专题1.4 函数的周期性、对称性(学生版)
函数性质的八大题型综合应用(学生版)-高中数学
函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x≥1时,f(x)单调递增,则不等式f2-x≥f(x+1)的解集为()A.12,+∞B.0,1 2C.-∞,-12D.-∞,122(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x2+2ax+4,x≤1,1x,x>1是-12,+∞上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-13(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【题型2 函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x <6,则6x -x 2有()A.最小值3B.最大值3C.最小值9D.最大值9【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,92(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-43(2023·广东惠州·统考一模)若函数f x 的定义域为D ,如果对D 中的任意一个x ,都有f x >0,-x ∈D ,且f -x f x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g 0 =1B.若g x max =g 4 =4,则g x min =g -4 =14C.若g x 在0,+∞ 上单调递增,则g x 在-∞,0 上单调递减D.若g x 定义域为R ,且函数h x 也是定义域为R 的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.40922(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 33(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【题型4 函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f (x )的图像既关于点(-1,1)对称,又关于直线y =x 对称,且当x ∈[-1,0]时,f (x )=x 2,则f 174 =()A.-194B.-92C.-72D.-174【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y =f x 满足f a +x +f (a -x )=2b ,则说y =f x 的图象关于点a ,b 对称,则函数f (x )=x x +1+x +1x +2+x +2x +3+...+x +2021x +2022+x +2022x +2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,20232(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R ,且y =f 3+3x 为偶函数,y =g x +3 +2为奇函数,对∀x ∈R ,均有f x +g x =x 2+1,则f 7 g 7 =()A.615B.616C.1176D.20583(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x∈R都有f x+2=-f x ,且f-x= -f x ,当x∈-1,1时,f x =x3.则下列结论正确的是()A.函数y=f x 的图象关于点k,0k∈Z对称B.函数y=f x 的图象关于直线x=2k k∈Z对称C.当x∈2,3时,f x =x-23D.函数y=f x的最小正周期为22(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R,f1 =0,且f0 ≠0,∀x,y ∈R都有f x+y+f x-y=2f x f y ,则下列说法正确的命题是()①f0 =1;②∀x∈R,f-x+f x =0;③f x 关于点1,0对称;④2023i=1f(i)=-1A.①②B.②③C.①②④D.①③④3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g(x)的定义域均为R,f(x+1)为偶函数,且f(3-x)+g(x)=1,f(x)-g(1-x)=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i=1f(i)=2022D.2023i=0g(i)=0【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,522(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.42(2023·河南·校联考模拟预测)已知函数f x 对任意实数x ,y 恒有f (x -y )+f (x +y )=f (2x )成立,且当x <0时,f (x )>0.(1)求f (0)的值;(2)判断f x 的单调性,并证明;(3)解关于x 的不等式:f x 2-(a +2)x +f (a +y )+f (a -y )>0.3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x ,y 恒有f x +y =f x +f y ,当x >0时,f x <0,且f 1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3 上的最大值;(3)若f x <m 2-2am +2对所有的x ∈-1,1,a ∈ -1,1 恒成立,求实数m 的取值范围.【题型8 函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f (x )=a x ,g (x )=b ⋅a -x +x ,a >0且a ≠1,若f (1)+g (1)=52,f (1)-g (1)=32,设h (x )=f (x )+g (x ),x ∈[-4,4].(1)求函数h (x )的解析式并判断其奇偶性;(2)判断函数h (x )的单调性(不需证明),并求不等式h (2x +1)+h (2x -1)≥0的解集.【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.直击真题1(2023·全国·统考高考真题)若f x =x +a ln2x -12x +1为偶函数,则a =( ).A.-1B.0C.12D.12(2021·全国·统考高考真题)已知函数f x 的定义域为R ,f x +2 为偶函数,f 2x +1 为奇函数,则() A.f -12=0 B.f -1 =0C.f 2 =0D.f 4 =03(2022·全国·统考高考真题)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则22k =1f (k )=()A.-3B.-2C.0D.14(2021·全国·高考真题)设f x 是定义域为R 的奇函数,且f 1+x =f -x .若f -13 =13,则f 53=()A.-53B.-13C.13D.535(2022·天津·统考高考真题)函数f x =x 2-1x的图像为()A. B.C. D.6(2022·全国·统考高考真题)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图像关于直线x =2对称,g (2)=4,则22k =1f k = ()A.-21B.-22C.-23D.-247(2021·全国·统考高考真题)设函数f x 的定义域为R ,f x +1 为奇函数,f x +2 为偶函数,当x ∈1,2 时,f (x )=ax 2+b .若f 0 +f 3 =6,则f 92=()A.-94B.-32C.74D.528(2020·全国·统考高考真题)已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图象关于y 轴对称C.f (x )的图象关于直线x =π对称D.f (x )的图象关于直线x =π2对称9(2020·山东·统考高考真题)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]。
函数的对称性与周期性(归纳总结)
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
高考函数对称轴对称中心压轴题专题
高考函数压轴题专题对称性与周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.(2)关于函数周期性常用的结论①若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠); ②若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠); ③若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). ④如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±. ⑤函数图像关于b x a x ==,轴对称)(2b a T -=⇒.⑥函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.⑦函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.(3)函数()y f x =的图象的对称性结论①若函数)(x f y =关于x a =对称⇔对定义域内任意x 都有()f a x +=()f a x -⇔对定义域内任意x 都有()f x =(2)f a x -⇔()y f x a =+是偶函数;②函数)(x f y =关于点(a ,0)⇔对定义域内任意x 都有()f a x -=-()f a x +⇔(2)f a x -=-()f x ⇔()y f x a =+是奇函数;③若函数)(x f y =对定义域内任意x 都有)()(x b f a x f -=+,则函数)(x f 的对称轴是2b a x +=; ④若函数)(x f y =对定义域内任意x 都有()()f x a f b x +=--,则函数)(x f 的对称轴中心为(,0)2a b +; 改编:若函数)(x f y =对定义域内任意x 都有f(a+x)+f(b-x)=c 则函数)(x f 的对称轴中心为________⑤函数(||)y f x a =-关于x a =对称.例1 2016 (12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=m ii x =∑(A)0 (B)m (C) 2m (D) 4m例 2 (2016年全国II 高考)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与()y f x =图像的交点为 1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()m i i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m例3(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1 例4【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【命题意图探究】本题主要考查函数的单调性、对称性,是中档题. 【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .