七年级下学期期中测试
2023-2024学年七年级下学期语文期中考试卷(含答案)
2023-2024学年七年级下学期语文期中考试卷(含答案)(试卷满分120分考试时间120分钟)一、积累与运用(25分)1.下列加点词语注音完全正确的一项是()(2分)A.哺.育(bǔ)迭.起(dié)彭湃.(bài)气冲斗.牛(dǒu)B.彷.徨(páng)花圃.(pǔ)深邃.(suì)迥.乎不同(jiǒng)C.呜咽.(yàn)山涧.(jiàn)徘.徊(huái)锲.而不舍(qì)D.亘.古(gèn)愧.怍(kuì)踱.步(duó)叱咤.风云(chà)2.下列词语中没有错别字的一项是()(2分)A.屏障抱歉取谛心不在焉一泻万丈B.斑斓泛滥震悚大庭广众家喻户晓C.咀嚼烦锁卓越妇孺皆知酣然入梦D.惶恐懊悔诧异群蚁排衙鞠躬尽粹3.依次填入下列句子横线上的词语,恰当的一项是()(2分)你的名字无人知晓,你的__________永世长存。
在历史的天空中,当年的烽火连天、金戈铁马已经远去,但__________是在世的老兵还是血染沙场的每一位英烈,都值得我们永远__________。
不管时代如何变迁,英雄人物始终是__________历史的精神坐标。
A.功劳即使铭刻标注B.功勋即使铭记标记C.功绩无论铭刻标榜D.功勋无论铭记标注4.下面句子没有语病的一项是()(2分)A.电视剧《狂飙》讲述的是省督导组与京海市位高权重的贪腐分子之间斗智斗勇的故事。
B.农民工返乡和大学毕业生就业难的问题,广泛引起了全社会的关注。
C.许多父母对孩子过于溺爱,养成饭来张口,衣来身手,这对孩子的成长是十分有害的。
D.通过开展“城乡环境综合治理”活动,使我市环境卫生状况有了很大改变。
5.下列各项中结合语段分析有误的一项是()(2分)面临祸患而不忘国家,这是忠心的表现:想到危难而不放弃职守,这是诚信的表现:为了国家的利益而置生死于度外,这是坚贞的表现。
人教版数学七年级下学期《期中考试题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。
人教版数学七年级下学期《期中检测题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
人教版数学七年级下册《期中检测题》(含答案)
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。
人教版数学七年级下册《期中检测试题》(含答案)
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。
人教版数学七年级下册《期中检测试卷》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。
部编版七年级下册期中语文考试卷
2022-2023学年度第二学期期中测试一、积累运用(30分)1.下列加点字的注音完全正确的一项是( )(2分)A.商酌.(zhuó) 拖沓.(tà) 竹篾.(mèi) 辟.(pī)头B.譬.(pì)如胸脯.(fǔ) 震悚.(sǒnɡ) 愧怍.(zuò)C.朦胧.(lónɡ) 别(biè)扭烦躁.(zào) 哀悼.(dào)D.塌.败(tā) 修葺.(qì) 驿(yì)路憎.恶(zèng)2.下列词语书写完全正确的一项是()(2分)A.粗拙响午镶嵌微不足道B.悠闲监督头颅颠沛流漓C.恍恐滞笨门槛大庭广众D.诘问竹竿取缔以身作则3.下列选项中的成语使用不恰当的一项是()(2分)A.“低头族”的注意力都集中在手中的方寸屏幕上,往往对身边的世界不以为...然.。
殊不知,无论移动终端中的虚拟世界多么精彩,却无法替代现实世界的真实美好。
B.结束了这一阶段的工作和学习,我如释重负....地松了口气。
C.在颠沛流离....的日子里,他始终无法忘记家乡的亲人。
D.所有的胜利,与征服自我的胜利比起来,都是微不足道....。
4.下列句子中没有语病的一项是()(2分)A.各级政府采取措施,加强校园安保,防止校园安全事故不再发生。
B.在阶梯教室里,五百多名师生在全神贯注倾听校长的精彩演讲。
C.实践证明,能否坚持体育锻炼对提高同学们的体育成绩很大的帮助。
D.语文课程对于发扬和继承中华民族的优秀传统文化具有不可替代的优势。
5.下列文学常识表述有误的一项是()(2分)A.《陋室铭》选自《刘禹锡集》,作者刘禹锡,字梦得,是唐代诗人。
B.叶圣陶,原名叶绍钧,作家、教育家。
代表作有长篇小说《稻草人》。
C.《老王》作者杨绛,作家、翻译家。
代表作有《干校六记》。
D.《阿长与<山海经>》作者鲁迅,原名周树人,著有散文集《朝花夕拾》,小说集《呐喊》等。
湖北省武汉市洪山区 2023-2024学年七年级下学期期中质量检测英语试卷
洪山区2023-2024学年度第二学期期中质量检测七年级英语试卷洪山区教育科学研究院命制2024. 4. 24亲爱的同学:在你答题前,请认真阅读下面的注意事项。
1. 本卷共4 页,7 大题,满分120 分。
考试用时120 分钟。
2. 答题前,请将你的姓名、班级、学校填在试卷和答题卡相应的位置,并核对条码上的信息。
3. 答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答在”试卷”上无效。
4. 答非选择题时,答案用0. 5 毫米黑色笔迹签字笔写在答题卡上。
答在”试卷”上无效。
5. 认真阅读答题卡上的注意事项。
预祝你取得优异成绩!第Ⅰ卷(选择题共80 分)第一部分听力部分一、听力测试(共三节,满分25分)第一节(共5小题,每小题1分,满分5分)听下面5个问题。
每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。
听完每个问题后,你都有5秒钟的时间来作答和阅读下一小题。
每个问题仅读一遍。
1. A. China. B. Dance. C. Lazy.2. A. No, we can’t. B. Just do it. C. Yes, we do.3. A. By bike. B. About 15 minutes. C. Two kilometers.4. A. On weekends. B. Exercise. C. At seven.5. A. The chess club. B. Speak English. C. Great.第二节。
(共7小题,每小题1分,满分7分)听下面7段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
6. What time does Linda get up on Tuesday?A. At 7: 20.B. At 6: 00.C. At 6: 20.7. What does Peter want to borrow from Sally?A. The bike.B. The key.C. The book.8. What drink would the woman like?A. Water.B. Tea.C. Coffee.9. What can’t elephants do?A. Play soccer.B. Draw pictures.C. Swim.10. How much are the two skirts?A. ¥ 120.B. ¥130.C. ¥110.11. Which picture shows where Lisa is?A. B. C.12. What are they talking about?A. Music.B. Stories.C. Rules.第三节(共13 小题,每小题 1 分,满分13 分)听下面4段对话或独白。
人教版数学七年级下学期《期中检测试题》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程是( )A. 2x =1B. 120x -=C. 2x -y =5D. 2x +1=2x 2.二元一次方程组224x y x y +=⎧⎨-=⎩的解是( ) A. 02x y =⎧⎨=⎩ B. 20x y =⎧⎨=⎩ C. 31x y =⎧⎨=-⎩ D. 11x y =⎧⎨=⎩3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++= 5.由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( ) A. x+y=1 B. x+y=-1 C. x+y=7 D. x+y=-76.不等式组10260x x +>⎧⎨-≤⎩解集在数轴上表示正确的是( ) A.B.C.D 7.某文具店一本练习本和一支中性笔单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ 8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.10.x 的3倍与5的和不大于8,用不等式表示为______.11.若方程23x y -=,用含的代数式表示,则=____.12.不等式5140x +≥的负整数解的和是____.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.16.解方程组:20346x y x y +=⎧⎨+=⎩ 17.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.18.解不等式213436x x --≥,并把解集数轴上表示出来. 19.已知x=1是方程2﹣13(a ﹣x)=2x 的解,求关于y 的方程a(y ﹣5)﹣2=a(2y ﹣3)的解. 20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?24.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.答案与解析一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A. 2x=1B. 120x-= C. 2x-y=5 D. 2x+1=2x[答案]A[解析][分析]依据一元一次方程的定义解答即可.[详解]解:A、2x=1是一元一次方程,故A正确;B、120x-=不是整式方程,故B错误;C、2x-y=5是二元一次方程,故C错误;D、2x+1=2x是一元二次方程,故D错误;故选:A.[点睛]本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.2.二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩[答案]B[解析][分析]方程组利用加减消元法求出解即可.[详解]224x yx y①②+=⎧⎨-=⎩,①+②得:3x=6,即x=2, 把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩,故答案选B.[点睛]本题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.解题的关键是熟练的掌握解二元一次方程组的方法.3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > [答案]D[解析][分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,对A 进行判断;不等式两边乘(或除以)同一个正数,不等号的方向不变,对B 、D 进行判断;不等式两边乘(或除以)同一个负数,不等号的方向改变,对C 进行判断.[详解]∵不等式两边加(或减)同一个数(或式子),不等号的方向不变∵m >n∴m -2>n -2故A 错误∵不等式两边乘(或除以)同一个正数,不等号的方向不变∵m >n∴6m >6n ,44m n > 故B 错误,D 正确∵不等式两边乘(或除以)同一个负数,不等号的方向改变∵m >n∴-8m <-8n故C 错误故选:D[点睛]本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++=[答案]A[解析]根据等式的性质方程两边都乘以12即可.解:24x ++1=3x,去分母得:3(x+2)+12=4x,故选A.“点睛”本题考查了一元一次方程的变形,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.5.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是( )A. x+y=1B. x+y=-1C. x+y=7D. x+y=-7 [答案]C[解析][分析]将两个方程相加即可得到结论.[详解]43 x my m+=⎧⎨-=⎩①②由①+②得:x+y=7.故选C.[点睛]考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.不等式组10260xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. [答案]C [解析] [分析]分别解两个不等式得到1x >-和3x ,从而得到不等式组的解集为13x -<,然后利用此解集对各选项进行判断.[详解]10{260x x ①②+>-≤,解①得x>-1,解②得x≤3,所以不等式组的解集为-1<x≤3.故选.[点睛]本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.某文具店一本练习本和一支中性笔的单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ [答案]B[解析][分析]根据等量关系“一本练习本和一支中性笔的单价合计为3元”,“20本练习本的总价+10支中性笔的总价=40”,列方程组求解即可.[详解]设练习本每本为x 元,中性笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价40得到的方程为20x+10y=40,所以可列方程为:3201040x y x y +=⎧⎨+=⎩, 故选:B .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x[答案]B[解析][分析]首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.[详解]设原来每天最多能生产x 辆,由题意得:15(x+6)>20x,故选B .[点睛]此题主要考查了由实际问题抽象出一元一次不等式,关键正确理解题意,抓住关键描述语. 二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.[答案]-4[解析]把x =6代入方程2x +3a =0得:12+3a =0,解得:a =﹣4,10.x 的3倍与5的和不大于8,用不等式表示为______.[答案]358x +≤[解析]分析:先表示出x 的3倍,再表示出与5的和,最后根据和不大于...8可得不等式.详解:根据题意可列不等式:3x +5≤8.故答案为3x +5≤8.点睛:本题考查了由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.11.若方程23x y -=,用含的代数式表示,则=____.[答案]32x - [解析]要用含x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1即可.[详解]解:移项,得23y x -=-+,系数化为1,得32x y -=, 故答案为:32x -. [点睛]本题考查了代入消元法解二元一次方程组,解题关键是把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1.12.不等式5140x +≥的负整数解的和是____.[答案]-3[解析][分析]先移项再系数化为1即可解不等式,再取负整数的解进行相加即可得到答案.[详解]解:5140x +≥,移项得到:514x ≥-,系数化为1得到:145x ≥-, ∴负整数解有:-2、-1,∴负整数解得和为:(-2)+(-1)= -3,故答案为:-3;[点睛]本题主要考查了解不等式以及整数的定义,掌握解不等式的步骤值解题的关键.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.[答案]80[解析][分析]设该书包的进价为x 元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.[详解]解:设该书包的进价为x 元,根据题意得:110×0.8﹣x =10%x ,解得:x =80.答:该书包的进价为80元.故答案为:80.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.[答案]5[解析][分析]由图可知:2个球体的重量=5个圆柱体的重量,2个正方体的重量=3个圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.[详解]解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程:2x =5y ;2z =3y ,即:6x =15y ;10z =15y ,则:6x =10z ,即:3x =5z ,即三个球体的重量等于五个正方体的重量.故答案:5.[点睛]本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.[答案]x =-3.[解析][分析]方程去括号,移项合并,把x 系数化为1,即可求出解.[详解]解:去括号得:3x -1=5x +5,移项得:3x -5x =5+1,合并得:-2x =6,系数化为1得:x =-3.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.解方程组:20 346 x yx y+=⎧⎨+=⎩[答案]原方程组的解为=63 xy⎧⎨=-⎩[解析][分析]利用代入法进行求解即可得.[详解]20346x yx y+=⎧⎨+=⎩①②,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6, 解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为63xy=⎧⎨=-⎩.[点睛]本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.17.解方程组:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩.[答案]6113xyz=⎧⎪=-⎨⎪=⎩.[解析][分析]①﹣②得出2y=-22,求出y=﹣11,把y=﹣11代入③,即可求得x=6,再把x=6,y=-11代入①进而求得z=3即可.[详解]解:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩①②③①-②得,2y=-22, 解得y=-11.把y=-11代入③中, 得11x+6×(-11)=0,解得x=6.把x=6,y=-11代入①中, 得6-11+z=-2,解得z=3.∴原方程组的解为6113xyz=⎧⎪=-⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.18.解不等式213436x x--≥,并把解集在数轴上表示出来.[答案]x≥-2;在数轴上表示见解析.[解析][分析]根据不等式的性质解一元一次不等式,然后在数轴上表示不等式的解集.[详解]解:2(2x-1)≥3x-4,4x-2≥3x-4,4x-3x≥-4+2,x≥-2.在数轴上表示如图所示:[点睛]本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.已知x=1是方程2﹣13(a﹣x)=2x的解,求关于y的方程a(y﹣5)﹣2=a(2y﹣3)的解.[答案]y=﹣4.[解析]试题分析:把x=1代入方程计算求出a的值,代入所求方程求出解即可.试题解析:把x=1代入方程得:2﹣13(a﹣1)=2,解得:a=1,代入方程a(y﹣5)﹣2=a(2y﹣3)得:(y﹣5)﹣2=2y﹣3, 解得:y=﹣4.20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?[答案]21人,羊为150元[解析][分析]可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.[详解]设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150,答:买羊人数21人,羊价为150元.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.[答案](1)m>2;(2)3x>-.[解析][分析](1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m的不等式,最后求出m的范围.