的坐标为.试题难度:三颗星知识点:一次函数之存在性6.已知在直角坐标系中有两条直线,直线所对应的函数解析式为y=x-2,如果将坐标纸折叠,使与重合,则点(-1,0)与点(0,-1)也重合,那么直线所对应的函数解析式为( )A.y=x-2B.y=x+2C.y=-x-2D.y=-x+2答案:B解题思路:∵折叠坐标纸可以使点(-1,0)与点(0,-1)重合,∴是沿直线y=x折叠的(也就是对称轴为直线y=x).∵y=x-2过点(0,-2),(2,0),折叠后的对应点为(-2,0),(0,2),即直线过两点(-2,0),(0,2).可以求得:y=x+2.试题难度:三颗星知识点:一次函数图象与几何变换7.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )A.3<b<6B.2<b<6C.3≦b≦6D.2<b<5答案:C解题思路:题干意思是指直线与小正方形有交点时,求b的取值范围.我们知道直线是由直线向上平移b个单位得到的,若直线与小正方形有交点,可知当直线经过A(1,1)时b的值最小,此时b=3;当直线经过C(2,2)时,b最大,此时b=6.∴能够使黑色区域变白的b的取值范围为3≦b≦6.试题难度:三颗星知识点:一次函数综合题8.已知矩形ABCD中,AB=9,AD=3,将此矩形置于平面直角坐标系中,使AB在x轴正半轴上,若经过点C的直线与x轴交于点E,则四边形AECD的面积为( )A.9B.18C.6D.21答案:B解题思路:在矩形ABCD中,要求四边形AECD的面积,只需求出△EBC的面积即可,即求BE的长.∵点C的纵坐标是3,代入直线解析式可得点C(10,3),∴OB=10,∵直线与x轴交于点E,∴点E(4,0),∴OE=4,BE=6,则△EBC的面积为9,∴四边形AECD的面积为18.试题难度:三颗星知识点:一次函数综合题9.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.5答案:B解题思路:由于点A,B是固定点,要使△ABC是等腰三角形,只需根据一线两圆,判断与直线的交点即可.①作线段AB的垂直平分线,交直线于点,则是以AB为底的等腰三角形;②以点A为圆心,AB长为半径作圆,交直线于两点,,则,分别是以为底的等腰三角形;③以点B为圆心,AB长为半径作圆,我们发现该圆与直线无交点,原因在于:过点B作直线的垂线BM,垂足为M,.试题难度:三颗星知识点:一次函数之存在性10.如图,在以点O为原点的平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且,反比例函数的图象经过点C,则所有可能的k值为( )A. B.C. D.答案:C解题思路:由题意得,A(2,0),B(0,1),.显然当点为线段AB的中点时,有,此时点的坐标为,.如图,以点O为圆心,的长为半径作圆,交直线AB于另一点,则点也符合条件.过点O作OE⊥AB于点E,过点作⊥x轴于点F,则,.在中,,,则;在中,,且,则,∴点,综上:,试题难度:三颗星知识点:一次函数综合题。
初中数学解题技巧专题---一次函数与几何图形的综合问题
第2页共3页
参考答案与解析 .1 16 解析:如图,∵点 ,A B 的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,
==BC24=x×-54,6=上∴16,在.即∴R线2t△x段-AB6B=CC扫4中,过,解的由得面勾x积股=为定5.即理16得O. AA′=C=5,∴BCC2C-′=AABA2=′=45,-∴1=A′C4.′=∴4S.▱∵BCC点′B′C=′在C直C′线·CAy
9
Hale Waihona Puke AP OP OA 2 AP OP OA 2
S△ABP
1 2AP·OB
1 2
9 2
3
27 4
S△ABP
1 2AP·OB
=12×32×3=94.综上所述,△ABP 的面积为247或94. 3.解:(1)∵点 P 在直线 y=-x+10 上,且点 P 在第一象限内,∴x>0 且 y>0,即-x
+10>0,解得 ∵点 0<x<10. A(8,0),∴OA=8,∴S=12OA·|yP|=12×8×(-x+10)=-4x+ . 40(0<x<10)
= ,∴ , , , , , … ∵ = - , = - , = - ,…∴ B2B3 8 B1(2 0) B2(6 0) B3(14 0) . 2 22 2 6 23 2 14 24 2
Bn
的横坐标为 - 故答案为 - 2n+1 2.