例 5 【2018全国卷Ⅱ】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=f A .50- B .0 C .2 D .50例6 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( ) (A ) 1- (B )1 (C )2 (D )4例7【2015高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是 .例8 【2015高考福建,文15】若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.例9 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.例10 (2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D .D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D .例11 (2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x > 时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 D 【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .2018高考函数专题(2018全国卷 理数-1)5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.(2018全国卷 理数-2)3.函数()2e e x xf x x --=的图像大致为6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .2510.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A.50-B.0 C.2 D.50 (2018 全国卷理数-3)4.若1sin3α=,则cos2α=A.89B.79C.79-D.89-12.(2018鄂尔多斯市模拟卷)若定义在R上的函数f(x)满足f(-x)=-f(x),f(1-x)=f(1+x),且当xє(0,1]时,f(x)=1-x,则方程()1[7,1]xf x e=--在区间上的实数根的数为( )。
函数的对称性与周期性(解析版)--2024高考数学常考题型精华版
第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。
2023年数学教案:数学 - 函数的对称性与周期性(精选3篇)
2023年数学教案:数学 - 函数的对称性与周期性(精选3篇)教案一:函数的对称性教学目标:1. 能够理解函数的对称性的概念。
2. 能够识别并绘制函数的对称轴。
3. 能够利用函数的对称性来简化计算和证明过程。
教学准备:1. 彩色粉笔或者白板笔2. 图形绘制工具(纸和铅笔或者计算机绘图软件)教学过程:步骤1:引入概念(5分钟)首先,教师可以引入函数的对称性概念。
可以使用具体的例子来说明,例如y = x²这个函数。
让学生观察这个函数的图像,并指出函数的对称轴在x轴上。
步骤2:识别对称轴(15分钟)然后,教师可以给学生更多的例子,让他们识别函数图像的对称轴。
可以使用不同类型的函数,如多项式函数、三角函数等。
步骤3:绘制对称轴(25分钟)现在,学生可以用纸和铅笔,或者计算机绘图软件,绘制给定函数的图像,并标出对称轴。
教师可以给予学生一份工作表,上面列有几个函数,要求学生绘制它们的图像和标出对称轴。
步骤4:应用对称性(15分钟)最后,教师可以给学生一些问题,让他们应用对称性来简化计算和证明过程。
例如,让学生证明一个函数在对称轴上的值是相等的,或者让他们通过给定函数的对称轴来求出其他点的函数值。
教学延伸:教师可以进一步探讨函数的奇偶性质与对称性的关系,以及函数的图像在对称轴两侧的关系。
教案二:函数的周期性教学目标:1. 能够理解函数的周期性的概念。
2. 能够识别函数的周期和周期的长度。
3. 能够利用函数的周期性来简化计算和证明过程。
教学准备:1. 彩色粉笔或者白板笔2. 图形绘制工具(纸和铅笔或者计算机绘图软件)教学过程:步骤1:引入概念(5分钟)首先,教师可以引入函数的周期性概念。
可以使用具体的例子来说明,例如y = sin(x)这个函数。
让学生观察这个函数的图像,并指出函数的周期为2π。
步骤2:识别周期(15分钟)然后,教师可以给学生更多的例子,让他们识别函数的周期和周期的长度。
可以使用不同类型的函数,如三角函数、指数函数等。
函数的周期性和对称性(学生)——王彦文
专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。
在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。
因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。
【方法点评】一、函数的周期性求法 使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .51- (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3【变式演练2】定义在R 上的函数()f x 满足()()[)20,0,2f x f x x ++=∈时,()31xf x =-,则()2015f 的值为( )A.-2B.0C.2D.8【变式演练3】定义在R 上的偶函数()y f x =满足(2)()f x f x +=-,且在[2,0]x ∈-上为增函数,3()2a f =,7()2b f =,12(log 8)c f =,则下列不等式成立的是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >> 二、函数的对称性问题 使用情景:几类特殊函数类型 解题模板:记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称;第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称.例2 .(从对称性思考)已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 例3 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 例4 已知函数21()(,g x a xx e e e=-≤≤为自然对数的底数)与()2ln h x x =的图像上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .21[1,2]e + B .2[1,2]e - C .221[2,2]e e +-D .2[2,)e -+∞ 【变式演练4】定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,mm f 3)2(-=,则实数m 的取值范围是 . 【高考再现】1. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m2. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )23. 【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .4. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 .【反馈练习】1. 【2016届云南昆明一中高三仿真模拟七数学,理4】设函数()y f x =定义在实数集R 上,则函数()y f a x =-与()y f x a =-的图象( )A .关于直线0y =对称B .关于直线0x =对称C .关于直线y a =对称D .关于直线x a =对称2.【 2017届河南夏邑县第一高级中学高三文一轮复习周测二数学试卷】已知函数()f x 是定义在R 内的奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()2015f =( )A .-2B .2C .-98D .983. 【2017届河南新乡一中高三9月月考数学,文8】定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C .(64)(49)(81)f f f <<D .(64)(81)(49)f f f << 4. 【2017届安徽合肥一中高三上学期月考一数学试卷,文12】已知定义在R 上的函数()f x 满足:(1)y f x =-的图象关于(1,0)点对称,且当0x ≥时恒有31()()22f x f x -=+,当[0,2)x ∈时,()1xf x e =-,则(2016)(2015)f f +-=( )A .1e -B .1e -C .1e --D .1e +5. 【2016-2017学年贵州遵义四中高一上月考一数学试卷,理11】已知函数2()(12)f x a x x =-≤≤与()2g x x =+的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .9[,)4-+∞ B .9[,0]4- C .[2,0]- D .[2,4] 6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】若对正常数m 和任意实数x ,等式1()()1()f x f x m f x ++=-成立,则下列说法正确的是( )A .函数()f x 是周期函数,最小正周期为2mB .函数()f x 是奇函数,但不是周期函数C .函数()f x 是周期函数,最小正周期为4mD .函数()f x 是偶函数,但不是周期函数7. 【2017届四川成都七中高三10月段测数学试卷,文10】 函数()f x 的定义域为R ,以下命题正确的是( ) ①同一坐标系中,函数(1)y f x =-与函数(1)y f x =-的图象关于直线1x =对称;②函数()f x 的图象既关于点3(,0)4-成中心对称,对于任意x ,又有3()()2f x f x +=-,则()f x 的图象关于直线32x =对称;③函数()f x 对于任意x ,满足关系式(2)(4)f x f x +=--+,则函数(3)y f x =+是奇函数. A .①② B .①③ C .②③ D .①②③8. 【2015-2016学年东北育才学校高二下段考二试数学,文12】函数⎪⎩⎪⎨⎧≥<++=)0(e2)0(142)(x 2x x x x x f 的图像上关于原点对称的点有( )对A. 0B. 2C. 3D. 无数个9. 【2015-2016学年东北育才学校高二下段考二试数学,文7】定义在实数集R 上的函数()f x 满足()()20f x f x ++=,(4)()f x f x -=.现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.其中正确的是( )A .②③ B. ①② C .①③ D. ①②③。
专题——函数的奇偶性,周期性,对称性
专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。
2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。
3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。
4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。
5.函数y =f (|x -a |)的图象关于x =a 对称。
三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。
专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧
f (a + x)= f (a − x)
最常逆应用:若 y
=
f (x) 关于 x
=
a
对称:可得到如下结论中任意一个:
f= ( x)
f (2a − x)
;
f (−x=) f (2a + x)
周期性与对称性记忆口诀:同号周期,异号对称.