(2)本题是关于x的不等式,应先只把x看成未知数,根据m的取值范围求得x的解集.[详解]解:(1)4x+2m+1=2x+5,2x=4-2m,x=2-m.由题意,得x<0,即2-m<0,∴m>2,∴m的取值范围m>2;(2)∵m>2,∴m取最小整数为3.∴关于x的不等式为3112xx+-<,2(1)31x x-<+,2231x x-<+,3x>-∴不等式的解集为3x>-.[点睛]本题主要考查解一元一次不等式和一元一次方程的能力,(1)此题是一个方程与不等式的综合题目,解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.[答案](1)x=2或23x=-;(2)①b<-1;②-1;③b>-1.[解析][分析](1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.[详解]解:(1)当3x-2≥0时,原方程可化为3x-2=4,解得x=2;当3x-2<0时,原方程可化为3x-2=-4,解得23x=-.所以原方程的解是x=2或23x=-.(2)∵|x﹣2|≥0,∴当b +1<0,即b <﹣1时,方程无解;当b +1=0,即b =﹣1时,方程只有一个解;当b +1>0,即b >﹣1时,方程有两个解故答案为:①b <-1;②-1;③b >-1.[点睛]本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?[答案](1)甲种图书单价为30元,乙种图书单价为20元;(2)最多可购买甲种图书20本.[解析][分析](1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.[详解](1)设甲种图书的单价为x 元,乙种图书的单价为y 元,由题意,得:1032130x y x y =+⎧⎨+=⎩解得:3020x y =⎧⎨=⎩. 答:甲种图书单价为30元,乙种图书单价为20元.(2)设最多可购买甲种图书m 本,则购乙种图书(50﹣m )本,由题意,得:30m +20×(50﹣m )≤1200解得:m ≤20.答:最多可购买甲种图书20本.[点睛]本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.24.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.[答案](1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)共有2种租车方案:①租A型车6辆,B型车2辆;②租A型车2辆,B型车5辆;(3)最省钱租车方案为方案②,租车费用为800元.[解析][分析](1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.[详解]解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:210211λμλμ+=⎧⎨+=⎩,解得:34λμ=⎧⎨=⎩故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均非负整数,∴62ab=⎧⎨=⎩或25ab=⎧⎨=⎩,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.[点睛]根据题意设未知数列方程,并确保计算的正确性.。
2023年七年级语文下册期中测试卷(附答案)
2023年七年级语文下册期中测试卷(附答案)满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音不完全正确的一项是( )A.炽.热(chì) 释.然(shì) 负荷.(hè)B.轮廓.(kuò) 俯瞰.(kàn) 叮嘱.(zhǔ)C.确凿.(zhuó) 倒悬.(xuán) 模拟.(nǐ)D.遨.游(áo) 稠.密(chóu) 烧灼.(zhuó)2、选出下列词语书写完全正确的一项()A.峭璧竭然不同惊慌失错踉踉跄跄B.绵延心旷神怡获益匪浅骇人听闻C.颤动大相径廷豪不犹豫随声附和D.愕然恍然大悟各得奇所鸦雀无声3、下列句子中,加点成语使用不正确的一项是()A.放假了,美丽的校园一片寂静,人迹罕至....。
B.春节前,菜市场一片人声鼎沸....;购买年货的人很多。
C.班主任很善于发扬每个同学的长处,大家各得其所....,各尽所能。
D.最近小明买了一个创新玩意,我拿在手里翻来覆去....看了半天,感觉很有趣。
4、下列句子没有语病的一项是()A.有没有扎实的阅读基础,是青少年提高写作能力的前提。
B.在元旦晚会上,我们听到了悦耳的歌声和优美的舞蹈。
C.通过这次内容丰富的展览,我受到了深刻的教育。
D.放学了,大家过马路时要注意安全,防止不发生事故。
5、下列句子中,没有运用拟人修辞的一项是 ( )A.只是深深浅浅的紫,仿佛在流动,在欢笑,在不停地生长。
B.船舱鼓鼓的,又像一个忍俊不禁的笑容。
C.花朵儿一串挨着一串,一朵接着一朵,彼此推着挤着,好不活泼热闹!D.“我在开花!”它们在笑。
“我在开花!”它们嚷嚷。
6、下列语句排序正确的一项是( )①没有人能够忘记她。
②在春天,东风吹起的时候,土壤的香气便在田野里飘扬。
③原野到处有一种鸣叫,天空清亮透明,劳动的声音从这头响到那头。
④稻禾的香气是强烈的,碾着新谷的场院辘辘地响着,多么美丽,多么丰饶……⑤河流浅浅地流过,柳条像一阵烟雨似的窜出来,空气里都有一种欢喜的声音。
人教版数学七年级下册《期中测试题》及答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列各题中计算错误的是( )A. [(-m 3)2(-n 2)3]3= -m 18n 18B. (-m 3n)2(-mn 2)3= -m 9n 8C. [(-m)2(-n 2)3]3= - m 6n 6D. (-m 2n)3(-mn 2)3= m 9n 9 2. 化简x(y-x)-y(x-y)得( )A. x 2-y 2B. y 2-x 2C. 2xyD. -2xy 3. 若25a=,23b =,则232a b -等于( ) A. 2725 B. 109 C. 35 D. 25274. 2216x ax ++是一个完全平方式,则a 的值为( )A. 4B. 8C. 4或-4D. 8或-8 5. -234⎛⎫ ⎪⎝⎭、265⎛⎫ ⎪⎝⎭、076⎛⎫ ⎪⎝⎭三个数中,最大的是( ) A. -234⎛⎫ ⎪⎝⎭ B. 265⎛⎫ ⎪⎝⎭ C. 076⎛⎫ ⎪⎝⎭ D. 无法确定 6. 如果两条平行线被第三条直线所截,那么一组同位角的平分线( )A. 互相平行B. 互相垂直C. 交角是锐角D. 交角是钝角 7. 如图是赛车跑道一段示意图,其中AB ∥DE ,测得∠B=140°,∠D=120°,则∠C 度数为( )A. 120°B. 100°C. 140°D. 90°8. 已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中能表示∠β的余角的有( )个. A. 1个B. 2个C. 3个D. 4个 9. 已知△ABC 的底边BC 上的高为8 cm ,当底边BC 从16 cm 变化到5 cm 时,△ABC 的面积 ( )A. 从20 cm 2变化到64 cm 2B. 从40 cm 2变化到128 cm 2C. 从128 cm 2变化到40 cm 2D. 从64 cm 2变化到20 cm 210. “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了 一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终 点……. 用 s 1 、s2 分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是( ) A B. C. D.二、填空题11. 已知:(x 3n-2)2x 2n+4÷x n =x 2n-5,则n=______.12. 已知x +y =-5,xy =6,则x 2+y 2=________.13. 如图,若∠A=110°,AB ∥CD ,AD ∥BC ,则∠ECD=_________.14. 已知6x =5,6y =2,则62x+ y =__________.三、解答题15. (1)计算:[(4b+3a )(3a ﹣4b )﹣(b ﹣3a )2]÷4b(2)先化简,再求值.(2x ﹣1)(2x+1)﹣(x ﹣2)2﹣(x+2)2,其中133x =-.16. 如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.17. 有一边长为x cm 的正方形,若边长变化,则其面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形面积y (cm 2)关于正方形的边长x (cm)的关系式.18. 某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?19. (1)若a+b=3,ab=2,求a 4+b 4的值.(2)已知a n =2,求(2a 3n )2-3(a 2)2n ÷a 2n 的值.20. 已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.四、填空题21. 已知长方形面积是223a 3b -,如果它的一边长是a b +,则它的周长是________.22. 若一个角的余角是它的补角的14,这个角的度数_____. 23. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为_____________厘米,挂物体质量x(千克)与弹簧长度y(厘米)的关系式为________________24. 已知35a b b c -=-=,2221a b c ++=,则ab bc ac ++的值等于_____. 25. 已知a 1=2112-,a 2=2113-,a 3=2114-,…,a n =()2111n -+,S n =a 1•a 2…a n ,则S 2015=__. 五、解答题26. 某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q()与行驶时间()之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目地还有400km,车速为60/km h,要到达目的地,油箱中的油是否够用?请说明理由.27. 你能求(x一1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.(1)(x-1)(x+1) =_____________;(2)(x—1)( x2+x+1) =_____________;(3)(x-1)(x3+ x2+x+1) =____________;…由此我们可以得到:(4)(x一1)( x99+x98+x97+…+x+1) =___________,请你利用上面的结论,完成下列的计算:(5)299+298+297+…+2+1;28. 若(x2+3mx﹣13)(x2﹣3x+n)的积中不含x和x3项,(1)求m2﹣mn+14n2的值;(2)求代数式(﹣18m2n)2+(9mn)﹣2+(3m)2014n2016的值.答案与解析一、选择题1. 下列各题中计算错误的是( )A. [(-m 3)2(-n 2)3]3= -m 18n 18B. (-m 3n)2(-mn 2)3= -m 9n 8C. [(-m)2(-n 2)3]3= - m 6n 6D. (-m 2n)3(-mn 2)3= m 9n 9[答案]C[解析][分析]根据幂的乘方和积的乘方运算法则分别进行计算即可.[详解]A .322336631818[()()]=[()]m n m n m n ---=-,选项A 正确,故不能选;B .3223623698()()()m n mn m n m n m n --=-=-,选项B 正确,故不能选;C .[(-m)2(-n 2)3]3=2233263618[()()][()]m n m n m n --=-=-,选项C 错误,故选C ;D .2323633699()()()()m n mn m n m n m n --=--=,选项D 正确,故不能选,故选:C .[点睛]本题考查了幂的乘方,积的乘方,幂的乘方:底数不变,指数相乘;积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘,掌握好这些运算法则是解决本题的关键.2. 化简x(y-x)-y(x-y)得( )A. x 2-y 2B. y 2-x 2C. 2xyD. -2xy [答案]B[解析]试题解析:x (y -x )-y (x -y )=xy -x 2-xy +y 2= y 2-x 2故选B .3. 若25a=,23b =,则232a b -等于( ) A. 2725 B. 109 C. 35 D. 2527[答案]D[解析][分析]根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.[详解]222233332(2)5252=2(2)327a a ab b b -=== 故选:D[点睛]本题考查了同底数幂的除法的逆运算法,一般地,(0mm n n a a a a-=≠,m,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m,n 都是正整数). 4. 2216x ax ++是一个完全平方式,则a 的值为( )A. 4B. 8C. 4或-4D. 8或-8[答案]C[解析]试题解析:∵x 2+2ax +16=x 2+2ax +42是完全平方式,∴2ax =±2×x ×4, 解得a =±4.故选C .[点睛]本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 5. -234⎛⎫ ⎪⎝⎭、265⎛⎫ ⎪⎝⎭、076⎛⎫ ⎪⎝⎭三个数中,最大的是( ) A. -234⎛⎫ ⎪⎝⎭B. 265⎛⎫ ⎪⎝⎭C. 076⎛⎫ ⎪⎝⎭D. 无法确定[答案]A[解析][分析]分别计算负整数指数幂,平方,零次幂,通分以后比较大小即可. [详解]解:-223116400,4922534⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭ 2636324,525225⎛⎫== ⎪⎝⎭071,6⎛⎫= ⎪⎝⎭由4003241225225>>, 22361,45-⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭>> 所以最大的数是:-234⎛⎫ ⎪⎝⎭. 故选A .[点睛]本题考查的是有理数的大小比较,同时考查了负整数指数幂,乘方,零次幂的运算,掌握以上知识是解题的关键.6. 如果两条平行线被第三条直线所截,那么一组同位角的平分线( )A. 互相平行B. 互相垂直C. 交角是锐角D. 交角是钝角 [答案]A[解析][分析]根据平行的性质和判定进行判断即可.[详解]根据题意,作图如下:∵//CD EF∴AGD AHF ∠=∠∵平分AGD ∠,HJ 平分AHF ∠∴12AGI AGD ∠=∠,12AHJ AHF ∠=∠ ∴AGI AHJ ∠=∠∴//GI HJ故选:A .[点睛]本题考查了平行线的性质与判定,角平分线的性质,熟知以上知识是解题的关键.7. 如图是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B=140°,∠D=120°,则∠C 度数为( )A. 120°B. 100°C. 140°D. 90°[答案]B[解析][分析][详解]解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠B+∠1=180°,∠D+∠2=180°;故∠B+∠1+∠D+∠2=360°,即∠B+∠BCD+∠D=360°,故∠BCD=360°﹣140°﹣120°=100°.故选B.[点睛]注意此类题要作出辅助线,运用平行线的性质探求三个角的关系.8. 已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中能表示∠β的余角的有()个.A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]互补即两角的和为180°,互余即两角的和为90°,根据这一条件判断即可.[详解]解:已知∠β的余角为:90°−∠β,故①正确;∵∠α和∠β互补,且∠α>∠β,∴∠α+∠β=180°,∠α>90°,∴∠β=180°−∠α,∴∠β的余角为:90°−(180°−∠α)=∠α−90°,故②正确;∵∠α+∠β=180°,∴12(∠α+∠β)=90°,故③错误,∴∠β的余角为:90°−∠β=12(∠α+∠β)−∠β=12(∠α−∠β),故④正确.所以①②④能表示∠β的余角,故答案为:C.[点睛]本题考查了余角和补角的定义,牢记定义是关键.9. 已知△ABC的底边BC上的高为8 cm,当底边BC从16 cm变化到5 cm时,△ABC的面积( )A. 从20 cm2变化到64 cm2B. 从40 cm2变化到128 cm2C. 从128 cm2变化到40 cm2D. 从64 cm2变化到20 cm2[答案]D[解析][分析]根据S=12(底×高)计算分别计算得出最值即可.[详解]当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.[点睛]此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.10. “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……. 用s1 、s2分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是()A. B. C. D.[答案]A[解析][分析]根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.[详解]解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.[点睛]本题考查变量之间的关系.能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题11. 已知:(x3n-2)2x2n+4÷x n=x2n-5,则n=______.[答案]-1[解析][分析][详解]因为(x3n-2)2x2n+4÷x n=x2n-5,x6n-4x2n+4÷x n=x8n÷x n=x7n=x2n-5,所以7n=2n-5,解得n=-1.故答案为:-1.12. 已知x+y=-5,xy=6,则x2+y2=________.[答案]13[解析][分析]把x+y=-5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.[详解]解:∵x+y=-5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25-2xy=25-12=13,故答案为:13.[点睛]本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.13. 如图,若∠A=110°,AB∥CD,AD∥BC,则∠ECD=_________.[答案]70°[解析][分析]先根据AD ∥BC ,∠A=110°,由两直线平行,同旁内角互补得出∠B 的度数,再根据AB ∥CD ,由两直线平行,同位角相等得出∠ECD=∠B 即可.[详解]解:∵AD ∥BC ,∠A=110°,∴∠B=180°-110°=70°,又∵AB ∥CD ,∴∠ECD=∠B=70°. 故答案:70°. [点睛]本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.14. 已知6x =5,6y =2,则62x+ y =__________.[答案]50[解析][分析]利用同底数幂的乘法与幂的乘方的逆运算把26x y +变形,然后直接代入求值即可.详解]解: 6x =5,6y =2,()22266666x y x y x y +∴=⨯=• 25250.=⨯=故答案为:50.[点睛]本题考查的是同底数幂的乘法与幂的乘方的逆运算,掌握以上知识是解题的关键.三、解答题15. (1)计算:[(4b+3a )(3a ﹣4b )﹣(b ﹣3a )2]÷4b(2)先化简,再求值.(2x ﹣1)(2x+1)﹣(x ﹣2)2﹣(x+2)2,其中133x =-.[答案](1)17342b a -+;(2)2x 2﹣9,1199[解析][分析](1)先在括号内,用平方差公式,完全平方公式进行化简,之后再整式除法进行化简;(2)用平方差公式,完全平方公式进行化简,再代入求值即可.[详解](1)原式=(9a 2﹣16b 2﹣b 2+6ab ﹣9a 2)÷4b=(﹣17b 2+6ab )÷4b=17342b a -+; (2)原式=4x 2﹣1﹣x 2+4x ﹣4﹣x 2﹣4x ﹣4=2x 2﹣9,当133x =-时,原式=100811192999⨯-=. [点睛]本题考查了用平方差公式,完全平方公式进行整式化简求值,注意括号前“-”的处理是解题的关键. 