2n+1 2.
B直∴形3(线点2A217,ByB.=212C的(3x21--On坐-111是标),,上正为2…,n-方(2∴,,1形)点∴3,)点A,解∴2同B析的An1理:坐的B1∵可标坐=y得为标O=A点为(x21=-,(B21113n-,)的与.1,∴坐∵x2点标四轴n-为边交B11()形于4的.,点坐A72)B标A.21C,为∵2∴C(B11,1点是(210正A),.1方的2∵1形-坐C,1标1A)∴,为2∥AB(2x12B(,2轴21=0,,).A2点22∵C-1A四=12)边在2,,
一次函数与几何综合(题型齐全)
一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。
或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。
一次函数综合题1
⇔⇔⇔⇔一次函数与几何图形变换直线y 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0,k 2≠0)的位置关系.①k 1≠k 2y1与y2相交;② K 1≠ K 2, b1=b2y1与y2相交于y 轴上同一点(0,b1)或(0,b2);③ K 1 : K 2=b 1 : b 2 k 1≠ k 2y 1与y 2相交于x 轴上同一点(-,0)④ K 1 = K 2, b 1 ≠b 2y 1与y 2互相平行 ⑤ K 1 = K 2 b 1=b 2 y 1与y 2互相重合⑥ K 1 K 2=-1 Y 1与Y 2互相垂直 ⑦ K 1 = - k 2 b 1 = b 2y 1与y 2关于y 轴对称 ⑧ K 1= - k 2 b 1 = -b 2y1与y2关于x 轴对称 ⑨ K 1= k 2 b 1 = - b 2y 1与y 2关于原点对称⑩直线y=kx+b 关于直线y =x 对称直线解析式为直线y=kx+b 关于直线y =-x 对称,直线解析式为〖方法〗:直线的对称问题可通过点的对称解决,所以可在已知直线上取两点,求得对称点的坐标后,再运用待定系数法求其解析式.例填空⑴若直线l 与直线y =2x -1关于x 轴对称,则直线l 的解析式为⑵若直线l 与直线y =2x -1关于y 轴对称,则直线l 的解析式为 ⑶若直线l 与直线y =2x -1关于原点对称,则直线l 的解析式为 __________ . ⑷若直线l 与直线y =2x -1关于直线y =x 对称,则直线l 的解析式为________ . ⑸若直线l 与直线y =2x -1关于直线y =-x 对称,则直线l 的解析式为__________.⑹直线y=k 1x-3与y=k 2x+4相交于x 轴上一点则k 1:k 2=___ ⑺直线y=k 1x-b 1与y=k 2x+4相交于y 轴上一点则b 1=___ ⑻直线y=x+b 1与y=2x+b 2相交于x 轴上一点则b 1:b 2= ⑼函数y 1=x +b 图象与一次函数y 2=kx +4的图象关于y 轴对称,求k 、b 的值⑽函数y 1=x +b 图象与一次函数y 2=kx +4互相垂直则k=------------⑾函数y 1=x +b 图象与一次函数y 2=kx +4互相平行则k= --------- 练习1.已知直线b kx y +=平行于直线y=-3x+4,且与直线y=2x-6的交点在x 轴上,求此一次函数的解析式。
一次函数与几何图形综合题10及答案
一次函数与几何图形综合题10及答案1、1) AC的解析式为y=-x-2;2) 设BP与PQ的交点为R,由相似三角形可得BP/PQ=OB/OQ,即BP/PQ=1/2,故BP=2PQ。
证明如下:设BP=x,PQ=y,则由OC=OB可得AC=-x-2,又由直线AC和BP的垂线PQ相似可得y/x=(x+2)/(y+2),解得y=2x,代入AC 的解析式可得BP=2PQ,结论得证。
3) 正确结论为①(MQ+AC)/PM的值不变。
证明如下:由(2)可得BP=2PQ,又由相似三角形可得MQ/PM=OB/OQ,即MQ/PM=1/3,代入AC的解析式可得(MQ+AC)/PM=-2/3,为定值。
而(MQ-AC)/PM=(MQ+AC)/PM-2AC/PM=-2/3-2x/(x+2),不是定值。
故正确结论为①。
2、1) 直线L的解析式为y=-x+5;2) 由相似三角形可得MN/BN=AM/AB=4/(4+3),即MN=12/7;3) 猜想PB的长为定值,其值为2.证明如下:设点B在y轴上的坐标为h,则BP=h,由△OBF和△ABE相似可得BE=BF=h/2,EF=AB-BE=5-h/2,由相似三角形可得FP/EF=BP/BE=h/(5-h/2),所以FP=5h/(5-h/2),由于P在y轴上,故FP=2h,解得h=2,即PB=2,结论得证。
3、1) 直线l2的解析式为y=-x+1;2) 画图如下,由相似三角形可得BE/BC=AB/AC,即BE/(BE+CF)=(AB+BC+AC)/AC,代入AB=1,BC=3,AC=4可得BE/(BE+CF)=5/4,即BE=5CF/3,代入△BEC的勾股定理可得CF=3/2,BE=5/2,故BE+CF=8/2=4=EF,结论得证。