(2)点对称:若 f (a + x) =− f (b − x) + c ,则 y = f (x) 的图象关于点 ( a + b , c ) 对称. 22
C. f (2022) = 0
D. f (2023) = 2
三、填空题
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 f ( x) 是定义在 R 上的奇函数,对任意的 x∈ R
都有
f
x
+
3 2
= − f
(
x)
,当
x
∈
−
3 4
,
0
时, = f ( x)
log2 (1+ x) ,则 f (2021) + f (2022) = _________
当 x ∈[−2, 0] 时, f= ( x)
1 x 3
+
b
,则
f
(log3 162)
= ___________.
11.(2023·全国·高三专题练习)已知定义在 R 上的函数 f (x) 满足 f (2 + x) =f (x) ,当 x ∈[0, 2]时,
f (x) = −x(x − 2) ,则方程 f (x) = lg x 有___________个根.
最常逆应用:若 y
2.轴对称与周期函数的关系(学生版)
对称性和周期性都是函数的重要性质,而这两种性质之间,有没有什么关联呢?今天我们就来通过几个例子,轴对称与周期性之间的关系。
我们在数学学习过程中,认识了很多函数,如二次函数,它有对称轴,但并不是周期函数;而三角函数,一般都是周期函数,且如cos x有无数条对称轴。
这些都是具体函数的特点,那么它们之间有没有普遍规律呢?
先看例题
例:f(x)是定义在R上的偶函数,图象关于x=1对称,证明f(x)是周期函数
一般规律:
若函数f(x)的图象关于直线x=a和直线x=b对称(a≠b),
则函数f(x)必为周期函数,2|a-b|是它的一个周期;
证明:
()()
-=+
2
f x f a x
()()
-=+
f x f b x
2
()()
+=+
22
f a x f b x
()()
-+=
22
f b a x f x
练:已知函数f (x )图象关于x =2对称,且函数f (6+x )是定义在R 上的偶函数,f (11)=2,则f (2011)=
.
总结:
1.如果函数有两条不同的对称轴,则它一定是周期函数
2.该类函数的周期为T =2|a -b |
练习:
1.函数f (x )定义在R 上,且对一切x ∈R 满足(2)(2),(7)(7)f x f x f x f x +=-+=-,
设(0)0f =,求方程()0f x =在区间[1000,1000]-中至少有几个实根?
2.若偶函数f(x),x∈R满足:
(1)图象关于x=a对称(a>0);
(2)在区间[0,a]上是减函数;求证:f(x)以2a为最小正周期。
高考数学专题复习 函数的周期性、对称性(原卷版)
第四讲函数的周期性与对称性【套路秘籍】一.对称性(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。
⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。
函数的性质(学生版)
函数的性质(一)函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接.两种形式设任意x1,x2∈[a,b]且x1<x2,那么①f(x1)-f(x2)x1-x2>0⇔f(x)在[a,b]上是增函数;f(x1)-f(x2)x1-x2<0⇔f(x)在[a,b]上是减函数.②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a,b]上是减函数.两条结论知能梳理(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.四种方法函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(4)图象法:利用图象研究函数的单调性.(二)函数的奇偶性(1)奇、偶函数的概念如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(2)奇、偶函数的性质奇函数在关于原点对称的区间上的单调性相同,、偶函数在关于原点对称的区间上的单调性相反.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.(三)函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f (x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x =a对称.若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b -a)为周期的周期函数.(2)若f(x+a)=-f(x)或f(x+a)=1f(x)或f(x+a)=-1f(x),那么函数f(x)是周期函数,其中一个周期为T=2a;(3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=2|a-b|.考向一函数的单调性的判断【例1】►试讨论函数f(x)=xx2+1的单调性.[审题视点] 可采用定义法或导数法判断.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等.精讲精练【训练1】讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考向二利用已知函数的单调区间求参数的值(或范围)【例2】►已知函数f(x)=x2+ax(a>0)在(2,+∞)上递增,求实数a的取值范围.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解.【训练2】函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是( ).A.a=-3 B.a<3 C.a≤-3 D.a≥-3考向三利用函数的单调性求最值【例3】►已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3 .(1)求证:f(x)在R上是减函数; (2)求f(x)在[-3,3]上的最大值和最小值.[审题视点] 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性; (3)若f (3)=-1,求f (x )在[2,9]上的最小值.【如何解不等式恒成立问题】当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.考向四 判断函数的奇偶性【例1】►下列函数:①f (x )= 1-x 2+ x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2+1); ④f (x )=3x -3-x 2;⑤f (x )=lg 1-x1+x .其中奇函数的个数是( ). A .2 B .3 C .4 D .5判断函数的奇偶性的一般方法是:(1)求函数的定义域;(2)证明f (-x )=f (x )或f (-x )=-f (x )成立;或者通过举反例证明以上两式不成立.如果二者皆未做到是不能下任何结论的,切忌主观臆断.【训练1】 判断下列函数的奇偶性:(1)f (x )=4-x 2|x +3|-3; (2)f (x )=x 2-|x -a |+2.考向五 函数奇偶性的应用【例2】►已知f (x )=x ⎝ ⎛⎭⎪⎫12x -1+12(x ≠0). (1)判断f (x )的奇偶性; (2)证明:f (x )>0.根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可. 【训练2】已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.考向六函数的奇偶性与周期性【例3】已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.【训练3】已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为( ).A.-1 B.1 C.0 D.无法计算【如何解决奇偶性、单调性、周期性的交汇问题】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间.【试一试】已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ). A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ). A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)3.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______. 5.若x >0,则x +2x的最小值为________.6.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ).A.-12B.-14C.14D.127.(2012·福州一中月考)f (x )=1x -x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C.坐标原点对称D.直线y=x对称8.(2011·广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数9.(2011·福建)对于函数f(x)=a sin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( ).A.4和6 B.3和1 C.2和4 D.1和210.(2011·浙江)若函数f(x)=x2-|x+a|为偶函数,则实数a=________.。