16. 如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.[答案](1)B′E ∥DC ,理由见解析;(2)65°[解析][分析](1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ;(2)利用平行线的性质和全等三角形求解.[详解]解:(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠',//B E DC ', 130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. [点睛]本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点落在AD 边上的点,则∆≅△AB E',利用全等三角形的性质和平行线的性质及判定求解.ABE17. 有一边长为x cm的正方形,若边长变化,则其面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形的面积y(cm2)关于正方形的边长x(cm)的关系式.[答案](1)自变量是边长,正方形的面积是因变量;(2)y=x2.[解析]试题分析:(1)由题意可知:在正方形的面积随边长的变化而变化的过程中,“自变量”是边长;“因变量”是面积;y x.(2)由正方形的面积公式可知:与间的函数关系是为:2试题解析:(1)正方形的边长变化,则其面积也随之变化,在这个变化过程中,自变量是边长,正方形的面积是因变量;(2)正方形的面积y(cm2)关于正方形的边长x(cm)的关系式为y=x2.18. 某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?[答案](1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2) 39 ℃.[解析][分析](1)根据函数图象找出0~24小时图象随时间增大而增大部分,然后求出从体温开始上升到上升结束的时间差即可;(2)根据函数图象找出前两天12时对应的体温值即可.[详解]解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时.(2)第三天12时这头骆驼的体温是39 ℃.[点睛]本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图是解题的关键.19. (1)若a+b=3,ab=2,求a 4+b 4值.(2)已知a n =2,求(2a 3n )2-3(a 2)2n ÷a 2n 的值. [答案](1)17;(2)244[解析][分析]根据完全平方公式运算法则,将求解代数式化为完全平方公式性质,使代数式中包含a+b 和ab 两个因式,将已知代入即可求解;根据幂的乘方及同底数幂除法的运算法则,对求解的代数式化简再求值.[详解](1)∵()()()2222442222222a b a b a b a b ab ab ⎡⎤+=+-=+--⎣⎦ ∵a+b=3,ab=2,∴原式=()2942417--⨯=故答案为:17(2a 3n )2-3(a 2)2n ÷a 2n =4a 6n -3a 2n =4(a n )6-3(a n )2∵a n =2∴原式=4×26-3×22=244 故答案为:244[点睛]本题考查了代数式的求值,考查了完全平方公式的运算法则,将代数式构造出完全平方公式,将已知的两个数的和的值,两个数的积的值代入即可求解;本题还考查了幂的乘方及同底数幂除法的运算法则. 20. 已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.[答案](1)见解析;(2)25°[解析][分析](1)求出AE ∥GF ,求出∠2=∠A =∠1,根据平行线的判定推出即可;(2)根据平行线的性质得出∠D +∠CBD +∠3=180°,求出∠3,根据平行线的性质求出∠C 即可.[详解](1)证明:∵AE ⊥BC ,FG ⊥BC ,∴AE ∥GF ,∴∠2=∠A ,∵∠1=∠2,∴∠1=∠A ,∴AB ∥CD ;(2)解:∵AB ∥CD ,∴∠D +∠CBD +∠3=180°,∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°,∵AB ∥CD ,∴∠C =∠3=25°.[点睛]本题考查了平行线的性质和判定的应用,牢记:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦成立.四、填空题21. 已知长方形的面积是223a 3b -,如果它的一边长是a b +,则它的周长是________.[答案]8a-4b[解析][分析]先根据长方形面积求出另一边长,然后利用周长公式进行求解即可.[详解]根据长方形的面积=长×宽,可知另一边长为(223a 3b -)÷(a+b )=3(a+b )(a-b )÷(a+b )=3(a-b ),因此其周长为2(a+b )+2×3(a-b )=2a+2b+6a-6b=8a-4b , 故答案为:8a-4b .22. 若一个角的余角是它的补角的14,这个角的度数_____. [答案]60°[解析][分析]设这个角为x °,则它的余角的度数是(90﹣x )°,它的补角的度数是(180﹣x )°,得90﹣x =14(180﹣x ). [详解]解:设这个角为x °,则它的余角的度数是(90﹣x )°,它的补角的度数是(180﹣x )°, ∵一个角的余角是它的补角的14, ∴90﹣x =14(180﹣x ) x =60,故答案60°.[点睛]考核知识点 :根据余角和补角计算.23. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为_____________厘米,挂物体质量x(千克)与弹簧长度y(厘米)的关系式为________________[答案] (1). 18 (2). y=13+0.5x (0≤x≤16)[解析][分析]根据题意每挂1kg 的物体,弹簧就伸长0.5cm,则挂xkg 的物体后,弹簧伸长0.5x ,弹簧的原长是13cm,挂上x 千克重物后,弹簧的长度y 应该是弹簧的原长+伸长量,接下来将x=10代入函数解析式中即可求得挂物体质量为10kg 时弹簧的长度.[详解]∵每挂1千克重物伸长0.5厘米∴当挂物体质量为10千克,弹簧长度=13+0.5×10=18厘米∴挂x 千克重物伸长0.5x 厘米,则挂物体x(千克)与弹簧长度y(厘米)的函数关系式是y=13+0.5x(0⩽x ⩽16) 故答案为:18,y=13+0.5x(0⩽x ⩽16)[点睛]本题考查了一次函数的应用,先设自变量,根据题中等量关系构造一次函数,确定自变量的范围,即可将一次函数解析式表达出来.24. 已知35a b b c -=-=,2221a b c ++=,则ab bc ac ++的值等于_____. [答案]225-[解析] 试题解析:33,55a b b c -=-=, 两式相加得:6.5a c -= ()()()()22222212,2ab bc ca a b b c a c a b c ⎡⎤++=--+-+--++⎣⎦22213362,2555⎡⎤⎛⎫⎛⎫⎛⎫=-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2.25=- 故答案为2.25- 25. 已知a 1=2112-,a 2=2113-,a 3=2114-,…,a n =()2111n -+,S n =a 1•a 2…a n ,则S 2015=__. [答案]20174032 [解析][分析]先利用平方差公式把12,a a •••变形,利用约分可得结果.[详解]解:1211131111,22222a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ 2211142111,33333a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ 3211153111,44444a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ …2014211120162014111,20152015201520152015a ⎛⎫⎛⎫=-=+-=• ⎪⎪⎝⎭⎝⎭ 2015211120172015111,20162016201620162016a ⎛⎫⎛⎫=-=+-=• ⎪⎪⎝⎭⎝⎭ 20151232015S a a a a ∴=•••••••3142532016201420172015,2233442015201520162016=⨯⨯⨯⨯⨯⨯•••⨯⨯⨯⨯ 120172017.220164032=⨯= 故答案为:20174032[点睛]本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.五、解答题26. 某机动车出发前油箱内有油42L ,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q ()与行驶时间()之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?km h,要到达目的地,油箱中的油是否够用?请说明理由.(3)如果加油站距目的地还有400km,车速为60/[答案](1)24;(2)每小时耗油量为6L;(3)油箱中的油不够用,理由见解析[解析][分析](1)图象上x=5时,对应着两个点,油量一多一少,可知此时加油多少;(2)因为x=0时,Q=42,x=5时,Q=12,所以出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L;(3)由图象知,加油后还可行驶6小时,即可行驶60×6千米,然后同400千米做比较,即可求出答案.[详解]解:(1)由图可得,机动车行驶5小时后加油为36−12=24;故答案为:24;(2)∵出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L,(3)由图可知,加油后可行驶6h,故加油后行驶60×6=360km,∵400>360,∴油箱中的油不够用.[点睛]此题考查函数图象的实际应用,解答本题的关键是仔细观察图象,寻找题目中所给的信息,进而解决问题,难度一般.27. 你能求(x一1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.(1)(x-1)(x+1) =_____________;(2)(x —1)( x 2+x+1) =_____________;(3)(x -1)(x 3+ x 2+x+1) =____________;…由此我们可以得到:(4)(x 一1)( x 99+x 98+x 97+…+x+1) =___________,请你利用上面的结论,完成下列的计算:(5)299+298+297+…+2+1;[答案](1)21x - ; (2)31x -; (3)41x -;(4)1001x -;(5)10021-.[解析][分析](1)直接运用平方差公式计算即可;(2)(3)利用多项式乘多项式的运算法则进行计算即可;(4)根据(1)(2)(3)总结规律,运算规律即可解答;(5)将299+298+297+…+2+1写成(2-1)(299+298+297+…+2+1),再利用规律解答即可.[详解]解:(1)(x -1)(x+1) =21x - ;(2)(x —1)( x 2+x+1) =31x -;(3)(x -1)(x 3+ x 2+x+1) =41x -;(4) (x 一1)( x 99+x 98+x 97+…+x+1)=1001x -(5) 299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=10021-.[点睛]本题考查整式的混合运算能力以及分析、总结和归纳能力,掌握多项式乘多项式运算法则并总结出代数式的规律是解答本题的关键.28. 若(x 2+3mx ﹣13)(x 2﹣3x+n )的积中不含x 和x 3项, (1)求m 2﹣mn+14n 2的值; (2)求代数式(﹣18m 2n )2+(9mn )﹣2+(3m )2014n 2016的值.[答案](1)4936 (2)3629 [解析][分析]原式利用多项式乘以多项式法则计算,整理后根据积中不含x 和x 3项,求出m 与n 的值,(1)利用完全平方公式变形后,将m 与n 的值代入计算即可求出值;(2)利用幂的乘方与积的乘方,负整数指数幂法则变形,将各自的值代入计算即可求出值.[详解](x 2+3mx ﹣13)(x 2﹣3x+n )=x 4+nx 2+(3m ﹣3)x 3﹣9mx 2+(3mn+1)x ﹣13x 2﹣13n , 由积中不含x 和x 3项,得到3m ﹣3=0,3mn+1=0, 解得:m=1,n=﹣13, (1)原式=(m ﹣12n )2=(76)2=4936; (2)原式=324m 4n 2+22181m n +(3mn )2014•n 2=36+19+19=3629. [点睛]此题考查了多项式乘以多项式,以及整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.。
2024 英语七年级下册 期中测试 真题(含答案)
2023——2024学年度下学期期中测试七年级英语试卷命题学校:注意事项:1.全卷共八大题,满分120分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、准考证号等信息填写在答题卡上。
3.请将答案涂写在答题卡上,写在本试卷上无效。
一、情景交际:共两节,满分 15 分。
第一节情景对话(共 10 小题;每小题 1 分,满分 10 分)根据上下文所表达的意思,从 A、B、C 和 D 四个选项中,选出最佳答案。
()1.—Thanks for inviting me to your birthday party.—__________!A.That’s right B.I’m fine C.You’re welcome D.Great idea( )2. —Hello, boys and girls! I’m your new teacher. ___________—Nice to meet you, too.A.Nice to meet you. B.What’s your name? C.Good morning. D.How are you? ( )3. —Welcome to Miller’s. __________, sir?—Yes, I want a sports shirt for my son.A.What do you want to buy B.Can I help youC.What happened D.What’s the matter( )4. –Ga Ma, Your English is so good. ---_____________.A. OKB. ThanksC. Don’t say thatD. Thanks you( )5. —Would you like to visit the Potala palace with me tomorrow, Amy?—____________.A.Thank you B.Sounds nice C.Excuse me D.I hope not( )6. —Happy birthday to you, Da Wa.—____________A.Have a nice day. B.See you. C.The same to you. D.Thank you.( )7. — Must I do my homework at once?— No, you__________. You can do it tomorrow.A.Mustn’t B.don’t C.don’t have to D.don’t must( )8. -- How was your trip to Xi’an, Zha Xi?-- ____________! I took a lot of pictures and I will go there again with my family.A. I ’m fineB. Thank youC. It was greatD. I don ’t like it( )9. -- There was an earthquake(地震)in Taiwan last Wednesday.-- _________________.A. Bad luckB. GreatC. I hope notD. I ’m sorry to hear that( )10. Which sign (标志) means“No talking ”?第二节 补全对话(共 5 小题;每小题 1 分,满分 5 分)A:Hi, Lucy! Can I ask you some questions?B:Sure, please. A: 11 ? B:Well, I live near my school, so I get up at a quarter to seven. I never go to school late.A:Do you have breakfast at home?B:Yes, 12 .A:When do you go to school?B: 13 , so I go to school at seven forty-five.We have four classes in the morning and three inthe afternoon. And we play sports at about four inthe afternoon.A: 14 ?B:I leave school at five past five and 15 .11._________ 12. _________ 13. _________ 14. _________ 15. _________二、单项选择: 本题共 20 小题,每小题 1 分,共 20 分。