3) 正确结论为①OM为定值,其值为1/2.证明如下:设△ABC沿y轴向下平移的距离为h,则BP=CQ=h,由相似三角形可得OM/AB=OC/AC,即OM/1=(h+2)/(h+4),解得OM=(2h+4)/(h+4),为定值。
一次函数与几何综合(习题及答案)
一次函数与几何综合(习题)1.如图,点B,C 分别在直线y=2x 和直线y=kx 上,A,D 是x轴上的两点.若四边形ABCD 是长方形,且AB:AD=1:2,则k 的值为.2.如图,一次函数y=-2x+4 的图象与坐标轴分别交于点A,B,把线段AB 绕着点A 沿逆时针方向旋转90°,点B 落在点B′ 处,则直线AB′的表达式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面内的点B′处.已知直线CB′的解析式为y =-3x +b ,则点B′的坐标为,直线CP 的表达式为.134.如图,点A 的坐标是( -,0),点B 的坐标是(6,0),点C在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D,过点A 作直线AE⊥BD,垂足为点E,交OC 于点F,则点C 的坐标为,直线AE 的表达式为.第4 题图第5 题图5.如图,一次函数的图象交x 轴于点B(-6,0),交正比例函数的图象于点A,且点A 的横坐标为-4,S△AOB =15,S△BOD=45,则一次函数的表达式为,正比例函数的表达式为.6.如图,在平面直角坐标系中,已知直线y =-3x + 3 与x 轴、y 4轴分别交于A,B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.7.如图,在平面直角坐标系中,函数y=-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A(0,2)关于直线l 的对称点A′的坐标为(-2,0),请在图中分别标出B(-5,-3),C(-2,5)关于直线l 的对称点B′,C′的位置,并写出它们的坐标:B′,C′.归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l 的对称点P′的坐标为.运用与拓广:已知两点D(0,-3),E(1,-4),试在直线l 上确定一点Q,使点Q 到D,E 两点的距离之和最小,并求出点Q 的坐标.8.如图,在平面直角坐标系中,直线y =x - 4 与x 轴、y 轴分别交于点A,B,P 为y 轴上B 点下方的一点,且PB=m(m>0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt△APM.(1)用含m 的代数式表示点M 的坐标;(2)若直线MB 与x 轴交于点Q,求点Q 的坐标.5 5 【参考答案】➢ 巩固练习1. 252. y = 1 x + 423. (2, 4 - 2 ), y = -3 x +4 3 4. (3, 3 3 ), y =3 x + 13 5.y = x + 15 , y = - x 2 46. (0, 4 ),(0,-12)37. 实验与探究:(3,5),(-5,2) 归纳与发现:(-n ,-m )运用与拓广:点 Q 的坐标为(2,-2)8. (1)M (4+m ,-8-m )(2)Q (-4,0)3。
2023学年北师大版八年级数学上学期压轴题专题09 一次函数与几何图形综合问题的五种类型含解析
专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标.【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A 0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来.【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP ; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.类型五、最值问题例1.如图,将直线34y x=-向上平移后经过点()4,3A,分别交x轴y轴于点B、C.(1)求直线BC的函数表达式;(2)点P为直线BC上一动点,连接OP.问:线段OP的长是否存在最小值?若存在,求出线段OP的最小值,若不存在,请说明理由.【变式训练1】如图,四边形OABC是张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴正半轴上,点C在y轴正半轴上,5OC=,点E在边BC上.(1)若点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,将纸片沿直线OE折叠,顶点C恰好落在MN上,并与MN上的点G重合.①求点G、点E的坐标;②若直线:l y mx n=+平行于直线OE,且与长方形ABMN有公共点,请直接写出n的取值范围.(2)若点E为BC上的一动点,点C关于直线OE的对称点为G,连接BG,请求出线段BG的最小值.