(完整版)对称性和周期性性质总结
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
专题--函数的周期性+对称性
专题函数的周期性一知识点精讲1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.周期函数的定义域一定是无限集2性质①若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则)(x f ϖ)0(≠ϖ是周期函数,且周期为||ωT 。
3.几种特殊的具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中0a >为常数)(1)()()f x f x a =+,则()y f x =的周期T a =.(2)()()f x a f x +=-,则()x f 的周期2T a =.(3)()()1f x a f x +=±,则()x f 的周期2T a =.(4)()()f x a f x a +=-,则()x f 的周期2T a =.(5)1()()1()f x f x a f x -+=+,则()x f 的周期2T a =.(6)1()()1()f x f x a f x -+=-+,则()x f 的周期4T a =数.(7)1()()1()f x f x a f x ++=-,则()x f 的周期4T a =.(8)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.(9)函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数.(10)函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是()2b a -为周期的周期函数.(11)函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(12))-()()(a x f x f a x f -=+,则)(x f 的周期a T 6=.二典例解析1.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x ≤1时,f(x)=x ,则f(7.5)=()A.0.5B.-0.5C.1.5D.-1.52.若y =f (2x )的图像关于直线2a x =和)(2a b b x >=对称,则f (x )的一个周期为()A .2ba +B .)(2ab -C .2ab -D .)(4a b -3.已知()f x 在R 上是奇函数满足2)1(),()3(=-=+f x f x f ,则=)5(f 4.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)2008(f =例5.已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。
(完整版)函数的对称性与周期性
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数性质专题 函数的奇偶性、周期性、对称性
函数性质专题 函数的奇偶性、周期性、对称性第一部分 函数的奇偶性一、奇偶函数的定义 偶函数 奇函数定义 设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I且f (-x )=f (x ),那么函数f (x )就叫做偶函数且f (-x )=-f (x ),那么函数f (x )就叫做奇函数 图象特征 关于y 轴对称 关于原点对称一、函数的奇偶性常用结论1、奇(偶)函数定义的等价形式①f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数; ②f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数. 2、如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0.如果函数f (x )是偶函数,那么f (x )=f (|x |).3、在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.二、函数的奇偶性常见题型(一)函数奇偶性的判断例1判断下列函数的奇偶性.(1)f (x )=x 3-1x; (2)f (x )=x 2-1 +1-x 2 ;(3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0.跟踪练习1、下列函数中为偶函数的是( )A .f (x )=2x +1B .f (x )=x 3+xC .f (x )=1x 2 D .f (x )=x +1x2、函数f (x )=1x -x 的图像( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称3、已知函数f (x )=x ·|x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(-∞,0)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(0,+∞)4、设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+15、设函数f (x )在(-∞,+∞)内有定义,下列函数必为奇函数的是( )A .y =-|f (x )|B .y =xf (x 2)C .y =-f (-x )D .y =f (x )+f (-x )6、已知函数f (x )=9-x 2|6-x |-6,则函数f (x )( )A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数7、已知定义在R 上的函数f (x )满足对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)-1,则() A .f (x )是偶函数 B .f (x )是奇函数C .f (x )-1是偶函数D .f (x )-1是奇函数8、(多选)下列函数是奇函数的是( )A .y =2x 2-3B .y =x 3C .y =x 2,x ∈[0,1]D .y =x9、(多选)下列说法中正确的是( )A .图象关于坐标原点对称的函数是奇函数B .图象关于y 轴对称的函数是偶函数C .函数y =x 2在x ∈(0,+∞)上是偶函数D .若函数f (x )为奇函数,则一定有f (0)=010、(多选)已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x11、(多选)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的有( )A .f (x )g (x )是偶函数B .|f (x )|+g (x )是偶函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数12、(多选)如果f (x )是定义在R 上的奇函数,那么下列函数中,一定为具有奇偶性的函数的是( )A .y =x +f (x )B .y =xf (x )C .y =x 2+f (x )D .y =x 2f (x )13、(多选)函数f (x )的定义域为R ,且f (x )与f (x +1)都为奇函数,则( )A .f (x -1)为奇函数B .f (x )为周期函数C .f (x +3)为奇函数D .f (x +2)为偶函数14、判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0;15、判断下列函数的奇偶性:(1)f (x )=x 3-x 2x -1; (2)f (x )=x 2-x 3;(3)f (x )=|x -2|-|x +2|;(4)f (x )=x 2+a x(x ≠0,a ∈R).16、(1)已知函数f (x ),x ∈R ,若∀a ,b ∈R ,都有f (a +b )=f (a )+f (b ),求证:f (x )为奇函数;(2)已知函数f (x ),x ∈R ,若∀x 1,x 2∈R ,都有f (x 1+x 2)+f (x 1-x 2)=2f (x 1)·f (x 2),求证:f (x )为偶函数;(3)设函数f (x )定义在(-l ,l )上,证明:f (x )+f (-x )是偶函数,f (x )-f (-x )是奇函数.17、已知f (x )是定义在R 上的函数,设g (x )=f (x )+f (-x )2,h (x )=f (x )-f (-x )2. (1)试判断g (x )与h (x )的奇偶性;(2)试判断g (x ),h (x )与f (x )的关系;(3)由此你能猜想出什么样的结论?(二)根据奇偶性求函数值例2(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,求f (-2)的值.跟踪练习1、(2022·青岛模拟)已知f (x )=x 5+ax 3+bx -8(a ,b 是常数),且f (-3)=5,则f (3)=( )A .21B .-21C .26D .-262、如图,给出奇函数y =f (x )的局部图像,则f (-2)+f (-1)的值为( )A.-2 B .2 C .1 D .03、已知f (x )为奇函数,在区间[3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( )A .-15B .-13C .