人教版数学七年级下册《期中检测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± 2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A. B. C. D. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列计算正确的是( )A. 9=±3B. 38-=﹣2C. 2(3)-=﹣3D. 235+=5. 在311.414283π-,,,,中,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个 6. 若230x y -++=,则的值为( ) A. -8 B. -6 C. 5 D. 67. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4 C ∠B =∠DCE D. ∠D +∠DAB =180°8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A 523220x y x y +=⎧⎨+=⎩B. 522320x y x y +=⎧⎨+=⎩ C 202352x y x y +=⎧⎨+=⎩ D. 203252x y x y +=⎧⎨+=⎩ 9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(每小题3分,共18分) 11. 81的算术平方根是________,33128+ = ________. 12. 已知a ,b 为两个连续的整数,且a <57<b ,则a +b =___________.13. 点P(m−1,m+3)在平面直角坐标系的y 轴上,则P 点坐标为_______.14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ 19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)20. 若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.21. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1;(2)求△A 1B 1C 1的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.答案与解析一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± [答案]B[解析][分析]根据平方根的定义求解. [详解]∵211()24±=, ∴14的平方根是12±. 故选B.[点睛]考查了平方根的概念,解题关键是熟记平方根的定义.2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A.B. C. D.[答案]D[解析][分析] 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.[点睛]本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据各象限内点P (a ,b )坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0进行判断即可.[详解]∵第二象限内点横坐标<0,纵坐标>0,∴点(-2,5)所在的象限是第二象限.故选B .[点睛]此题主要考查了平面内坐标点的特征,关键是熟记各象限内坐标点的特征.4. 下列计算正确的是( )3 2 3 =[答案]B[解析][分析]根据算术平方根与立方根的定义即可求出答案.[详解]解:(A )原式=3,故A 错误;(B )原式=﹣2,故B 正确;(C )3,故C 错误;(D ,故D 错误;故选B .[点睛]本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.5. 在11.4143π,,,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个[答案]B[解析][分析] 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:13,1.414,,和π这两个数是无理数.[点睛]本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6. 若230x y -++=,则的值为( ) A. -8B. -6C. 5D. 6[答案]B[解析][分析]根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. [详解]根据题意得:2030x y -=⎧⎨+=⎩,解得:23x y =⎧⎨=-⎩,则xy =﹣6. 故选B .[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠B =∠DCED. ∠D +∠DAB =180°[答案]B[解析][分析] 结合图形根据平行线的判定定理对选项逐一判断即可求解.[详解]解:A. ∠1=∠2,根据内错角相等,两直线平行,得到AB ∥CD ,不合题意;B. ∠3=∠4,根据内错角相等,两直线平行,得到AD ∥BC ,符合题意;C. ∠B =∠DCE ,根据同位角相等,两直线平行,得到AB ∥CD ,不合题意;D. ∠D +∠DAB =180°,根据同旁内角互补,两直线平行,得到AB ∥CD ,不合题意.故选:B[点睛]本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题关键.8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩[答案]D[解析]试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.考点:由实际问题抽象出二元一次方程组.9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.[答案]D[解析]分析:如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数. 详解:∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∴3160180 2∠+=,∴∠1=80°.故选D.点睛:本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)[答案]B[解析][分析]将其左侧相连,看作正方形边上的点.分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标.[详解]解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n的正方形有2n+1个点,∴边长为n的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故选B.[点睛]本题考查了规律型中的点的坐标,解题的规律是找出“边长为n的正方形边上点与内部点相加得出共有(n+1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2019个点所在的正方形的边是平行于x轴的还是平行y轴的.二、填空题(每小题3分,共18分)11.= ________.[答案](1). 3 (2). 3 2[解析][分析]根据算术平方根和立方根的定义,分别进行计算,即可得到答案.[详解]9=,3;32==;故答案为:3;32.[点睛]本题考查了算术平方根和立方根,解题的关键是掌握定义进行计算.12. 已知a,b为两个连续的整数,且a<b,则a+b=___________.[答案]15[解析][分析]估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可. [详解]∵72<57<82,∴<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.[点睛]此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13. 点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为_______.[答案](0,4)[解析]分析:根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.详解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为()0,4.故答案为()0,4.点睛:考查平面直角坐标系轴的点的坐标特征,横坐标为零.14. 如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.[答案]30°[解析][分析]先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.[详解]解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.[点睛]本题考查由角平分线定义,结合补角的性质,易求该角的度数.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.[答案]32x -[解析][分析]把方程2x y 1-=写成用含x 的代数式表示y ,需要进行移项即得.[详解]解:移项得:y 32x =-,故答案为y 32x =-.[点睛]考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__. [答案]8 [解析] 由题意得:3※2=2×(3)²+2=6+2=8,故答案为8. 三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- [答案](1)12 ;(2)x 1=32,x 2=12;(3)0;(4)x=-1. [解析][分析] (1)根据绝对值、立方根、算术平方根的定义进行计算,即可得到答案;(2)利用直接开平方法,即可得到x 的值;(3)由绝对值、算术平方根的定义进行计算,即可得到答案;(4)先化简,然后开立方,即可得到答案.[详解]解:(1) =13(2)2+--=12; (2)21(1)4x -= ∴112x -=±, ∴132x =,212x =; (3)11-=211+-=0;(4)()334375x -=-,∴()34125x -=-,∴45x -=-,∴1x =-;[点睛]本题考查了平方根、立方根,绝对值、以及算术平方根的运算法则,解题的关键是掌握运算法则进行解题. 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ [答案](1)12x y =⎧⎨=-⎩ ;(2)64x y =⎧⎨=⎩. [解析][分析](1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;[详解]解:(1)342x y x y -=⎧⎨+=⎩①②,由①+②,得:55=x ,∴1x =,把1x =代入①,得:2y =-;∴方程组的解为:12x y =⎧⎨=-⎩; (2)10216x y x y +=⎧⎨+=⎩, 由②①,得:6x =,把6x =代入①,得:4y =,∴方程组的解为:64x y =⎧⎨=⎩; [点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)[答案]3,两直线平行,同位角相等;DE,内错角相等,两直线平行;E ;等量代换.[解析][分析]由于AD ∥BE 可以得到∠A=∠3,又∠1=∠2可以得到DE ∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.[详解]解:∵AD ∥BE(已知)∠A=∠3 (两直线平行,同位角相等)又∵1=∠2(已知)∴AC∥DE (内错角相等,两直线平行)∴∠3=∠E (两直线平行,内错角相等)∴∠A=∠E(等量代换)[点睛]本题考查平行线的判定和性质,熟练掌握基础知识进行推理是解题关键.20. 若5a+1和a﹣19是数m的平方根.求a和m的值.[答案]a=3,m=256.[解析][分析]根据数m的平方根分别是5a+1和a﹣19一定互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.[详解]解:根据题意得:(5a+1)+(a﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.[点睛]本题考查平方根的概念,掌握概念正确计算是解题关键.21. 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到△A1B1C1;(2)求△A1B1C1的面积.[答案](1)见解析;(2)2.5.[解析][分析](1)将ABC的每个定点向下平移4个单位长度再将其相连即可得到的△A1B1C1,如图所示. (2)用△A1B1C1所在的长方形面积减去其余部分的三个小三角形面积即可得到S△A1B1C1. [详解]解:(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:2×3﹣12×1×3﹣12×1×2﹣12×1×2=2.5.[点睛]本题考查图形的变换-平移以及在平面直角坐标系中求三角形的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?[答案]笼中有12只鸡,13只兔[解析][分析]根据“上有二十五头,下有七十六足”,得出关于,的二元一次方程组,解之即得.[详解]设笼中有只鸡,只兔.由题意得:25 2476 x yx y+=⎧⎨+=⎩解得:1213 xy=⎧⎨=⎩答:笼中有12只鸡,13只兔.[点睛]本题考查二元一次方程组的鸡兔同笼问题,找出等量关系并根据生活常识列出方程组是解题关键.23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.[答案](1)AC∥DF,理由见解析;(2)40°.[解析][分析](1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;[详解]解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.[点睛]本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.[答案]见解析[解析][分析]先根据题意画出图形,再根据平行线的性质进行解答即可.[详解]∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.[点睛]本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.[答案](1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).[解析][分析](1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标. [详解](1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).[点睛]本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
江西省南昌市二十八中教育集团联盟2023-2024学年七年级下学期期中语文试题(含解析)
南昌二十八中教育集团2023-2024学年下学期期中测试卷七年级(语文)说明:1.全卷满分120分,考试时间120分。
2.请将答案写在答题卡上,否则不给分。
一、语言文字运用(本大题共6小题,10分)阅读下面的文字,完成1-2题。
近代以来,无数仁人志士激荡着国家情怀的行动,在历史的长河中熠熠生辉。
邓稼先隐姓埋名扎根戈壁,鞠躬尽①,死而后已;闻一多怒斥特务,②,气冲斗.牛,声震天地;鲁迅先生展读书信至深宵,关爱青年,呕心沥血……他们把“小爱”升华为“大爱”,牺牲个人和家庭的幸福,用殷红的热血和宝贵的生命践行了自己的信仰与追求。
正因如此,中华民族方能够历经磨难而不衰,饱尝艰辛而不屈。
1.(2分)文中填入横线①处的字和加点字注音全部正确的一项是()A.瘁dǒu B.粹dǒu C.瘁dòu D.粹dòu2.(2分)文中横线②处填入词语,恰当的是()A.酣畅淋漓 B.慷慨淋漓 C.鲜为人知 D.目不窥园阅读下面的文字,完成3-5题。
江南三月,草长莺飞,这里有拂堤杨柳的明丽,有杏花春雨的恬静,有暖风徐来的惬意,有纸鸢摇曳的悠闲,也有______。
走进江南的春天,可以领略“竹影和诗瘦,梅花入梦香”的意境,可以感受“春色满园关不住,一枝红杏出墙来”的情怀()让我们去赏春吧,和大自然来一个拥抱!这是一个我们共同拥有的美好的季节,让我们去创造美、发现美、感悟美!3.(1分)文中画波浪线的句子有语病,下列修改正确的一项是()A.让我们去创造美、感悟美、发现美! B.让我们去发现美、创造美、感悟美!C.让我们去发现美、感悟美、创造美! D.我们去创造美、感悟美、发现美!4.(1分)在文中括号内填入标点符号,正确的一项是()A., B.! C.: D.。
5.(2分)下列填入文中横线上的语句,衔接恰当的一项是()A.莺歌燕舞的热闹 B.忙碌的蜜蜂蝴蝶 C.四面花香扑鼻来 D.大燕小鸟乐开怀6.(2分)围绕“爱国”这一主题,同学们准备分类搜集爱国名言。
人教版数学七年级下册《期中检测卷》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108° 2. 下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有 A. 1个 B. 2个 C. 3个 D. 4个3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0) 4. 已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A. 1 B. 0 C. -2 D. -15. 已知方程组35x y mx y +=⎧⎨-=⎩的解是方程x ﹣y=1的一个解,则m 的值是( ) A. 1 B. 2 C. 3 D. 46. 如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)二、填空题(本大题共6小题,每小题3分,共18分)7. 9________8. 在平面直角坐标系中,将点P (﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P 1,则点P 1的坐标为_____.9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A 的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是___.10. 二元一次方程x +y =5正整数解个数有______个.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|1322314. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 15. 已知a+1的算术平方根是1,﹣27的立方根是b ﹣12,c ﹣3的平方根是±2,求a+b+c 的平方根. 16. 已知:如图,点E 、F 分别是AB 、CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A=∠D ,∠1=∠2,试说明∠B=∠C .阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF ∥DE ( )∴∠4=∠D ( )又∵∠A=∠D (已知)∴∠4=∠A (等量代换)______( )∴∠B=∠C ( )17. 已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值. 四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,已知∠EGD =40°,求∠BEF 的度数19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=13223=-+, 第3个等式:a 3=132+=2-3, 第4个等式:a 4=15225=-+, …按上述规律回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式223(4)0a b c-+-+-=.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,12),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.答案与解析一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108°[答案]A[解析][分析] 根据邻补角的定义和平行线的性质进行求解.[详解]解:∵∠3=108°,∴∠2=180°-∠3=72°,∵a ∥b ,∴∠1=∠2=72°.故选A .[点睛]本题主要考查了邻补角的定义和平行线的性质,熟练掌握相关性质是解题关键.2. 下列各数中,313.14159 8 0.131131113 25 7π⋅⋅⋅--,,,,,,无理数的个数有 A 1个B. 2个C. 3个D. 4个[答案]B[解析] 试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0)[答案]D[解析][分析]根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标.[详解]解:因为点 P (m + 3,m + 1)在x 轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.[点睛]本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.4. 已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是( )A. 1B. 0C. -2D. -1 [答案]D[解析]分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.5. 已知方程组35x ymx y+=⎧⎨-=⎩的解是方程x﹣y=1的一个解,则m的值是( )A. 1B. 2C. 3D. 4 [答案]C[解析][分析]根据方程组的解的意义可以得到方程组31x yx y+=⎧⎨-=⎩,求出x y、,然后代入,解方程即可.[详解]解:根据题意,可得到方程组31 x yx y+=⎧⎨-=⎩,解得:21 xy=⎧⎨=⎩.把21xy=⎧⎨=⎩代入5mx y-=得215m-=,m .解得:3故选:C.[点睛]本题主要考查了二元一次方程的解以及解二元一次方程组.6. 如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)[答案]A[解析][分析]要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(4 4,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.