专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标 【答案】(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【解析】(1)解:设直线AB 的解析式为y kx b =+△A (2,0)B (0,1),△201k b b +=⎧⎨=⎩,解得:k =12-,b =12△直线AB 的解析式为112y x =-+ (2)△y =﹣12x +1中k =﹣12<0,△y 值随x 值的增大而减小, △﹣1<3,△y 1>y 2;(3)△x 轴上有一点C ,设点C (x ,0),△AC =|2﹣x |, △S △ABC =2,△12×|2﹣x |×1=2,△x =﹣2或x =6, △C (﹣2,0)或C (6,0). 故答案为:(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标. 【答案】(1)1k =,3m =;(2)点C 的坐标为(2,0)或(6,0)- 【解析】(1)一次函数1=2y kx +的图象与x 轴交于点2,0B -(),220k ∴-+=1k ∴=12y x ∴=+一次函数12y x =+的图象与正比例函数2y mx =的图象交于点(1,)A a ,12a ∴=+,a m =,3m ∴=; (2)设点C 的坐标为(,0)n ,过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1|(2)|362n ∴--⨯=,2n ∴=或6n =-∴点C 的坐标为(2,0)或(6,0)-,或过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1362BC ∴⨯=,4BC ∴=,点B 的坐标为(2,0)-,∴点C 的坐标为(2)0,或(60)-,. 【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【答案】(1)y =-2x +16,0<x <4;(2)(12,12)或(8,20)或(6,14);(3)(-1,-2)或(-1,8)或(-1,38)或(-1,28)【解析】(1)由线段的和差,得PC =(4-x ),由梯形的面积公式,得y =-2x +16, △四边形ABCD 是正方形,△AB =CD =4,△x 的取值范围是0<x <4; (2)设P 点坐标是(a ,b ),M (0,16),N (4,8),以MN 为边,在MN 右侧做正方形,MNAB ,正方形中心为H ,则易知A ,B ,H 即为所求P 的坐标;示意图如下求得A (12,12),B (8,20),O (6,14),故P 点可能的坐标为(12,12)或(8,20)或(6,14); (3)由S △MNQ =S △NMP ,设Q (-1,m ),QN 所在直线方程为y =kx +b , 把Q 和N 代入方程,求得b =845m +,则可求S △NMP =12|16-b |×[4-(-1)]=|36-2m |当P 为(12,12)时,S △MNQ =40,△|36-2m |=40;解得m =-2或38,当P (8,20),同理解得m =-2或38,当P (8,20),有S △MNQ =20,解得m =8或28, 综上,符合条件的Q 的坐标为(-1,-2)或(-1,8)或(-1,38)或(-1,28).【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.【答案】(1)-26y x =+;(2)12.【解析】(1)把(1,)C m 代入y =x +3,得1+3=m ,△m =4,△(1,4)C设2l 的解析式为:y =kx +b (k ≠0),将点A ,C 的坐标代入,则430k b k b +=⎧⎨+=⎩ 解得26k b =-⎧⎨=⎩,△2l 的解析式为:-26y x =+(2)当y =0时,30x += ,△3x =-,△(3,0)B -, 当x =0时,y =3,△(0,3)D ,△点P 、D 关于x 轴对称,△(0,3)P - ,如图,连接BP ,PC ,设PC 与x 轴的交点为Q ,设直线PC 的解析式为(0)y kx b k =+≠,将点(1,4),(0,3)C P -代入:43k b b +=⎧⎨=-⎩,解得73k b =⎧⎨=-⎩,△直线PC 的解析式为:73y x =-,令y =0,解得37x =, △BPCBQP BQCSSS=+1122c BQ OP BQ y =+1124()712227c BQ OP y =+=⨯⨯=.