-5D .54、已知f (x )=ax 3+bx +1(ab ≠0),若f (2019)=k ,则f (-2019)=( )A .kB .-kC .1-kD .2-k5、已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54D .36、已知定义在R 上的偶函数f (x )满足f (2-x )-f (x )=0,f (0)=3 ,则f (10)=________.7、已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________.8、若函数f (x )=⎩⎪⎨⎪⎧g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 9、已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.10、已知f (x )是奇函数,当x <0时,f (x )=x 2+2x ,则f (1)的值是________.11、若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0),f (1),f (-2)从小到大的排列是____________.(三)根据奇偶性求函数的解析式例3(1)已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (x -2),则当x <0时,求f (x )的表达式.(2)已知函数f (x )为偶函数,且当x <0时,f (x )=x +1,则x >0时,求f (x )的表达式跟踪练习1、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.2、已知函数f (x )是定义在R 上的奇函数,当x ≥0,f (x )=2x -2x +a ,则a =________;当x <0时,f (x )=_______.3、已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),f (x )=_______.4、已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图像.5、已知函数f (x )=x 2-mx (m >0)在区间[0,2]上的最小值为g (m ).求函数g (m )的解析式;6、设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.7、已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25. (1)求函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数;(3)解关于实数t 的不等式f (t -1)+f (t )<0.(四)函数奇偶性的应用例4已知定义在(-1,1)上的函数f (x )=x x 2+1. (1)试判断f (x )的奇偶性及在(-1,1)上的单调性;(2)解不等式f (t -1)+f (2t )<0.跟踪练习1、已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),则下列说法正确的是( )A.函数f (x )有3个单调区间B .当x >0时,f (x )=x (x -1)C .函数f (x )有最小值14D .不等式f (x )<0的解集是(-1,1)2、已知定义在R 上的函数f (x )在(-∞,2)上单调递减,且f (x +2)为偶函数,则f (-1),f (4),f ⎝⎛⎭⎫112 的大小关系为( )A .f (4)<f (-1)<f ⎝⎛⎭⎫112B .f (-1)<f (4)<f ⎝⎛⎭⎫112 C .f ⎝⎛⎭⎫112 <f (4)<f (-1) D .f (-1)<f ⎝⎛⎭⎫112 <f (4) 3、定义在R 上的奇函数f (x )满足f (x -3)=-f (x ),当x ∈[0,3]时,f (x )=x 2-3x ,则以下关于f (x )的结论错误的是( )A .周期为6B .图象关于⎝⎛⎭⎫32,0 对称C .f (2 021)=2D .图象关于x =32对称 4、若函数f (x )(f (x )≠0)为奇函数,则必有( )A .f (x )·f (-x )>0B .f (x )·f (-x )<0C .f (x )<f (-x )D .f (x )>f (-x )5、(2022·白银模拟)已知f (x )=a x -2x (a ≠2)为奇函数,则“m <-12”是“f (m )>0”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6、设f (x )是R 上的偶函数,且在[0,+∞)上单调递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2)7、如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上( )A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-58、已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( )A .0B .-1C .-2D .29、已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)10、设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}11、已知定义在R 上的偶函数f (x )满足在[0,+∞)上单调递增,f (3)=0,则关于x 的不等式f (x +2)+f (-x -2)x>0的解集为( ) A .(-5,-2)∪(0,+∞)B .(-∞,-5)∪(0,1)C .(-3,0)∪(3,+∞)D .(-5,0)∪(1,+∞)12、设f (x )为偶函数,且在区间(-∞,0)内是增函数,f (-2)=0,则xf (x )<0的解集为( )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)13、(多选)(2022·岳阳质检)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数.令f (x )=x -[x ],以下结论正确的有( )A .f (-1.1)=0.9B .函数f (x )为奇函数C .f (x +1)=f (x )+1D .函数f (x )的值域为[0,1)14、(多选)已知定义在区间[-7,7]上的一个偶函数,它在[0,7]上的图象如图,则下列说法正确的有( )A .这个函数有两个单调递增区间B .这个函数有三个单调递减区间C .这个函数在其定义域内有最大值7D .这个函数在其定义域内有最小值-715、若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则a =________,函数g (x )=bx +a x,x ∈[-4,-1]的值域为________. 16、已知f (x )=ax 2+bx +1是定义在[a -1,2a ]上的偶函数,则a +b =________.17、若函已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a +b =________18、单调递减区间是_______.数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________. 19、已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (2)=1,若f (x +a )≤1对x ∈[-1,1]恒成立,则实数a 的取值范围是________.20、若函数f (x -2)为奇函数,f (-2)=0,且f (x )在区间[-2,+∞)上单调递减,则不等式f (3-x )>0的解集为________.21、已知实数a ,b 满足(a -1)5+(b -3)5=2 020(1-a )3+2 020(3-b )3,则a +b =________.22、函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是________.23、(2022·福建质检)已知f (x )是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于f (x )的结论:①f (x )是周期函数;②f (x )在(0,2)上单调递减;③f (x )满足f (x )=f (4-x );其中正确的结论是________(写出所有正确结论的序号).24、设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π);(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积.25、已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.26、设函数f (x )=x 2-2|x -a |+3,x ∈R .(1)王鹏同学认为,无论a 取何值,f (x )都不可能是奇函数.你同意他的观点吗?请说明你的理由;(2)若f (x )是偶函数,求a 的值;(3)在(2)的情况下,画出y =f (x )的图象并指出其单调递增区间.第二部分 函数的周期性一、函数周期的定义(1)周期函数:一般地,设函数f (x )的定义域为D ,如果存在一个非零常数T ,使得对每一个x ∈D 都有x +T ∈D ,且f (x +T )=f (x ),那么函数f (x )就叫作周期函数.非零常数T 叫作这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.