[详解]粒子所在位置与运动时间的情况如下:位置:(1,1),运动了2=1×2(分钟),方向向左;位置:(2,2),运动了6=2×3(分钟),方向向下;位置:(3,3),运动了12=3×4(分钟),方向向左;位置:(4,4),运动了20=4×5(分钟),方向向下,由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下,故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5),故选A.[点睛]本题考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.二、填空题(本大题共6小题,每小题3分,共18分)7. 9________[答案]3[解析][分析]根据算术平方根的定义,即可得到答案.[详解]解:∵93,∴9的算术平方根是3;故答案为:3.[点睛]本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.8. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为_____.[答案](1,1).[解析][分析]根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.[详解]解:∵点P(﹣1,4)向右平移2个单位长度,向下平移3个单位长度,∴﹣1+2=1,4﹣3=1.∴点P1的坐标为(1,1).故答案为:(1,1).9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是___.[答案](3,3).[解析]先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3).∴向右平移3个单位后右眼B的坐标为(3,3).考点:坐标与图形的平移变化.10. 二元一次方程x+y=5的正整数解个数有______个.[答案]4[解析][分析]根据x、y为正整数得出x>0,5-x>0,求出x的范围0<x<5,得出x=1或2或3或4,代入求出y的值,由此即可解答.[详解]∵x+y=5,∴y=5-x,∵x、y为正整数,∴x>0,5-x>0,∴0<x<5,∴x=1或2或3或4,当x=1时,y=5-1=4,当x=2时,y=5-2=3,当x=3时,y=5-3=2,当x=4时,y=5-4=1,∴二元一次方程x+y=5的正整数为1234,,,4321x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩,共4个,故答案为4.[点睛]本题考查了二元一次方程的整数解,求出x的取值范围是解决问题的关键.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.[答案]100131003x yx y+=⎧⎪⎨+=⎪⎩[解析] [分析]根据有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完可以列出相应的方程组,本题得以解决.[详解]由题意可得:100131003x y x y +=⎧⎪⎨+=⎪⎩. 故答案为:100131003x y x y +=⎧⎪⎨+=⎪⎩. [点睛]本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________[答案]150°[解析]如图,过点B 作BG ∥AE,因为AE ∥CD,所以AE ∥BG ∥CD.所以∠A=∠2,∠1+∠C=180°.因为∠A=120°,所以∠2=120°,所以∠1=150°-120°=30°.所以∠C=180°-30°=150°,故答案为150°.三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|13223[答案](1)-2;(2)5.[解析][分析](1)直接利用二次根式化简方法,对根式分别化简,再求和即可.(2)直接利用二次根式与绝对值的化简方法,对根式与绝对值进行化简,再求和.[详解](1)原式=5+(-4)-3=-2;(2)原式=)212-++=212+=5.[点睛]此题解题的关键要熟练二次根式与绝对值的化简,的化简是本题的一个易错点.14. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ [答案](1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩[解析][分析]本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.[详解](1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩.(2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩,两式相减得:25y =,将25y=代入5156x y+=中,得251565x+⨯=,解得:0x=.所以原方程组的解为25xy⎧=⎪⎨=⎪⎩.[点睛]本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.15. 已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c的平方根.[答案]±4.[解析][分析]根据题意分别求得a,b,c的值,然后代入式子求解即可.[详解]解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c﹣3的平方根是±2,∴c﹣3=4,即c=7;∴a+b+c=0+9+7=16,则a+b+c的平方根是±4.[点睛]本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键.16. 已知:如图,点E、F分别是AB、CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,试说明∠B=∠C.阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF∥DE( )∴∠4=∠D( )又∵∠A=∠D (已知)∴∠4=∠A(等量代换)______( )∴∠B=∠C ( )[答案](1). 对顶角相等(2). 同位角相等,两直线平行(3). 两直线平行,同位角相等(4). AB∥CD (5). 内错角相等,两直线平行(6). 两直线平行,内错角相等[解析][分析]本题主要考查平行线的判定以及性质,根据内错角相等,同位角相等即可判定平行,反之推角等.[详解]由图示可知∠1,∠3关系为对顶角,对顶角性质为相等,故答题空1应填对顶角相等作为依据;因为∠2,∠3关系为同位角且相等,由其推出平行,故答题空2依据同位角相等,两直线平行;因为∠D,∠4关系为同位角,且由AF∥DE推出其相等,故答题空3依据是两直线平行,同位角相等;因为∠4,∠A关系为内错角且相等,故可推出答题空4为AB∥CD,答题空5依据是内错角相等,两直线平行;因为∠B,∠C关系为内错角,且由AB∥CD推出其相等,故答题空6依据为两直线平行,内错角相等.[点睛]本题着重考查同位角以及内错角与直线平行的关系,按照题干所给思路逐步解答即可,本题还未考查两直线平行,同旁内角互补,需注意.17. 已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.[答案]14 mn=⎧⎨=-⎩[解析][分析]先解不含m、n方程组,解得x、y的值,再代入含有m、n的方程组求解即可.[详解]∵3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,∴32453x yy x-=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx nymx ny也有相同的解,∴解方程组3x2y45y x3-=⎧⎨-=⎩得21xy=⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx nymx ny中得431927-=⎧⎨+=⎩m nx n,∴解方程组得14 mn=⎧⎨=-⎩.故答案为14 mn=⎧⎨=-⎩.[点睛]本题主要考查了与二元一次方程组的解有关的知识点,准确理解方程组有相同解的情况,组成新的二元一次方程组求解是解题的关键.四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠EGD=40°,求∠BEF的度数[答案]100°[解析][分析]根据平行线性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠BEF=180°-2∠EGD,这样就可求出∠BEF的度数.[详解]解:∵AB∥CD,∴∠EGD=∠AEG.∵EG平分∠AEF,∴∠AEG=∠GEF=∠EGD,∴∠AEF=2∠EGD.又∵∠AEF+∠2=180°,∴∠BEF=180°-2∠EGD=180°-80°=100°.[点睛]此题考查平行线的性质,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.[答案]AB ∥CD ,理由见解析.[解析][分析]延长MF 交CD 于点H ,利用平行线的判定证明.[详解]延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF=140°-90°=50°,∴∠CHF=∠2,∴AB ∥CD .[点睛]本题主要考查了平行线的判定和外角定理,作出适当的辅助线是解答此题的关20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________[答案] (1).= (2). 1- [解析]分析](1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.[详解]解:∵第1个等式:a11=,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, ……∴第n=;=(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=2132231n n -+-+-+++-=11n +-;故答案为:11n +-. [点睛]本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值[答案](1)见解析;(2)a=-1,b=-1[解析][分析](1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a 、b 的值.[详解]解:(1)由图象可知,点A (2,3),点D (-2,-3),点B (1,2),点E (-1,-2),点C (3,1),点F (-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.[点睛]本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解. 22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?[答案](1)大棚的宽为14米,长为8米;(2)选择方案二更好.[解析]分析:(1)设大棚的宽为a 米,长为b 米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案; (2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得:22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元),若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元)显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式223(4)0a b c --+-=.(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.[答案](1)2a =,3b =,4c =;(2)3m -+;(3)存在,点P (3-,12). [解析][分析](1)根据二次根式、绝对值、平方的非负性可得结论; (2)根据P 和A 、B 的坐标,由S 四边形ABOP =S △AOP +S △AOB 可得结论;(3)根据四边形ABOP 的面积与△ABC 的面积相等,列式可得m=-3,从而得P 的坐标.[详解]解:(1)223(4)0a b c --+-=,∴20a -=,30b -=,40c -=,∴2a =,3b =,4c =; (2)由(1)知:OA=2,OB=3,点P (m ,12), ∴S 四边形ABOP =S △AOP +S △AOB =12AO•|x P |+12AO•OB=12m -+×2×3=3m -+; (3)∵B (3,0),C (3,4),∴BC ⊥x 轴,∴S △ABC =12BC•x B =12×4×3=6, ∴3m -+=6,∴3m =-,则当3m =-时,四边形ABOP 的面积与△ABC 的面积相等,此时P (3-,12). [点睛]本题考查了二次根式和平方的非负性、三角形和四边形面积的求法、图形和坐标的性质,难度适中,学会利用三角形面积求四边形的面积,注意横坐标相等的点所在的直线与x 轴垂直.。
山东省烟台市龙口市2023-2024学年七年级下学期期中考试数学试卷(含答案)
2023—2024学年第二学期期中阶段性测试初二数学试题(120分钟)注意事项:1.答题前,请务必将自己的学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.答选择题时,必须使用2B铅笔填涂答题卡上相应题目的正确答案字母代号,如需改动,用橡皮擦干净后,再选涂其他答案.3.答非选择题时,必须使用0.5毫米黑色签字笔书写;做图、添加辅助线时,必须用2B铅笔.4.保证答题卡清洁、完整.严禁折叠、严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带.5.请在题号所指示的答题区域内作答,写在试卷上或答题卡指定区域外的答案无效.一、书写与卷面(3分)书写规范卷面整洁二、选择题(本题共10个小题,每小题3分,满分30分)每小题有且只有一个正确答案,请把正确答案的字母代号涂在答题卡上1. 下列是二元一次方程的是( )A. B. C. D.答案:A2. 下列语句所描述的事件中,是不可能事件的是( )A. 一岁一枯荣B. 黄河入海流C. 明月松间照D. 白发三千丈答案:D3. 如图,下列选项不能判断的是()A. B. C. D.4. 下列选项中,可以用来说明命题“若,则”是假命题的反例是( )A. B. C. D.答案:C5. 已知有理数,满足方程组,则的值为()A. B. 0 C. 1 D. 2答案:A6. 在不透明布袋中装有除颜色外完全相同的红、白玻璃球,已知白球有6个.同学们通过多次试验后发现摸到红色球的频率稳定在0.25左右,则袋中红球个数可能为()A. 1B. 2C. 3D. 4答案:B7. 某市区今年共购买了13辆电动清洁能车,至少在同一个月购买车的辆数为()A. 1B. 2C. 3D. 4答案:B8. 如图,与的边,相交,则与的数量关系为()A. B.C D. 无法确定答案:C9. 如图,在中,是角平分线,,,的度数为()A. B. C. D.10. 如图,直线和直线相交于点,则方程组的解是( )A. B. C. D.答案:A三、填空题(本大题共6个小题,每小题3分,满分18分)11. 已知方程,适用含 x 的代数式表示 y ,则____.答案:12. 将命题“同角的补角相等”改写成“如果……,那么……”的形式为_________________.答案:如果两个角是同一个角的补角,那么这两个角相等.13. 如图,有一块含有45°角的直角三角板两个顶点放在直尺对边上,如果∠1=20°,那么∠2的度数是_____.答案:25°14. 如图,三根同样的绳子、、穿过一块木板,姐妹两人分别站在木板的左、右两侧,每次各自选取本侧的一根绳子,每根绳子被选中的机会相等,若姐姐在左侧随机选中绳子,则妹妹在右侧随机恰好选中绳子的概率为__________.答案:15. 方程组的解为,则被遮盖的■表示的数为___________.答案:16. 我国古代数学著作《九章算术》有一道关于买田的问题:“今有善田一亩,价三百;恶田一亩,价五十.今并买顷,价钱一万,问善田恶田各几何?”其意思是“好田300钱一亩,坏田50钱一亩,合买好田、坏田100亩,共需10000钱,问好田、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,可列方程组为_______ .答案:四、解答题(本大题共9个小题,满分69分)17. 解方程组:(1);(2).答案:(1)(2)【小问1详解】解:把①代入②,得,解得.将代入①,得,∴原方程组的解为【小问2详解】①+②,得,解得.将代入①,得,解得.∴原方程组的解为18. 若关于x,y的方程组的一个解为,求k的值.答案:解:,把代入②可得,,解得:,把,代入①可得,,,解得:,的值为1.19. 在某次主题班会课上的一个抢答环节中,为了吸引同学,班长设立了一个可以自由转动的转盘(如图所示),并规定:每答对1道题的同学,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,该同学就可以分别获得一等奖、二等奖、三等奖的奖品(转盘被等分成20个扇形).(1)甲同学参与了抢答环节并答对了1道题,求他获得奖品的概率;(2)在原转盘的基础上将空白扇形涂色来增大三等奖的获奖概率,且使得每次转动转盘获奖的概率为,则需要再将几个空白扇形涂成绿色答案:(1)(2)7【小问1详解】解:由题意可知,指针正好对准红、黄或绿色区域,其中红色区域1个,黄色区域2个,绿色区域4个,该同学就可以分别获得一等奖、二等奖、三等奖的奖品(转盘被等分成20个扇形),∴他获得奖品的概率为;【小问2详解】解:由题意可得,,答:需要再将7个空白扇形涂成绿色.20. 如图,已知,,求证:.下面是小明同学不完整的证明过程,请你在横线上补充完整,并在括号里填上每一步的推理依据.证明:∵(已知),∴_________,∵(_________),∴(_________),∴(_________),∴_________(两直线平行,同旁内角互补),∵(_________),∴(_________).答案:;已知;等量代换;同位角相等,两直线平行;;对顶角相等;等量代换证明:∵(已知),∴,∵(已知),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,同旁内角互补),∵(对顶角相等),∴(等量代换).故答案为:;已知;等量代换;同位角相等,两直线平行;;对顶角相等;等量代换.21. 在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是.(1)求任意摸出一个球是黑球的概率;(2)小明从盒子里取出个白球(其他颜色球的数量没有改变),使得从盒子里任意摸出一个球是红球的概率为,请求出的值.答案:(1)(2)3【小问1详解】解:球的总数(个),黑球个数(个),∴任意摸出一个球是黑球的概率为;【小问2详解】由题意得:,解得,经检验:是方程的解,∴m的值为3.22. 如图,C,E分别在,上,小明想知道和是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接,再找出的中点O,然后连接并延长与直线相交于点B,经过测量,他发现,因此他得出结论:和互补,请写出证明过程.答案:见解析证明:是的中点,.,,...和互补.23. 如图,直线分别与x轴、y轴交于点,.直线分别与x轴、y轴交于点,,与直线交于点E.求四边形的面积.答案:解:设直线的函数表达式为,将点,代入得:,解得:,∴直线的函数表达式为,设直线的函数表达式为,将点,代入得:,解得:,∴直线的函数表达式为,联立得,解得:,∴,∴.24. 如图,,分别平分和.(1)如果,,请直接写出的度数;(2)判断,,三者之间有何等量关系?请写出证明过程.答案:(1)(2),证明见解析.【小问1详解】解:∵,分别平分和,∴,,∵,,∴,,∴,即,∵,∴.【小问2详解】证明:∵,分别平分和,∴,,∵,,∴,,∴,即25. 某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]A B进价(万元/套) 1.5 1.2售价(万元/套 1.65 1.4(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?答案:(1)购进A品牌的教学设备20套,购进B品牌的教学设备30套(2)有4种方案,方案见解析【小问1详解】解:设购进A品牌的教学设备x套,购进B品牌的教学设备y套,得,,解得,,经检验,符合题意,答:购进A品牌的教学设备20套,购进B品牌的教学设备30套;【小问2详解】设再用30万购进A品牌的教学设备a套,购进B品牌的教学设备b套,由题意得,,∵a,b均为正整数,∴此方程的解为:,或,或,或,综上所述,有4种方案:①购进A品牌教学设备4套,购进B品牌的教学设备20套;②购进A品牌的教学设备8套,购进B品牌的教学设备15套;③购进A品牌的教学设备12套,购进B品牌的教学设备10套;④购进A品牌的教学设备16套,购进B品牌的教学设备5套.。