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【答案】(1)334y x =-+;(2)2425;(3)17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8- 【解析】(1)设直线AB 的表达式为y kx b =+,则304b k b =⎧⎨=+⎩,解得343k b ⎧=-⎪⎨⎪=⎩,故AB 的表达式为334y x =-+;(2)//BC x 轴,故点C 的纵坐标为3,当3y =时,即5534y x =-+=,解得85x =,即点C 的坐标为8(5,3),则85BC =;由点A 、B的坐标得,5AB ==,过点C 作CH AB ⊥于点H ,在△ABC 中,S △ABC =1122BC OB AB CH ⨯⨯=⨯⨯,即18135252CH ⨯⨯=⨯⨯,解得:2425CH =,即点C 到直线AB 的距离为2425;(3)设点C 、D 的坐标分别为5(,5)4m m -+、3(,3)4n n -+,当EB 是对角线时,由中点坐标公式得:01m n +=+且53305344m n +=-+-+,解得172152m n ⎧=⎪⎪⎨⎪=-⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8;当EC 是对角线时,同理可得:1m n +=且5353344m n -+=-++,解得,1212m n ⎧=-⎪⎪⎨⎪=⎪⎩故点C 、D 的坐标分别为1(2-,45)8、1(2,21)8;当ED 是对角线时,同理可得:1n m +=且35035344n m -+=-++,解得152172m n ⎧=⎪⎪⎨⎪=⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2,21)8-.综上,点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8-.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【答案】(1)13k =-,与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)D (4,1)或D (2,-1)或D (-4,1).【解析】(1)将P (-3,2)代入()10y kx k =+≠,得:13k =-函数表达式:113y x =-+,令y =0,x =3,令x =0,y =1,△与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)分三种情况:①BC 为对角线时,点D 的坐标为(-4,1);②AB 为对角线时,点D 的坐标为(4,1),③AC 为对角线时,点D 的坐标为(2,-1).综上所述,点D 的坐标是(4,1)或(-4,1)或(2,-1).【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.【答案】(1)13m b ==-,;(2)点Q 的坐标为()2,4,()2,2-或()6,6 【解析】(1)△直线1l :2y x b =+与直线2l :12y x =交于点()2,P m ,△4122m b m =+⎧⎪⎨=⨯⎪⎩,△1 3.m b ==-, (2)依题意可得直线1l :23y x =-,△直线1l 与y 轴的交点为(0,-3) △直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点, MN =3, △M ,N 不是y 轴上的点,设M (x ,2x -3),则N (x ,12x ) 由MN =3,得(2x -3)-12x =3,解得x =4,△M (4,5),则N (4,2) △以M ,N ,P ,Q 为顶点的四边形是平行四边形,①当MN 为四边形MPNQ 的对角线时,MN 的中点坐标为(4,3.5) 故()2,1P 、Q 关于(4,3.5)对称,△点Q 的坐标为()6,6,②当MN 为四边形MNQP 的一边时,MN =PQ =3,且PQ 与y 轴平行,故点Q 的坐标为()2,4或()2,2- 综上,点Q 的坐标为()2,4,()2,2-或()6,6. 类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【答案】(1)2,30,C2);(22a-;(3)(0,-1)或(0,3)【解析】(1)(3A ,0),(0,1)B ,在Rt AOB ∆中,2AB =,2OB =AB ,可30BAO ∴∠=︒,以AB 为边在第一象限内做等边ABC ∆,60ACB ∠=︒∴,AB AC =,90OAC ∴∠=︒,C ∴2),故答案为2,30,C 2);(2)四边形ABPO 的面积BAO =∆的面积OBP +∆的面积1111()222a a =+⨯⨯-=;(3)2AB =,30BAO ∠=︒,60OBA ∴∠=︒,①当AB BM =时,2BM =,(0,1)M -或(0,3)M ;②当AB AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; ③当BM AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; 综上所述:MAB ∆为等腰三角形时,M 点坐标为(0,1)-或(0,3).【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来. 【答案】(1)直线m 的解析式为325y x =-;(2)P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).过程见解析. 