二、函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0). 三、函数周期性的应用例1定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 023)等于( )A .336B .338C .337D .339跟踪练习1、(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝⎛⎭⎫132等于( )A .-94B .-14 C.14 D.942、在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,|2-x |,0≤x <1, 其中a ∈R ,若f (-5)=f (4.5),则a =( )A .0.5B .1.5C .2.5D .3.53、定义在R 上的偶函数f (x )满足f (x +3)=f (x ).若f (2)>1,f (7)=a ,则实数a 的取值范围为( )A .(-∞,-3)B .(3,+∞)C .(-∞,-1)D .(1,+∞)4、(2022·宿州市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A .⎝⎛⎦⎤1,32 B .⎣⎡⎦⎤32,52 C .⎣⎡⎭⎫32,3 D .[2,3)5、已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 025)=( )A .-3B .0C .1D .36、已知函数y =f (x )是定义在R 上的奇函数,且满足f (2+x )+f (x )=0,当x ∈[-2,0]时,f (x )=-x 2-2x ,则当x ∈[4,6]时,y =f (x )的最小值为( )A .-8B .-1C .0D .17、已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( )A .2B .0C .-2D .-48、已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)9、已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32 ,f (-1)=1,f (0)=-2,且f ⎝⎛⎭⎫x -34 为奇函数,则下列说法错误的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )是周期为3的周期函数D .f (0)+f (1)+…+f (2 021)=010、函数f (x )满足f (x )=-f (x +4),若f (2)=3,则f (2 022)=( )A .3B .-3C .6D .2 02211、已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则( )A .f (x )的图象关于点(2,0)对称B .f (x )的图象关于直线x =2对称C .f (x )的周期为4D .f (x )的周期为812、函数f (x )满足f (x )f (x +2)=13,且f (1)=2,则f (2 023)=________.13、若函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2 023)=________. 14、函数f (x )满足f (x +1)=f (x -1),且f (x )为定义在R 上的奇函数,则f (2 021)+f (2 022)=________.15、已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.16、已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-6)=0,则f (2 022)=________.17、已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-2)=2,则f (2 026)=_______.18、已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.19、设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.第三部分 函数的对称性一、函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称. f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝⎛⎭⎫a +b 2,0对称.(3) f (2a -x )=-f (x )+2b ⇔f (x )的图象关于点(a ,b )对称.二、函数对称性的应用例已知函数y =f (x )-2为奇函数,g (x )=2x +1x,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________.跟踪练习1、(2022·山东师大附中第二次月考)定义在R 上的奇函数f (x )满足f (x -3)=-f (x ),当x ∈[0,3]时,f (x )=x 2-3x ,则以下关于f (x )的结论错误的是( )A .周期为6B .图象关于⎝⎛⎭⎫32,0 对称C .f (2 021)=2D .图象关于x =32对称 2、已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( )A .2B .0C .-2D .-43、已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( )A .0B .-1C .-2D .24、(多选)(2022·湖北新高考9+N 联盟模拟)已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则( )A .f (x )的图象关于点(2,0)对称B .f (x )的图象关于直线x =2对称C .f (x )的周期为4D .f (x )的周期为85、(2022·承德模拟)已知函数f (x )的定义域为R ,对任意x 都有f (2+x )=f (2-x ),且f (-x )=f (x ),则下列结论正确的是( )A .f (x )的图象关于直线x =2对称B .f (x )的图象关于点(2,0)对称C .f (x )的周期为4D .y =f (x +4)为偶函数6、已知定义在R 上的奇函数f (x )对∀x ∈R 都有f (x +2)=-f (x ),则下列判断正确的是( )A .f (x )是周期函数且周期为4B .f (x )的图象关于点(1,0)对称C .f (x )的图象关于直线x =-1对称D .f (x )在[-4,4]上至少有5个零点7、函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2 025)=________.8、已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝⎛⎭⎫352=12,则m =______.9、函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2 025)=______.10、已知函数f (x )满足:①f (0)=0;②在[1,3]上是减函数;③f (1+x )=f (1-x ).请写出一个满足以上条件的f (x )=_______.11、已知函数y =f (x )-2为奇函数,g (x )=2x +1x,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________.12、函数y =f (x )对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 020)+f (2 021)+f (2 022)=________.13、若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则a =________,函数g (x )=bx +a x,x ∈[-4,-1]的值域为________.。
高考数学冲刺—05—函数的对称性周期性及图像—学生版