人教版数学七年级下册《期中检测试题》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += 2. 下列计算正确的是( )A. 93=±B. 33-=-C. 93-=-D. 239-= 3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有( ). A. 2个 B. 3个 C. 4个 D. 5个4. 点M (m+2,m-5)在轴上,则点M 坐标为( ).A. (0,-7)B. (2,0)C. (7,0)D. (0,7)5. 如图,Rt ABC ∆中,∠ACB=90°,DE 过点C ,且DE ∥AB ,若∠ACD=65°,则∠B 的度数是( )A 25° B. 35° C. 45° D. 55°6. 下列命题:①两条直线相交,一角两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 17. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1)8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x yb x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩10. 如图,体育课上测量跳远成绩的依据是( )A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线11. 在平面直角坐标系中,若点P(x , x -4)在第四象限,则x 的取值范围为( )A. x >0B. x <4C. 0<x <4D. x >412. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111二、填空题13. 如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.三、计算题19. (1)|32- | -|32-| +2(2)- (2)225360x -=20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩四、应用题21. 根据下列证明过程填空如图,因∠A =_____(已知),所以AC ∥ED ( )因∠2=_____(已知),所以AC ∥ED ( )因为∠A +_____=180°(已知), 所以AB ∥FD ( )因为AB ∥_____(已知),所以∠2+∠AED =180°( ) 因为AC ∥_____(已知),所以∠C =∠3( )22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?答案与解析一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += [答案]B[解析][分析]二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.[详解]解:A. 5xy =是二元二次方程,故该选项错误;B. 65x y =二元一次方程,故该选项正确;C. 16x y+=是分式方程,故该选项错误; D. 246x y +=是二元二次方程,故该选项错误.故选B .[点睛]本题主要考查了二元一次方程的定义.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2. 下列计算正确的是( )3=± B. 33-=- C. 3=- D. 239-=[答案]C[解析][分析]根据算术平方根的定义,绝对值的性质,乘方的计算法则依次判断即可.[详解3=,故A 错误; 33-=,故B 错误;3=-,故C 正确;239-=-,故D 错误,故选:C.[点睛]此题考查算术平方根的定义,绝对值的性质,乘方的计算法则,熟练掌握各计算方法是解题的关键.3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有().A. 2个B. 3个C. 4个D. 5个[答案]A[解析]试题分析:在下列实数中,317是分数,3.14159是小数,3-27=-3均是有理数,-π,8是无理数,故选A.考点:无理数的定义.4. 点M(m+2,m-5)在轴上,则点M坐标为().A. (0,-7)B. (2,0)C. (7,0)D. (0,7)[答案]C[解析][分析]根据x轴上点的坐标的性质得出纵坐标为0,求出m的值,进而求出M的坐标.[详解]解:∵点M(m+2,m-5)在轴上∴m-5=0解得m=5∴m+2=5+2=7∴点M的坐标为(7,0).故选C.[点睛]本题主要考查了点的坐标性质.根据x轴上点的坐标的性质得出纵坐标为0是解题的关键.5. 如图,Rt ABC∆中,∠ACB=90°,DE 过点C,且DE∥AB,若∠ACD=65°,则∠B的度数是()A. 25°B. 35°C. 45°D. 55°[答案]A[解析][分析]根据“∠ACB=90°”和“∠ACD=65°”先求出∠BCE的度数,再“根据两直线平行,内错角相等”得出∠B的度数.[详解]解:∵∠ACB=90°,∠ACD=65°∴∠BCE=180°-∠ACB-∠ACD=180°-90°-65°=25° ∵DE ∥AB∴∠B=∠BCE=25°故选A .[点睛]本题主要考查了平行线性质.熟记平行线的性质是解题的关键.6. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 1[答案]C[解析][分析]利用邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识进行判断即可.[详解]解:①两条直线相交,同角的两邻补角一定相等,但这两条直线不一定垂直,错误;②两条直线相交,一角与其邻补角相等,说明这个角等于90°,则这两条直线垂直,正确;③如果一个数的立方根是这个数本身,那么这个数可能是1或0,还可能是-1,错误;④无限不循环小数都是无理数,但无限循环小数是有理数,错误;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同,正确.故选C .[点睛]本题考查了命题与定理的知识.解题的关键是掌握邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识.7. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1) [答案]B[解析][分析]直接利用平移中点的变化规律求解即可.[详解]解:线段先向右平移4个单位长度,即让原横坐标都加4,纵坐标保持不变,向下平移2个单位长度,即让原横坐标保持不变,纵坐标都减2,所以A 1的横坐标为:-1+4=3,纵坐标为:4-2=2;B 1的横坐标为:-4+4=0,纵坐标为:1-2=-1,所以A 1坐标为(3,2),B 1坐标为(0,-1).故选B .[点睛]本题考查了图形的平移变换.关键是要懂得左右平移时点的纵坐标不变,上下平移时点的横坐标不变.平移中点的变化规律是:横坐标左加右减,纵坐标上加下减.8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定 [答案]A[解析][分析]∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.[详解]∵∠α与∠β对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选A .[点睛]本题考查垂线的定义和对顶角的性质,是简单的基础题9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩ [答案]C[解析]分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5 xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、y的方程组.10. 如图,体育课上测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线[答案]C[解析][分析]根据垂线段最短即可得.[详解]体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短故选:C.[点睛]本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.11. 在平面直角坐标系中,若点P(x, x-4)在第四象限,则x的取值范围为()A. x>0B. x<4C. 0<x<4D. x>4[答案]C[解析][分析]根据第四象限内点的坐标符号特点列出关于x的不等式组,解之即可.[详解]解:∵点P(x, x-4)在第四象限∴40xx⎧⎨-⎩><解得0<x<4.故选C.[点睛]本题考查了点的坐标及解一元一次不等式组.正确求出每一个不等式的解集是基础.12. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111[答案]D[解析]分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:∵121=11,12321=111…,…,∴12345678987654321═111 111 111.故选D.点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、填空题13. 如图,已知AB∥CD,∠B=25°,∠D=45°,则∠E=__度.[答案]70.[解析][分析]首先过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,然后根据两直线平行,内错角相等即可求出答案.[详解]解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.[点睛]本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.[答案] (1). 8. (2). 10.[解析][分析]点到直线的距离是指垂线段的长度,两点间的距离是连接两点的线段的长度.[详解]解:点A 到BC 的垂线段是AC ,所以线段AC 的长即为点A 到直线BC 的距离,即点A 到BC 的距离是8;点B 到点A 的距离是线段AB 的长,即点B 到点A 的距离是10.故答案为8;10.[点睛]本题考查了点到直线的距离的定义及两点间的距离定义.注意点到直线的距离是垂线段的长度,不是垂线段.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.[答案](2,2)或(4,-4).[解析][分析]点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.[详解]解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).[点睛]本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. [答案]-3[解析]分析:解出已知方程组中x,y 的值代入方程x+2y=k 即可. 详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k,得k=-3.故本题答案:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.[答案]120.[解析][分析]设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.[详解]解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.[点睛]本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解. 18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.[答案]40[解析]第1个正方形(实线)四条边上的整点个数有4个,第2个正方形(实线)四条边上的整点个数有8个,第3个正方形(实线)四条边上的整点个数有12个,依次多4,故第10个正方形(实线)四条边上的整点个数有41040⨯=个三、计算题19. (1)3232| +2(2)- (2)225360x -=[答案](1)32;(2)65x =±. [解析][分析](1)原式利用绝对值代数意义化简,计算即可得到结果;(2)方程变形后,开方即可求出x 的值.[详解]解:(1)原式323)+2 32332(2)225360x -=252x =362x =3625 65x =± 故答案为(1)(2)65x =±. [点睛]本题考查了实数的运算及解一元二次方程.利用绝对值的代数意义去绝对值是解(1)题的关键.20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩[答案](1)32x y =⎧⎨=-⎩;(2)51x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)先将方程组进行整理,利用加减消元法求出解即可.[详解]解:(1)28325x y x y -=⎧⎨+=⎩①② ①×2,得4x-2y=16③ ②+③,得7x=21∴x=3把x=3代入①,得 2×3-y=8 解得 y=-2∴32x y =⎧⎨=-⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩方程组整理,得61 29x yx y-=-⎧⎨-=⎩①②①×2,得2x-12y=-2③②-③,得11y=11∴y=1把y=1代入①,得x-6=-1 解得x=5∴51 xy=⎧⎨=⎩故答案为(1)32xy=⎧⎨=-⎩;(2)51xy=⎧⎨=⎩.[点睛]本题考查了解二元一次方程组.解二元一次方程组的基本思想是“消元思想”,方法有“代入消元法”和“加减消元法”.四、应用题21. 根据下列证明过程填空如图,因为∠A=_____(已知),所以AC∥ED( )因为∠2=_____(已知),所以AC∥ED( )因为∠A+_____=180°(已知),所以AB∥FD( )因为AB∥_____(已知),所以∠2+∠AED=180°( )因为AC∥_____(已知),所以∠C=∠3( )[答案]∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[解析][分析]根据平行线的性质和判定求解.[详解]解:∵∠A =∠BED(已知)∴AC ∥ED (同位角相等,两直线平行)∵∠2=∠DFC (已知)∴AC ∥ED (内错角相等,两直线平行)∵∠A+∠AFD=180°(已知)∴AB ∥FD (同旁内角互补,两直线平行)∵AB ∥FD (已知)∴∠2+∠AED=180°(两直线平行,同旁内角互补)∵AC ∥ED (已知)∴∠C =∠3(两直线平行,同位角相等)故答案为∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[点睛]本题考查了平行线的判定与性质.正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键.22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.[答案](1)(1,1)A --,(4,2)B ,(1,3)C ;(2)7ABC S ∆=(3);见解析.[解析][分析](1)由图可得点的坐标;(2)利用割补法求解可得;(3)根据平移的定义分别作出平移后的对应点,再顺次连接可得.[详解].解:(1)由图可知,(1,1)A --,(4,2)B ,(1,3)C(2)11145241335222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 31520422=--- 7=(3)如图,A B C '''∆即为所求[点睛]本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.[答案]证明见解析[解析][分析]根据两直线平行,同位角相等可得∠1=∠C ,∠A=∠4,∠3=∠B ,两直线平行,内错角相等可得∠4=∠2,然后等量代换整理即可得证.[详解]证明:∵DE ∥AC ,∴∠1=∠C ,∠A=∠4,∵EF ∥AB ,∴∠3=∠B ,∠4=∠2,∴∠2=∠A ,∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C=180°.考点:平行线的性质.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?[答案]26元.[解析][分析]通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.[详解]解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩ 解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.[点睛]本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?[答案](1)每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)25个大车间,9个小车间同时加工更省钱.[解析][分析](1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.根据“若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.”列出二元一次方程组即可;(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.根据题意得到W 的一次函数,根据一次函数的特征即可得到结果. [详解]解:(1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.由题意得1215157535450x y x y +=⎧⎨+=⎩解得7545x y =⎧⎨=⎩答:每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.由题意,得 W=3000a+2500×22507545a -=-35003a+125000(0≤a≤25) ∴当a 最大时,W 最小∴需要25个大车间,可以加工25×75=1875(吨) 需要小车间:(2250-1875)÷45=253≈9(个) 答:25个大车间,9个小车间同时加工更省钱.[点睛]本题考查了二元一次方程组的应用及一次函数的应用.解题的关键是正确理解题意,根据题意找到等量关系.。
人教版数学七年级下学期《期中检测试题》带答案