【解析】(1)△D (t ,1)在直线l :y =-x +6上,△1=-t +6,△t =5,△D (5,1),设直线m 的解析式为y =kx +b ,将点C ,D 代入得,512k b b +=⎧⎨=-⎩,解得,352k b ⎧=⎪⎨⎪=-⎩,所以,直线m 的解析式为325y x =-; (2)设P (a ,6-a ),△点P 在x 轴的左侧,△0a < △PQ △轴,G (a ,0),Q (a ,325a -),如图,点P 、Q 在x 轴两侧,△S △PCG =12PG •(-a ),S △QCG =12GQ •(-a )且S △PCG =2S △QCG , △PG =2QG ,△6-a =2(2-35a ),解得:a =-10, △66(10)16a -=--=,332(10)2855a -=⨯--=-△P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)对于直线l :y =-x +6,当x =0时,y =6;当y =0时,x =6.△A (6,0),B (0,6),△将直线l :y =-x +6向左平移12个单位得直线n 交x 轴于点E ,点F 是点C 关于原点的对称点.点C (0,-2), △E (-6,0),F (0,2), 如图,△将直线l :y =-x +6向左平移12个单位得直线n ,△直线n :y =-x -6, 又△F (0,2)△k 的解析式为:y =2,设M (a ,2),则MCME,CE ,当△MCE 为等腰三角形,且CE 为腰,有:①CE =MCa =a =-M (2).M (-2), ②ME =CE解得,a =0或a =-12(此时三点共线,不构成三角形,舍去),即M (0,2),综上,当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【答案】(1)y =43x ﹣2;(2)C (0,4)或(0,﹣8);(3)直线l 的解析式为:y =﹣13x +3或y =3x ﹣7或y =﹣43x +6或y =724x +98 【解析】(1)设直线n 的解析式为:y =kx +b ,△直线n :y =kx +b 过点A (0,﹣2)、点B (3,2),△232b k b =-⎧⎨+=⎩ ,解得:432k b ⎧=⎪⎨⎪=-⎩ ,△直线n 的函数表达式为:y =43x ﹣2; (2)△△ABC 的面积为9,△9=12•AC •3,△AC =6, △OA =2,△OC =6﹣2=4或OC =6+2=8,△C (0,4)或(0,﹣8); (3)分四种情况:①如图1,当AB =AC 时,△A (0,﹣2),B (3,2),△AB 22(22)=5,△AC =5,△OA =2,△OC =3,△C (0,3),设直线l 的解析式为:y =mx +n ,把B (3,2)和C (0,3)代入得:323m n n +=⎧⎨=⎩ ,解得:133m n ⎧=-⎪⎨⎪=⎩ ,△直线l 的函数表达式为:y =13-x +3; ②如图2,AB =AC =5,△C (0,﹣7),同理可得直线l 的解析式为:y =3x ﹣7; ③如图3,AB =BC ,过点B 作BD △y 轴于点D ,△CD =AD =4,△C (0,6),同理可得直线l 的解析式为:y =43-x +6; ④如图4,AC =BC ,过点B 作BD △y轴于D ,设AC =a ,则BC =a ,CD =4﹣a ,根据勾股定理得:BD 2+CD 2=BC 2,△32+(4﹣a )2=a 2,解得:a =258, △OC =258﹣2=98 ,△C (0,98),同理可得直线l 的解析式为:y =724x +98; 综上,直线l 的解析式为:y =13-x +3或y =3x ﹣7或y =43-x +6或y =724x +98. 【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?【答案】(1)3a =-,()10B ,;(2)362y x =-;(3)92;(4)52,2813【解析】(1)△直线1:l y ax a =-经过点(2,3)C -,32a a ∴-=-,解得:3a =-;即直线1:l y ax a =-的解析式为33y x =-+;当y =0时,-3x +3=0,解得1x =,则()10B ,;故答案为:-3,(1,0);(2)设直线2l 的解析式为:y kx b =+, △经过点()4,0A 和点(2,3)C -,△0432k b k b=+⎧⎨-=+⎩,解得:32k ,6b =-.