一、函数的对称性1.一个函数)(x f y =图象本身的对称性:①轴对称:()()()f a x f b x f x +=-⇔的图象关于直线()()22a x b x a bx ++-+==对称. ②中心对称:()()2()f a x f b x c f x ++-=⇔的图象关于点(,)2a bc +对称.注:记忆窍门:相加无x 为对称,相加的结果除以2.2.两个函数的图象对称性:函数()y f a x =+与()y f b x =-图象关于直线2b ax -=对称. 注:记忆窍门:通过作图一个特殊函数图像观察得到,比如f (x )=x .3.函数的对称性常见的结论(1)函数y =f (x )关于x =a +b2对称⇔f (a +x )=f (b -x )⇔f (x )=f (b +a -x ).特殊:函数y =f (x )关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x ); 函数y =f (x )关于x =0对称⇔f (x )=f (-x )(即为偶函数).(2)函数y =f (x )关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔f (2a +x )+f (-x )=2b . 特殊:函数y =f (x )关于点(a ,0)对称⇔f (a +x )+f (a -x )=0⇔f (2a +x )+f (-x )=0; 函数y =f (x )关于(0,0)对称⇔f (x )+f (-x )=0(即为奇函数). (3)y =f (x +a )是偶函数⇔函数y =f (x )关于直线x =a 对称; y =f (x +a )是奇函数⇔函数y =f (x )关于点(a ,0)对称.二、函数的周期性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=函数的对称性周期性及图像知识梳理(-a ,0) y=f (x+a )y=f (b -x )y=f (x ) 2b a x -=(b ,0)f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.常见的几个结论周期函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(5)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(6)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,函数f(x)的周期是4|b-a|;(7)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(8)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.三、函数的图像1.图象的变换(1)平移变换①y=f(x±a)(a>0)的图象,可由y=f(x)的图象沿x轴方向向左(+a)或向右(-a)平移a个单位得到;②y=f(x)±b(b>0)的图象,可由y=f(x)的图象沿y轴方向向上(+b)或向下(-b)平移b个单位得到.(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称;②y=-f(x)与y=f(x)的图象关于x轴对称;③y=-f(-x)与y=f(x)的图象关于原点对称.(3)伸缩变换①y=kf(x)(k>0)的图象,可由y=f(x)的图象上每一个点的纵坐标伸长(k>1)或缩短(0<k<1)为原来的k倍而得到;②y=f(kx)(k>0)的图象,可由y=f(x)的图象上每一个点的横坐标伸长(0<k<1)或缩短(k>1)为原来的1k而得到.(4)翻折变换①要得到y=|f(x)|的图象,可先画出y=f(x)的图象,然后“上不动,下翻上”即可得到;②由于y=f(|x|)是偶函数,要得到y=f(|x|)的图象,可先画出y=f(x)的图象,然后“右不动,左去掉,右翻左”即可得到.2.辨识函数图象的两种方法(1)直接根据函数解析式作出函数图象,或者是根据图象变换作出函数的图象;(2)利用间接法,排除、筛选错误与正确的选项,可以从如下几个方面入手:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反;④从函数的周期性,判断图象的循环往复; ⑤从特殊点出发,排除不符合要求的选项. 灵活应用上述方法,可以很快判断出函数的图象.一、函数的对称性【例1】1≤x ,1)(2-=x x f ,且函数)(x f 的图像关于)0,1(对称,则)(x f 的解析式为_____.【例2】1≤x ,1)(2-=x x f ,且函数)(x f 的图像关于1=x 对称,则)(x f 的解析式为_____.【例3】1)(2-=x x f ,)(x g 与)(x f 关于2=x 对称,则)(x g 解析式为_____.【例4】1)(2-=x x f ,)(x g 与)(x f 关于)4,3(对称,则)(x g 解析式为_______.【例5】【2012年闸北区一模文理第5题】若函数的图像与对数函数的图像关于直线对称,则的解析式为_____.【例6】(闵行区2016届高三上学期期末10)若函数()2x af x -=()a ∈R 满足,且在上单调递增,则实数的最小值等于_____.)(x f x y 4log =0=+y x )(x f =)(x f (1)(1)f x f x +=-()f x [,)m +∞m 例题解析【例7】设函数的定义域为,若对于任意、,当时,恒有,则称点为函数图像的对称中心.研究函数的某一个对称中心,并利用对称中心的上述定义,可得到的值为( )A .B .C .D .【例8】(2010一模卢湾区22)(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.将奇函数的图像关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:①函数()y f x =满足()()2f a x f a x b ++-=的充要条件是()y f x =的图像关于点(,)a b 成中心对称.②函数()y f x =满足()()()F x f x a f a =+-为奇函数的充要条件是()y f x =的图像关于点(,())a f a 成中心对称(注:若a 不属于x 的定义域时,则()f a 不存在). 利用上述结论完成下列各题:(1)写出函数()tan f x x =的图像的对称中心的坐标,并加以证明.(2)已知m (1m ≠-)为实数,试问函数()1x mf x x +=-的图像是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.(3)若函数()2()|||3|43f x x x t x ⎛⎫=-++-- ⎪⎝⎭的图像关于点22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭成中心对称,求t 的值.【巩固训练】1.若函数()y f x =的图像与1y x x=+的图像关于1x =轴对称,则()f x =________.2.已知()1a xf x x a -=--图像的对称中心是(3,-1),则实数a 等于 .3.(1)函数()y f k x =-和函数()y f x k =-的图象关于直线对称; (2)函数()y f k x =-和函数()y f k x =+的图象关于直线对称.)(x f y =D 1x D x ∈2a x x 221=+b x f x f 2)()(21=+),(b a )(x f y =3sin )(-+=x x x f π⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛20144027201440262014220141f f f f Λ40274027-80548054-4.已知函数)(x f 定义域为R ,下列命题正确的是_____. (1))(x f y =为偶函数,则)2(+=x f y 的图像关于y 轴对称; (2))2(+=x f y 为偶函数,则)(x f y =的图像关于直线2=x 对称; (3))2()2(x f x f -=-,则)(x f y =关于直线2=x 对称; (4))2(-=x f y 和)2(x f y -=的图像关于直线2=x 对称.5.【2012年静安区一模文科第13题】已知函数的图像关于直线对称,则的值是_____.6.(2011一模嘉定理23)设1>a ,函数)(x f 的图像与函数2|2|24--⋅--=x x a ay 的图像关于点)2,1(A 对称.(1)求函数)(x f 的解析式;(2)若关于x 的方程m x f =)(有两个不同的正数解,求实数m 的取值范围;(3)设函数)()(x f x g -=,),2[∞+-∈x ,)(x g 满足如下性质:若存在最大(小)值,则最大(小)值与a 无关.试求a 的取值范围.二、函数的周期性【例9】已知奇函数)(x f 满足条件)()3(x f x f =+,当)1,0(∈x 时,13)(-=xx f ,则)36(log 31f =_____.【例10】)(x f 是定义在R 上的奇函数,且)(x f 关于21=x 对称,则=+++)100()1()0(f f f Λ_____.【例11】若)2(x f y =的图像关于直线2a x =和)(2a b bx >=对称,则)(x f 的一个周期为( )a x x x f -++=1)(1=x aA .2b a +B .2()b a +C .2ab - D .)(4a b -【例12】定义在R 上的函数)(x f 满足⎩⎨⎧>---≤-=0),2()1(0),1(log )(2x x f x f x x x f ,则)2014(f 的值为____.【例13】设f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x-1.若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)【例14】【2012年长宁区区一模文理第13题】已知函数的定义域为,且对任意,都有.若,则______.【例15】(嘉定区2013届高三一模理科18)设函数)(x f y =是定义在R 上以1为周期的函数,若函数x x f x g 2)()(-=在区间]3,2[上的值域为]6,2[-,则)(x g 在区间]12,12[-上的值域为( )A .]6,2[-B .]28,24[-C .]32,22[-D .]34,20[-【例16】对于函数()y f x =,有下列五个命题:①若()y f x =存在反函数,且与反函数图象有公共点,则公共点一定在直线y x =上; ②若()y f x =在R 上有定义,则(||)y f x =一定是偶函数; ③若()y f x =是偶函数,且()0f x =有解,则解的个数一定是偶数;④若(0)T T ≠是函数()y f x =的周期,则()nT n N ∈,也是函数()y f x =的周期; ⑤(0)0f =是函数()y f x =为奇函数的充分不必要条件. 