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列实数中,是无理数的是( )A. 6B. 3.14C. 2D. 1 32.如图,小明用手盖住的点的坐标可能为( )A. (2,3)B. (﹣2,3)C. (2,﹣3)D. (﹣2,﹣3)3.点P为直线l外一点,点A,B,C为直线l上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l距离( )A. 等于4cmB. 等于3cmC. 小于3cmD. 不大于3cm4.如图,点E在BC的延长线上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠DAB+∠B=180°D. ∠D=∠55.将一直角三角板与两边平行的纸条如图放置,若∠1=55°,则∠2的大小是()A. 25°B. 30°C. 35°D. 45°6.下列命题中,(1)如果直线a∥b,b∥c,那么a∥c;(2)相等角是对顶角;(3)两条直线被第三条直线所截,内错角相等.其中真命题的个数是()A. 1个B. 2个C. 3个D. 无7.小明家位于公园正西100米处,从小明家出发向北走200米就到小华家.若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建立平面直角坐标系,规定一个单位长度代表1米长,则公园的坐标是( ) A. (﹣200,100) B. (200,﹣100)C. (﹣100,200)D. (100,﹣200)8.二元一次方程3x+2y=15的正整数解的对数是( )A. 1对B. 2对C. 3对D. 4对9.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E 的度数是()A. 360°B. 540°C. 720°D. 900°10.如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)( )A. abB. (a﹣2)bC. a(b﹣2)D. (a﹣2)(b﹣2)二、填空题(每小题3分,共18分)11.100的算术平方根是_____.12.与65最接近的整数是_____.13.点P(m﹣1,m+3)在平面直角坐标系的x轴上,则P点坐标是_____.14.如图,直线AB,CD交于点O,OA平分∠EOC,∠EOC∶∠EOD=4∶5,则∠BOD=______度.15.如图,已知DE∥BC,∠EDB比∠B的两倍小15°,则∠B=_____.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.三、解答题(共72分)17.计算与解方程:(1)22327+|125;(2)解方程:25x2=36.18.解二元一次方程组:(1)25 342 x yx y-=⎧⎨+=⎩;(2)433 3215x yx y+=⎧⎨-=⎩.19.填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG=∠HFD,求证:∠G=∠H.解:∵∠BEF+∠EFD=180°,(已知).∴AB//( ).∴=∠EFD( ).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=.∴//FH( ).∴∠G=∠H.( ).20.如图,直线DE经过A点,DE∥BC.(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.21.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),将△ABC作同样的平移得到△A1B1C1.(1)请画出△A1B1C1并写出点A1,B1,C1坐标;(2)求△A1B1C1的面积;(3)若点P在y轴上,且△A1B1P的面积是1,请直接写出点P的坐标.22.如图,AB∥CD.(1)如图①,若∠CMN=90°,点B在射线MN上,∠ABM=120°,求∠C的度数;(2)如图②,若∠CMN=150°,请直接写出∠ABM与∠C的数量关系.23.操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图,在平面直角坐标系中,对正方形ABDC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′D′C′及其内部的点,其中点A,B的对应点分别为A′,B′,已知正方形ABDC内部的一个点F经过上述操作后得到的对应点F′与点F重合,请求出点F的坐标.24.如图,以直角三角形AOB直角顶点O为原点,以OB,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),B(b,0)2+|b﹣4|=0.a b(1)直接写出A点的坐标为;B点的坐标为.(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,N点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点N到达A点整个运动随之结束.AB的中点C的坐标是(2,4),设运动时间为t(t>0)秒,是否存在这样的t,使OCM,OCN的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)如图②,点D是线段AB上一点,满足∠DOB=∠DBO,点F是线段OA上一动点,连BF交OD于点G,当点F在线段OA上运动的过程中,OGB ABFOFB∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.答案与解析一、选择题1.下列实数中,是无理数的是( )A. 6B. 3.14C. 2D. 1 3[答案]A[解析][分析]根据无理数的三种形式求解即可.[详解]A.6是无理数;B.3.14是有限小数,属于有理数;C.2是整数,属于有理数;D.13是分数,属于有理数;故选:A.[点睛]本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.如图,小明用手盖住的点的坐标可能为( )A. (2,3)B. (﹣2,3)C. (2,﹣3)D. (﹣2,﹣3)[答案]B[解析][分析]小明用手盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.[详解]小明用手盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(−2,3).故选:B.[点睛]本题考查坐标的象限符号,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.点P为直线l外一点,点A,B,C为直线l上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离( )A. 等于4cmB. 等于3cmC. 小于3cmD. 不大于3cm[答案]D[解析][分析]由点到直线的距离,垂线段最短,从而可得答案.[详解]解:根据垂线段最短得出P到直线l的距离是不大于3cm,故选:D.[点睛]本题考查的是点到直线的距离的概念与应用,掌握点到直线的距离,垂线段最短是解题的关键.4.如图,点E在BC的延长线上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠DAB+∠B=180°D. ∠D=∠5[答案]B[解析][分析]直接利用平行线的判定方法分别判断得出答案.[详解]解:A、当∠1=∠2时,可得:AD∥BC,不合题意;B、当∠3=∠4时,可得:AB∥CD,符合题意;C、当∠DAB+∠B=180°时,可得:AD∥BC,不合题意;D、当∠D=∠5时,可得:AD∥BC,不合题意;故选:B.[点睛]此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.将一直角三角板与两边平行的纸条如图放置,若∠1=55°,则∠2的大小是()A. 25°B. 30°C. 35°D. 45°[答案]C[解析][分析]先根据∠1=55°,∠FEG=90°,求得∠3=35°,再根据平行线的性质,求得∠2的度数.[详解]解:如图,∵∠1=55°,∠FEG=90°,∴∠3=35°,∵AB∥CD,∴∠2=∠3=35°.故选:C.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.6.下列命题中,(1)如果直线a∥b,b∥c,那么a∥c;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,内错角相等.其中真命题的个数是()A. 1个B. 2个C. 3个D. 无[答案]A[解析][分析]分别利用平行线的性质,以及对顶角的定义分析得出答案.[详解]解:(1)如果直线a∥b,b∥c,那么a∥c,是真命题;(2)相等的角是对顶角,是假命题;(3)两条直线被第三条直线所截,内错角相等,是假命题.真命题有1个,故选:A.[点睛]此题主要考查了命题与定理,正确把握平行线的性质是解题关键.7.小明家位于公园正西100米处,从小明家出发向北走200米就到小华家.若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建立平面直角坐标系,规定一个单位长度代表1米长,则公园的坐标是( ) A. (﹣200,100) B. (200,﹣100)C. (﹣100,200)D. (100,﹣200)[答案]D[解析][分析]根据题意画出坐标系,进而确定公园的坐标.[详解]解:如图所示:公园的坐标是:(100,﹣200).故选:D.[点睛]此题主要考查了坐标确定位置,正确理解题意是解题关键.8.二元一次方程3x+2y=15的正整数解的对数是( )A. 1对B. 2对C. 3对D. 4对[答案]B[解析][分析]将x=1,2,…,分别代入3x+2y=15,求出方程正整数解的对数是多少即可.[详解]解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.[点睛]此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E 的度数是()A. 360°B. 540°C. 720°D. 900°[答案]B[解析][分析]分别过点C,D作AB的平行线CG,DH,进而利用同旁内角互补可得∠B+∠BCD+∠CDE+∠E的大小.[详解]解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故选:B.[点睛]考查了平行线的性质,解题的关键是作辅助线,利用平行线的性质计算角的大小.10.如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)( )A. abB. (a﹣2)bC. a(b﹣2)D. (a﹣2)(b﹣2)[答案]B[解析][分析]根据平移,可得路宽度,根据矩形的面积,可得答案.[详解]解:∵小路的左边线向右平移2m就是它的右边线,∴路的宽度是2m,∴这块草地的绿地面积是(a﹣2)b平方米,故选:B.[点睛]本题考查了生活中的平移现象,先由平移得出路的宽度,再求出绿地的面积.二、填空题(每小题3分,共18分)11.100的算术平方根是_____.[答案]10[解析][分析]根据算术平方根的定义进行计算,即可得到答案.[详解]解:∵102=100,10.故答案为:10.[点睛]本题考查了算术平方根的定义,解题的关键是熟练掌握定义.12._____.[答案]8[解析][分析][详解]∴89,8,故答案为:8.[点睛]本题考查了估算无理数的大小,解决本题的关键是利用“夹逼法”估算出65的大小.13.点P (m ﹣1,m+3)在平面直角坐标系的x 轴上,则P 点坐标是_____.[答案]()4,0-[解析][分析]利用在x 轴上的点坐标特征解答即可.[详解]解:由题意,得:m+3=0,解得m =﹣3,∴m ﹣1=﹣4,∴点P 的坐标为(﹣4,0).故答案为(﹣4,0).[点睛]本题考查了x 轴上点的坐标特征,掌握在x 轴上的点纵坐标为0的特征是解答本题的关键. 14.如图,直线AB ,CD 交于点O ,OA 平分∠EOC ,∠EOC ∶∠EOD =4∶5,则∠BOD =______度.[答案]40[解析][分析]直接利用平角的定义得出:∠COE=80°,∠EOD=100°,进而结合角平分线的定义得出∠AOC=∠BOD ,进而得出答案.[详解]解:∵∠EOC :∠EOD=4:5,∴设∠EOC=4x ,∠EOD=5x ,故4x+5x=180°,解得:x=20°,可得:∠COE=80°,∠EOD=100°,∵OA 平分∠EOC ,∴∠COA=∠AOE=40°,∴∠BOD=40°.故答案是:40.[点睛]主要考查了角平分线的定义以及邻补角,正确把握相关定义是解题关键.15.如图,已知DE∥BC,∠EDB比∠B的两倍小15°,则∠B=_____.[答案]65︒[解析][分析]根据平行线的性质和题意,列出关系式求解即可.[详解]解:∵DE∥BC,∴∠B+∠EDB=180°,∵2∠B﹣∠EDB=15°,∴3∠B=195°,∴∠B=65°,故答案为:65︒.[点睛]本题考查的是平行线的性质和列关系式,能根据题意,准确列出关系式是解题的关键.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.64,3[答案]()[解析][分析]横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.[详解]解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2020个数一定在第64列,由下到上是第4个数.因而第2020个点的坐标是(64,3).故答案为:(64,3).[点睛]本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题(共72分)17.计算与解方程:(1)+|1;(2)解方程:25x2=36.[答案](1)3;(2)65x=±.[解析][分析](1)原式利用平方根、立方根的定义和绝对值的代数意义计算即可;(2)方程整理后,利用平方根的定义开方即可求解.[详解]解:(1)原式=2﹣3+5﹣1=3;(2)方程整理得:x2=36 25,开方得:x=±65.[点睛]本题考查了实数的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.解二元一次方程组:(1)25 342 x yx y-=⎧⎨+=⎩;(2)433 3215x yx y+=⎧⎨-=⎩.[答案](1)21xy=⎧⎨=-⎩;(2)33xy=⎧⎨=-⎩.[解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)25? 342?x yx y-=⎧⎨+=⎩①②,①×4+②得:11x=22,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)433 3215x yx y+=⎧⎨-=⎩①②,①×2+②×3得:17x=51, 解得:x=3,把x=3代入①得:y=﹣3,则方程组的解为33 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG=∠HFD,求证:∠G=∠H.解:∵∠BEF+∠EFD=180°,(已知).∴AB//( ).∴=∠EFD( ).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=.∴//FH( ).∴∠G=∠H.( ).[答案]CD;同旁内角互补,两直线平行;∠AEF;两直线平行,内错角相等;∠EFH;GE;内错角相等,两直线平行;两直线平行,内错角相等.[解析][分析]根据平行线性质与判定定理即可作出解决.[详解]解:∵∠BEF+∠EFD=180°,(已知).∴AB//CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠EFH.∴GE//FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).故答案为:CD;同旁内角互补,两直线平行;∠AEF;两直线平行,内错角相等;∠EFH;GE;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质定理以及判定定理,关键性质定理与判定定理二者之间的区别以及正确掌握同位角、内错角、同旁内角的定义.20.如图,直线DE经过A点,DE∥BC.(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.[答案](1)40︒,60︒;(2)能,理由见解析.[解析][分析](1)利用平行线的性质求解即可.(2)根据平角∠DAE=180°,推出∠DAB+∠BAC+∠EAC=180°,再利用平行线的性质解决问题即可.[详解]解:(1)∵DE ∥BC ,∴∠DAB=∠B=40°,∠EAC=∠C=60°.(2)能.理由如下:∵DE ∥BC ,∴∠DAB=∠B ,∠EAC=∠C ,∵∠DAB+∠BAC+∠CAE=180°∴∠BAC+∠B+∠C=180°,∴△ABC 的内角和等于180°.[点睛]本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握相关知识.21.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC 中任意一点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),将△ABC 作同样的平移得到△A 1B 1C 1.(1)请画出△A 1B 1C 1并写出点A 1,B 1,C 1的坐标;(2)求△A 1B 1C 1的面积;(3)若点P 在y 轴上,且△A 1B 1P 的面积是1,请直接写出点P 的坐标.[答案](1)答案见解析,1111,23,10,0A B C ,,;(2)3.5;(3)点P 的坐标为()0,2或()0,2-.[解析][分析] (1)依据点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;(3)设P(0,y),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.[详解]解:(1)依据点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得图形是先往右移1个单位长度,再往上移2个单位长度,如图所示,△A 1B 1C 1即为所求; A 1(0,0),B 1(﹣1,﹣2),C 1(﹣3,1);(2)△A 1B 1C 1的面积为:11122213313126 1.51 3.5;(3)设P(0,y),则A 1P =|y|,∵△A 1B 1P 的面积是1,∴12×|y|×1=1, 解得y =±2, ∴点P 的坐标为(0,2)或(0,﹣2).[点睛]本题主要考查了利用平移变换作图,熟悉相关作法是解题的关键.22.如图,AB ∥CD .(1)如图①,若∠CMN =90°,点B 在射线MN 上,∠ABM =120°,求∠C 的度数;(2)如图②,若∠CMN =150°,请直接写出∠ABM 与∠C 的数量关系.[答案](1)30;(2)30ABM C ∠-∠=︒.[解析][分析](1)过M 作MK ∥AB ,则∠ABM+∠1=180°,根据AB ∥CD ,MK ∥AB ,即可得到MK ∥CD ,再根据平行线的性质,即可得到∠C 的度数;(2)过M 作MK ∥AB ,则∠ABM+∠1=180°,根据AB ∥CD ,MK ∥AB ,即可得到MK ∥CD ,再根据平行线的性质,即可得到180°-∠ABM+∠C=120°,据此可得∠ABM 与∠C 的数量关系.[详解]解:(1)如图①,过M 作MK ∥AB ,则∠ABM+∠1=180°,∴∠1=180°﹣∠ABM=60°,∵∠CMN=90°,∴∠2=90°﹣∠1=30°,∵AB∥CD,MK∥AB,∴MK∥CD,∴∠C=∠2=30°;(2)∠ABM﹣∠C=30°,理由:如图②,过M作MK∥AB,则∠ABM+∠1=180°,∴∠1=180°﹣∠ABM,∵AB∥CD,MK∥AB,∴MK∥CD,∴∠C=∠2,∵∠CMN=∠1+∠2=150°,即180°﹣∠ABM+∠C=150°,∴∠ABM﹣∠C=180°﹣150°=30°.[点睛]本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.解决问题的关键是作辅助线构造同旁内角以及内错角.23.操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图,在平面直角坐标系中,对正方形ABDC 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′D ′C ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,已知正方形ABDC 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,请求出点F 的坐标.[答案](1)12-,92,34;(2)31,2F ⎛⎫ ⎪⎝⎭. [解析][分析](1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为p ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为q ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.[详解]解:(1)点A′:﹣3×13+0.5=﹣12,设点B表示的数为p,则13p+0.5=2,解得p=92,设点E表示的数为q,则13q+0.5=q,解得q=34;故答案为:12-,92,34;(2)根据题意得,5101a ma n-+=-⎧⎨+=⎩,7301a ma n+=⎧⎨+=⎩,解得:a=13,设点F的坐标为(x,y),m=23,n=1.设点F的坐标为(x,y), ∵对应点F′与点F重合,∴1233113x xy y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:132xy=⎧⎪⎨=⎪⎩,即点F的坐标为(1,32 ).[点睛]本题考查了二元一次方程组的应用,一元一次方程的应用,坐标与图形的变化,读懂题目信息运用平移规律列出方程或方程组是解题的关键.24.如图,以直角三角形AOB的直角顶点O为原点,以OB,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),B(b,0)+|b﹣4|=0.(1)直接写出A点的坐标为;B点的坐标为.(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,N点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点N到达A点整个运动随之结束.AB的中点C的坐标是(2,4),设运动时间为t(t>0)秒,是否存在这样的t,使OCM,OCN的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)如图②,点D 是线段AB 上一点,满足∠DOB =∠DBO ,点F 是线段OA 上一动点,连BF 交OD 于点G ,当点F 在线段OA 上运动的过程中,OGB ABF OFB∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.[答案](1)()0,8,()4,0;(2)存在,2;(3)不变,2.[解析][分析](1)利用两个非负数之和为零的性质求解,a b ,可得答案;(2)当0<t≤4时,点N 在线段AO 上,分别用含的代数式表示BM ,OM ,ON ,再利用面积公式列方程求解即可.(3)作∠AOH =∠AOD ,过G 点作AB 的平行线,交x 轴于P ,再证明//,OH AB 利用平行线的性质,从而可得答案.[详解]解:(1)∵2a b -+|b ﹣4|=0.∴a ﹣2b =0,b ﹣4=0,解得a =8,b =4,∴A (0,8),B (4,0);故答案为(0,8),(4,0).(2)如图1中,由条件可知:M 点从B 点运动到O 点时间为秒,N 点从O 点运动到A 点时间为4秒,∴0<t ≤4时,点N 在线段AO 上,即 BM =t ,OM =4﹣t ,ON =2t ,∴COM S =12OM •y C =12(4﹣t )×4=8﹣2t , CON S =12ON •x C =12×2t ×2=2t , ∵COM CON S S =,∴8﹣2t =2t ,∴t =2.(3)结论:GB ABF OFBO ∠+∠∠值不变,其值为2. 理由:如图2中,作∠AOH =∠AOD ,过G 点作AB 的平行线,交x 轴于P ,则∠4=∠PGB ,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠DBO ,∴∠HOB+∠DBO =180°,∴OH ∥AB ,∴∠1=∠BAO ,∴∠OFB =∠BAO+∠4=∠1+∠4,∴∠PGO =∠HOD =∠1+∠2,∴∠OGB =∠OGP+∠PGB =∠HOD+∠4=∠1+∠2+∠4,∴GB ABF OFB O ∠+∠∠=()2141244 2.1414∠+∠∠+∠+∠+∠==∠+∠∠+∠ [点睛]本题考查的是图形与坐标,平行线的判定与平行线的性质,三角形的外角的性质,角的和差运算,绝对值,算术平方根的非负性,掌握以上知识是解题的关键.。