△直线2l 的解析式为:362y x =-; (3)设ABC 的面积的面积为ABC S ;则413AB =-=,ABC 的高为3,则193322ABCS=⨯⨯=; (4)存在,设点P 的坐标为(x ,362x ),分三种情况: ①当AP=BP 时,点P 在线段AB 的垂直平分线上,△A (4,0),B (1,0),△点P 的横坐标为:41522+=; ②当AP=AB =3时,过点P 作PH △x 轴于点H ,△222PH AH AP +=,△2223(6)(4)32x x -+-=,解得x③当AB=BP =3时,作PM △x 轴于点M , △222PM BM BP +=,△2223(6)(1)32x x -+-=,解得x =2813或x =4(舍去);综上,符合条件的P 点的横坐标是52,2813,5213± 类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)m =4,b =143;(2)①t =5;②t =4或t =6 【解析】(1)△点C (−2,m )在直线y =−x +2上, △m =−(−2)+2=2+2=4,△点C (−2,4), △函数y =13x +b 的图象过点C (−2,4),△4=13×(−2)+b ,得b =143,即m 的值是4,b 的值是143; (2)①△函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,△点A (2,0),点B (0,2), △函数y =13x +143的图象与x 轴交于点D ,△点D 的坐标为(−14,0),△AD =16, △△ACE 的面积为12,△(16−2t )×4÷2=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5; ②当t =4或t =6时,△ACE 是直角三角形,理由:当△ACE =90°时,AC △CE , △点A (2,0),点B (0,2),点C (−2,4),点D (−14,0),△OA =OB ,AC =,△△BAO =45°,△△CAE =45°,△△CEA =45°,△CA =CE =,△AE =8, △AE =16−2t ,△8=16−2t ,解得,t =4;当△CEA =90°时,△AC =,△CAE =45°,△AE =4, △AE =16−2t ,△4=16−2t ,解得,t =6;由上可得,当t =4或t =6时,△ACE 是直角三角形.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【答案】(1)2;(2;(3或1【解析】(1)在菱形ABCD 中,60ABC ∠=︒,则ABC ∆、ACD ∆为全等的两个等边三角形,设ABC ∆的边长为a,则其面积为24a , 由图2知,当点P 在点A 时,y ABC =∆的面积2=,解得2a =(负值已舍去), 即菱形的边长为2,则2()AB cm =,由题意知,点P 与点O 重合时,对于图2的a 所在的位置,则1AO =,故a BO ====2(2)由(1)知点P 在BO 段运动时,对于图2第一段直线,而该直线过点、0),设其对应的函数表达式为y kx t =+,则0t t ⎧=⎪+=,解得1k t =-⎧⎪⎨=⎪⎩,故该段函数的表达式为=-+y x ,当点P 在BD 上运动时,四边形ADCP,则点P 只能在BO 上,则四边形ADCP 的面积ACD S y ∆=+=x x =;(3)存在,理由:由(1)知,菱形的边长为2,则BP =1AO =,过点A 作AP DC ''⊥于点P ''交BD 于点P ',ABC ∆、ACD ∆均为等边三角形,则30PAP DAP ∠'=∠''=︒,①当点P 和点O 重合时,APB ∠为直角,则x BP ==②当BAP ∠'为直角时,则同理可得:PP '=x BP PP =+'=;③当BAP ∠''为直角时,则112x BD DP AD =+''=+=,综上,x 或1. 【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.【答案】(1)22y x =-;(2)(2,2);(3)(2,0)或(4,0).【解析】(1)根据题意,得22y x =-;故答案为:22y x =-.(2)由题意得:22132y x y x =-⎧⎪⎨=-+⎪⎩,解得:22x y =⎧⎨=⎩,△点A 的坐标为(2,2); (3)如图所示,△P 是x 轴上一点,且满足△OAP 是等腰直角三角形,当OA =OP 时,P 点坐标为(4,0),当OP =AP 时,P 点坐标为(2,0), 综上,P 点的坐标为:(2,0)或(4,0). 类型五、最值问题 例1.如图,将直线34y x =-向上平移后经过点()4,3A ,分别交x 轴y 轴于点B 、C .(1)求直线BC 的函数表达式;(2)点P 为直线BC 上一动点,连接OP .问:线段OP 的长是否存在最小值?若存在,求出线段OP 的最小值,若不存在,请说明理由. 【答案】(1)364y x =-+;(2)存在,线段OP 的最小值为4.8.【解析】(1)设平移后的直线BC 的解析式为34y x b =-+,代入()4,3A 得3344b =-⨯+,解得6b = △直线BC 的解析式为364y x =-+; (2)存在,理由如下:令x =0,得y =6,△C (0,6),故OC =6令y =0,得x =8,△B (8,0)故OB =8△BC 10= △OP △BC 时,线段OP 最小, △S △ABC =12BO CO ⨯=12BC OP ⨯,△OP = 4.8BO COBC⨯=,即线段OP 的最小值为4.8. 【变式训练1】如图,四边形OABC 是张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OC =,点E 在边BC 上.