七年级第二学期期中测试数学试题(解析版)
初一数学期中试卷一、选择题:(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的区域内)1.如图所示的图案可以看作由“基本图案”经过平移得到的是()A. B. C. D.【答案】D【解析】【分析】确定一个基本图案按照一定的方向平移一定的距离组成的图形就是经过平移得到的图形.【详解】A.不是由“基本图案”经过平移得到,故此选项错误;B.不是由“基本图案”经过平移得到,故此选项错误;C.不是由“基本图案”经过平移得到,故此选项错误;D.是由“基本图案”经过平移得到,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是正确理解平移的概念.2.下列计算正确的是()A.a2•a3=a6B. a6÷a3=a2C. (a2)3=a6D. (2a)3=6a3【答案】C【解析】【分析】根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.【详解】解:A、a2•a3=a5,错误;B、a6÷a3=a3,错误;C、(a2)3=a6,正确;D、(2a)3=8a3,错误;故选C3.下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A. 5cm、7cm、2cmB. 7cm、13cm、10cmC. 5cm、7cm、11cmD. 5cm、10cm、13cm【答案】A【解析】试题分析:三角形中任意两边之和大于第三边,任意两边之差小于第三边.A选项中5+2=7,则不能构成三角形.考点:三角形的三边关系4.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. x2-8x+16=(x-4)2C. (x+5)(x-2)=x2+3x-10D. 6ab=2a•3b【答案】B【解析】分析:根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.详解:A.右边不是积的形式,故A选项错误;B.是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故B选项正确;C.是多项式乘法,不是因式分解,故C选项错误;D.不是把多项式化成整式积的形式,故D选项错误.故选B.点睛:本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以...是()A. ∠1=∠3B. ∠B+∠BCD=180°C. ∠2=∠4D. ∠D+∠BAD=180°【答案】A【解析】【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行); B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行); C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行). 故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键. 6. 下列各式能用平方差公式计算的是( ) A. (2a+b )(2b -a ) B. (-12x+1)(-12x -1) C. (a+b )(a -2b ) D. (2x -1)(-2a+1)【答案】B 【解析】试题分析:能用平方差公式的代数式是指(a+b )(a -b ),即必须满足有两个相同的代数式,其中一个相等,另一个互为相反数. 考点:平方差公式.7.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x 场输了y 场,得20分,则可以列出方程组( )A. 20212x y x y +=⎧⎨+=⎩B. 12220x y x y +=⎧⎨+=⎩C. 212220x y x y +=⎧⎨+=⎩D. 12220x y x y +=⎧⎨+=⎩【答案】D 【解析】分析:根据此题的等量关系:①共12场;②赢了x 场,输了y 场,得20分列出方程组解答即可.详解:设赢了x 场,输了y 场,根据题意:12220x y x y +=⎧⎨+=⎩.故选D . 点睛:本题考查了方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.关于x 、y 的方程组93x y mx y m +=⎧⎨-=⎩的解是方程3x +2y =24的一个解,那么m 的值是( )A. 2B. -1C. 1D. -2【答案】C分析:把m 看做已知数表示出方程组的解,代入3x +2y =24计算即可求出m 的值.详解:93x y m x y m +=⎧⎨-=⎩①②,①+②得:2x =12m ,解得:x =6m ,①﹣②得:2y =6m ,即y =3m ,把x =6m ,y =3m 代入3x +2y =24中得:18m +6m =24,解得:m =1.故选C .点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 9.若用十字相乘法分解因式:x 2+mx -12=(x +2)(x +a ),则a 、m 的值分别是( ) A. -6,4 B. -4,-6C. -4, 6D. -6,-4【答案】D 【解析】分析:用多项式乘多项式法则计算后,根据多项式恒等,对应项的系数相等即可得到结论.详解:x 2+mx -12=(x +2)(x +a )= x 2+(a +2)x +2a ,∴m =a +2,2a =-12,解得:a =-6,m =-4. 故选D .点睛:本题考查了多项式乘法法则.解题的关键是多项式恒等,对应项的系数相等.10.如图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE =18°,则图2中∠AEF 的度数为( )A. 108B. 114C.116 D.120【答案】B 【解析】如图,设∠B′FE=x ,根据折叠的性质得∠BFE=∠B′FE=x ,∠AEF=∠A′EF ,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.故选B.点睛:本题主要考查了翻折变换,利用翻折变换前后角不发生大小变化是解决问题的关键.二、填空题:(每小题2分,共16分,把你的答案填在答题卷相应的横线上)11.遗传物质脱氧核糖核酸(DNA)的分子直径为0.000 0002cm,用科学记数法表示为______________cm.【答案】2×10-7【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n的值.解:0.000 0002=2×10﹣7.故答案2×10﹣7.12.十边形的外角和是_____°.【答案】360【解析】【分析】根据多边形外角和等于360°性质可得.【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.13.分解因式:9x2―4y2=_______________.【答案】(3x+2y)(3x-2y)【解析】分析:原式利用平方差公式分解即可.详解:原式=(3x+2y)(3x-2y).故答案为(3x+2y)(3x-2y).点睛:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解答本题的关键.14.已知a m=6,a n=3,则a m-n=__________【答案】2【解析】分析:根据同底数幂的除法法则:底数不变,指数相减进行计算即可.详解:∵a m =6,a n =3,∴a m ﹣n =a m ÷a n =6÷3=2.故答案为2.点睛:本题主要考查了同底数幂的除法,关键是掌握a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ).15.若4x 2-mxy +y 2是一个完全平方式.....,那么m 的值是_________. 【答案】±4 【解析】分析:利用完全平方公式的结构特征判断即可确定出m 的值.详解:∵4x 2-mxy +y 2是一个完全平方式,∴m =±4. 故答案为±4.点睛:本题考查了完全平方式,熟练掌握完全平方公式是解答本题的关键. 16.已知a 、b 满足a 2+b 2-6a -4b +13=0,则a+b 的值是_______. 【答案】5 【解析】分析:应用配方法把原式进行变形,根据非负数的性质求出a 、b 的值,代入代数式计算即可.详解:∵a 2+b 2-6a -4b +13=0,∴a 2-6a +9+b 2-4b +4=0,∴(a -3)2+(b ﹣2)2=0,∴303202a a b b -==⎧⎧∴⎨⎨-==⎩⎩,,∴a +b =3+2=5.故答案为5.点睛:本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键. 17.如图,在△ABC 中,∠C=50°,按图中虚线将∠C 剪去后,∠1+∠2等于_____.【答案】230° 【解析】 【分析】首先根据三角形内角和可以计算出∠A+∠B 的度数,再根据四边形内角和为360°可算出∠1+∠2的结果. 【详解】解:∵△ABC 中,∠C=50°, ∴∠A+∠B=180°-∠C=130°, ∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°-130°=230°.故答案为230°.【点睛】此题主要考查了三角形内角和以及多边形内角和,关键是掌握多边形内角和定理:(n-2).180°(n≥3)且n为整数).18.已知m、n满足232431242316m nm n+=⎧⎨+=⎩,则m2-n2的值是_________.【答案】-15【解析】分析:两式相加,求出m+n的值,两式相减,求出m-n的值,即可求出m2-n2的值.详解:232431 242316m nm n+=⎧⎨+=⎩①②①+②得:m+n=1③,②-①得:m-n=-15④,③×④得:m2-n2=-15.故答案为-15.点睛:本题主要考查了解二元一次方程组问题,要熟练掌握,注意整体思想的应用.三、解答题:(本大题共8小题,共54分,要有必要的解题步骤)19.计算或化简:(1)(12)-3- 20160 -|-5|;(2)(-3a2)2-a2·2a2+(a3)2÷a2.【答案】(1)2 ;(2)8a4【解析】分析:(1)原式利用负整数指数幂、零指数幂法则计算即可求出值;(2)原式利用积的乘方和幂的乘方,单项式乘单项式,单项式除以单项式法则计算即可.详解:(1)原式=8-1-5 =2 ;(2)原式=9a4-2a4+a4 = 8a4.点睛:本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.20.解二元一次方程组:(1)21367x yx y-=⎧⎨=-⎩;(2)23443x yx y-=-⎧⎨-=-⎩.【答案】(1)235xy=⎧⎨=⎩,(2)121xy⎧=-⎪⎨⎪=⎩【解析】分析:(1)方程组利用代入消元法求出解即可;(2)利用加减消元法求出解即可.详解:(1)21367x y x y -=⎧⎨=-⎩①②,把②代入①得:6y ﹣7﹣2y =13,即y =5,把y =5代入②得:x =23,则方程组的解为235x y =⎧⎨=⎩;(2)23443x y x y -=-⎧⎨-=-⎩①②,①×2-②得:-5y =-5,解得:y =1,把y =1代入①得:x =12-,则方程组的解为121x y ⎧=-⎪⎨⎪=⎩ .点睛:本题考查了解二元一次方程组,利用了整体的思想. 21.分解因式:(1)m (a ―b ) ―n (b ―a ); (2)y 3―6y 2+9 y . 【答案】(1)(a ―b )(m +n );(2)y (y ―3) 2 【解析】分析:(1)直接提取公因式(a -b ),进而分解因式即可;(2)先提取公因式y ,再用完全平方公式分解因式即可. 详解:(1)原式= m (a ―b ) +n (a ―b ) =(a ―b )(m +n ); (2)原式 = y (y 2―6y +9) = y (y ―3) 2.点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点. (1)请画出平移后的△DEF ;(2)若连接AD 、CF ,则这两条线段之间的关系..是________________; (3)在图中找出所有满足S △ABC =S △QBC 的格点Q (异于点A ),并用Q 1、Q 2…表示.【答案】AD =CF ,AD ∥CF 【解析】分析:(1)根据网格结构找出点B、C平移后的对应点E、F的位置,然后与点D顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2..详解:(1)如图所示;(2)AD与CF平行且相等.故答案为AD与CF平行且相等.(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.,如图,点睛:本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.先化简,再求值:x(2x-y)-(x+y) (x-y) + (x-y)2,其中x2+y2=5,xy=-2.【答案】16【解析】分析:原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.详解:原式=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.24.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件.每件文化衫的批发价及手绘后的零售价如下表:批发价(元)零售价(元)黑色文化衫20 35白色文化衫15 25假设通过手绘设计后全部售出....,求该校这次义卖活动所获利润. 【答案】该校这次义卖活动所获利润为2600元 【解析】分析:设黑色文化衫x 件,白色文化衫y 件,根据该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件,列二元一次方程组进行求解.详解:设黑色文化衫有x 件,白色文化衫有y 件.由题意得:20020153600x y x y +=⎧⎨+=⎩解得:12080x y =⎧⎨=⎩.利润=(35-20)×120+(25-15)×80=2600(元). 答:该校这次义卖活动所获利润为2600元.点睛:本题主要考查了二元一次方程组的应用,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
七年级下学期期中测试
B 卷·能力训练级级高
班级________姓名_______成绩______
一、选择题(3分×8=24分)
1. 下列图形中具有稳定性是()
A 、正方形
B 、平行四边形
C 、梯形
D 、直角三角形
2. 如果0 ab ,那么点P ),(b a 所在象限为()
A 、 第二象限
B 、第四象限
C 、第一或第三象限
D 、第二或第四象限 3. 已知:02)62(2
=++-y x ,则A ),(y x 的坐标为( )
A、(3,2)B、(3,-2)C、(-2,3)D、(-3,-2) 4.以下叙述正确的有 ( )
①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等
⑤多边形的外角和都相等 ⑥三角形的中线把原三角形分成面积相等的两个三角形
A、2个 B、3个 C、4个 D、5个 5.如图,图中共有12个角,其中内错角有()对
A、6对 B、12对 C、4对 D、8对
6.已知,如图AB∥CD,∠1=∠2,EP⊥FP,则以下错误的是()
A、∠3=∠4 B、∠2+∠4=900
C、∠1与∠3互余 D、∠1=∠3
7.一个多边形外角和是内角和的2倍,这个多边形是()
A、三角形 B、四边形 C、六边形 D、不能确定
8.用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余,重叠和折断),这个
三角形一定是()
A、等边三角形 B、等腰三角形 C、直角三角形 D、不等边三角形
二、填空题(4分×8=32分)
9.点A(-3,0)在 轴上,点B(-2,-3)在第 象限
10. 一个多边形的每个外角都是600
,则这个多边形是 边形。
它的对角线共有 条
11. 已知∠A=500
,∠A的两边分别和∠B的两边平行,则∠B的度数为
0
12. 如图CD平分∠ACB,AE∥CD,交BC的延长线于E,
∠ACB=500,则∠E= 0,∠CAE= 0
(5)91211
10
87654321
(6)E 432
1A B P F C D
1
13. 如图,一条公路两次拐弯后,与原来的方向相同,第一次拐的角是
1300,那么第二次拐的角是 0
14. 已知,0=xy ,则点P),(y x 在坐标平面的位置是
15. 已知,直线AB与CD相交于点O,OE⊥CD,垂足为O,则图中∠AOE与
∠DOB的关系是
16.如图,在等腰三角形ABC中,AB=AC,∠A=360
,BD、
CE分别是∠ABC、∠ACB的平分线,且交于点O,则图中等腰三角形有 三、解下列各题
17.(12分) 在直角坐标系中描出下列各组点,并将各组内点用线段依次连接起来:
①(-6,5),(-10,3),)3,9(--,)3,3(-,(-2,3)
(-6,5)
②(-9,3),(-9,10),(-3,0),(-3,3)
18.(8分) 已知:如图,AB∥CD,∠B=400,∠E=300
,求∠D的度数
第(12)题
E C
B
D
A 第(13)题
A
B
第(15)题E
A C O D
B 第(16)题B E O
C D
A E
D
C
B
A
19.(14分) 已知:如图∠1=∠2,∠3=∠4,∠5=∠6,
∠1=600,∠7=200
(1)试说明AC⊥BD
(2)求∠3及∠5的度数
(3)求四边形ABCD各内角的度数。
20.(10分) 如图:CD∥AB,OA=AB=BC,∠BCD=400
,求∠COD的度数
附加题:(20分)
⑴如图1,△ABC各边长都大于2,分别以A、B、C为圆心,以1单位长为半径画圆,则阴影部分面积为
⑵如图2,将⑴中的△ABC换成四边形ABCD,其它条件不变,
则阴影部分面积为
⑶如图3,将四边形换成五边形,那么其阴影部分面积为 ⑷根据结论⑴,⑵,⑶,你能总结n 边形的情况吗?
87o 654
321
D
C B
A D B
A O C
图(3)
1。