(1)若点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M ,将纸片沿直线OE 折叠,顶点C 恰好落在MN 上,并与MN 上的点G 重合. ①求点G 、点E 的坐标;②若直线:l y mx n =+平行于直线OE ,且与长方形ABMN 有公共点,请直接写出n 的取值范围. (2)若点E 为BC 上的一动点,点C 关于直线OE 的对称点为G ,连接BG ,请求出线段BG 的最小值.【答案】(1)①G (3,4),E (53,5);②-15≤n ≤-4;(2)5【解析】(1)由折叠的性质可知,OG =OC =5,由勾股定理得,GN 4=, △点G 的坐标为(3,4);设CE =x ,则EM =3-x ,由折叠的性质可知:EG =CE =x , △GN =4,△GM =5-4=1,在Rt △EMG 中,222EG EM MG =+,即()22231x x =-+,解得:x =53, △点E 的坐标为(53,5);设OE所在直线的解析式为:y=kx,则53k=5,解得,k=3,△OE所在直线的解析式为:y=3x,△直线l:y=mx+n平行于直线OE,△m=3,即直线l的解析式为y=3x+n,当直线l经过点M(3,5)时,5=3×3+n,解得,n=-4,当直线l经过点A(5,0)时,0=3×5+n,解得,n=-15,△直线l与长方形ABMN有公共点时,-15≤n≤-4;(3)连接OB,OG,△OC=BC=5,△OCB=90°,△BC OC=△点C关于直线OE的对称点为点G,△OC=OG=5,△BG≥OB-OG,△当O、B、G三点共线时,BG取得最小值,△BG的最小值为5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与几何图形
1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m
的值是多少?
2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C
在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大A B C O x y x
y
A B O
值为多少?
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式
10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式
11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.
求:(1)△COP 的面积
(2)求点A 的坐标及m 的值;
(3)若S BOP =S DOP ,求直线BD 的解析式
12、一次函数y=-
3
3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC
(1)求△ABC 的面积和点C 的坐标;
(2)如果在第二象限内有一点P (a ,2
1),试用含a 的代数式表示四边形ABPO 的面积。
(3)在x 轴上是否存在点M ,使△MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
13、已知正比例函数y=k 1x 和一次函数y=k 2x+b 的图像如图,它们的交点A (-3,4),且OB=
5
3OA 。
(1)求正比例函数和一次函数的解析式;
(2)求△AOB 的面积和周长;
15、如图,已知一次函数y=x+2的图像与x 轴交于点A ,与y 轴交于点C ,
(1)求∠CAO 的度数;
(2)若将直线y=x+2沿x 轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k ≠0)的图像与y=x+2得图像交于点B ,且∠ABO=30°,求:AB 的长及点B 的坐标 。
16、一次函数y=3
3x+2的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内做等边△ABC
(1)求C 点的坐标;
(2)在第二象限内有一点M (m ,1),使S △ABM =S △ABC ,求M 点的坐标;
(3)点C (23,0)在直线AB 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求P 点的坐标;若不存在,说明理由。
17、已知正比例函数y=k1x 和一次函数y=k2x+b 的图像相交于点A(8,6),一次函数与x 轴相交于B ,且OB=0.6OA ,求这两个函数的解析式
18、已知一次函数y=x+2的图像经过点A(2,m )。
与x 轴交于点c ,求角AOC.
19、已知函数y=kx+b 的图像经过点A (4,3)且与一次函数y=x+1的图像平行,点B (2,m)在一次函数y=kx+b 的图像上
(1)求此一次函数的表达式和m 的值?
(2)若在x 轴上有一动点P (x,0),到定点A (4,3)、B (2,m)的距离分别为PA 和PB ,当点P 的横坐标为多少时,PA+PB 的值最小?。