从中任意抽取一个,恰好是真命题的概率为()A .15 B .25 C .35 D .45【例17】已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题:①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”;()f x R x Z ∈()()()11f x f x f x =-++()()12,13f f -==()()20122012f f +-=②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的R x ∈,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =”. 其中正确命题的序号是( ) A .①② B .①②③C .①②④D .①②③④【例18】【2012年青浦区一模文理第22题】(本题满分16分) 本题共有2个小题,第1小题满分10分,第2小题满分6分.定义在R 上的奇函数有最小正周期4,且时,.(1)判断并证明在上的单调性,并求在上的解析式; (2)当为何值时,关于的方程在上有实数解?【巩固训练】1.(奉贤区2013届高三一模理9)已知函数sin ,0,()(1),0,x x f x f x x π≤⎧=⎨->⎩那么)65(f 的值为_____.2.【2010一模崇明县10】定义在R 上的函数)(x f 满足⎩⎨⎧---=+)1()()4(log )1(2x f x f x x f 0,0,>≤x x ,计算)2010(f 的值等于_____.3.【2012年宝山区一模文理第11题】设是定义在R 上的奇函数,且满足,,则实数的取值范围是____.4.【2010一模宝山区12】已知)(x f 是定义在R 上的奇函数,又是周期为2的周期函数,当)1,0[∈x 时,12)(-=x x f ,则0.5f (log 6)的值为_____.()f x ()0,2x ∈142)(+=x x x f ()f x ()0,2()f x []2,2-λx ()f x λ=[]6,2()f x ()()3f x f x +=()()2311,21m f f m ->=+m5.(2014届高三1月一模文13)已知定义在R 上的函数对任意的都满足()()x f x f -=+2,当11x -≤<时,,则[]4,2∈x 时的解析式是____.6.若函数()y f x =满足:对于任意的x ∈R 有(1)()f x f x +=-成立,且当[)1,2x ∈时,()21f x x =-,则(1)(2)(3)(2006)f f f f ++++=L _____.7.(11·上海理13)设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为____.8.(普陀区2014届高三1月一模理14)已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是_____.9.(青浦区2013届高三一模23)(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把定义在R 上,且满足)()(x af T x f =+(其中常数T a ,满足0,0,1≠≠≠T a a )的函数叫做似周期函数.(1)若某个似周期函数)(x f y =满足1=T 且图像关于直线1=x 对称.求证:函数)(x f 是偶函数; (2)当2,1==a T 时,某个似周期函数在10<≤x 时的解析式为)1()(x x x f -=,求函数)(x f y =,[)Z n n n x ∈+∈,1,的解析式;(3)对于确定的T x T ≤<>00且时,xx f 3)(=,试研究似周期函数函数)(x f y =在区间),0(+∞上是否可能是单调函数?若可能,求出a 的取值范围;若不可能,请说明理由.()y f x =x 3()f x x =()y f x =三、函数的图像(一)基本函数图像及应用【例19】分别画出以下函数的图像:(1)2||y x x =-;(2)2||y x x =-;(3)2|2|3y x x =+-;(4)lg |1|y x =-;(5)2(1)3y x -=-+;(6)()2lg 2y x =-.【例20】(2015崇明一模理16文16)已知圆221x y +=及以下三个函数:①3()f x x =;②()cos f x x x =;③()tan f x x =.其中图像能等分圆的面积的函数个数为( )A .3B .2C .1D .0【例21】(1)若直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是__________; (2)关于x 的方程22||90x a x a ++-=()a R ∈有唯一的实数根,则a =_____.【例22】若二次函数()y f x =对一切R x ∈恒有2224()245x x f x x x -+≤≤-+成立,且(5)27f =,则(11)f =____.【例23】(2010一模长宁区12)设56)(|,1|)(221-+-=-=x x x f x x f ,函数⎩⎨⎧<≥=)()(),()()(),()(212211x f x f x f x f x f x f x g ,若方程a x g =)(有四个不同的实数解,则实数a 的取值范围是_____.【例24】(2010一模普陀区13)对任意的120x x <<,若函数12()f x a x x b x x =-+-的大致图像为如图所示的一条折线(两侧的射线均平行于x 轴),试写出a 、b 应满足的条件为_____.【例25】(2015奉贤一模理18文18)设),(b a P 是函数3)(x x f =图像上任意一点,则下列各点中一定..在该图像上的是( )A .),(1b a P -B .),(2b a P --C .),(3b a P -D .),(4b a P -【例26】(长宁区2013届高三一模理18)函数sin xy x=,(,0)(0,)x ππ∈-U 的图象可能是下列图象中的()【例27】(虹口区2016届高三上学期期末18)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x 且1234,x x x x <<<则3122341()x x x x x ++的取值范围是( )A .()3,-+∞B .(),3-∞C .[)3,3- D .(]3,3-【例28】已知函数()f x 是定义在R 上的奇函数,当0x ≥,2221()(23)2f x x a x a a =-+--.若对任意x R ∈,(1)()f x f x -≤,则实数a 的取值范围( )A .11,66⎡⎤-⎢⎥⎣⎦ B.66⎡-⎢⎣⎦ C .11,33⎡⎤-⎢⎥⎣⎦ D.33⎡-⎢⎣⎦【巩固训练】1.(2013一模宝山区7)将函数sin ()cos xf x x=的图像按向量n (a,0)=-r (0a >)平移,所得图像对应的函数为偶函数,则a 的最小值为_____.2.【2012年闸北区一模文理第7题】在平面直角坐标系中,我们称横、纵坐标都为整数的点为整点,则方程所表示的曲线上整点的个数为_____.3.(2011一模徐汇理13)设,a b R ∈且1b ≠.若函数1y a x b =-+的图像与直线y x =恒有公共点,则,a b 应满足的条件是____.4.【2012年青浦区一模文理第13题】已知平面区域,则平面区域的面积为_____.5.定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,1,12,()3,23,x x f x x x -≤≤⎧=⎨-<<⎩②(3)3()f x f x =,设关于x 的函数()()1F x f x =-的零点从小到大依次记为31542,x ,,,,x x x x ⋅⋅⋅,则12345x x x x x ++++=______.6.已知函数若方程有四个不同的实数根,,,,则的取值范围为( )A .B .C .D .7.【2012年青浦区一模文理第18题】已知椭圆及以下3个函数:①;②;③,其中函数图像能等分该椭圆面积的函数个数有()A .0个B .1个C .2个D .3个8.已知函数()f x 满足:①对任意(0,)x ∈+∞,恒有(2)2()f x f x =成立;②当(1,2]x ∈时,()2f x x =-.若()(2020)f a f =,则满足条件的最小的正实数a 是 .18222=+y x |)||(|4:221y x y x C +≤+1C 191622=+y x x x f =)(x x f sin )(=x x x f sin )(=9.已知函数11()||||f x x x x x =+--. (Ⅰ)指出11()||||f x x x x x =+--的基本性质(结论不要求证明)并作出函数()f x 的图像;(Ⅱ)关于x 的不等式2()2()6(7)0kf x kf x k -+->恒成立,求实数k 的取值范围;(Ⅲ)关于x 的方程2()()0f x m f x n ++=(,m n R ∈)恰有6个不同的实数解,求n 的取值范围.(二)复合函数方程求根问题【例29】设定义域为函数,则关于的方程有7个不同实数解的充要条件是_________.【例30】(2015普陀一模理13)设a 为大于1的常数,函数⎩⎨⎧≤>=+00log )(1x ax x x f x a ,若关于x 的方程0)()(2=⋅-x f b x f 恰有三个不同的实数解,则实数b 的取值范围是_____.【例31】设函数2()2f x x x a =++,若函数(())y f f x =有且只有两个不同的零点,求实数a 的取值范围?【例32】已知函数y =f (x )和y =g (x )在[-2,2]的图像如下图所示,给出下列四个命题: ①方程f [g (x )]=0有且仅有6个根; ②方程g [f (x )]=0有且仅有3个根; ③方程f [f (x )]=0有且仅有5个根; ④方程g [g (x )]=0有且仅有4个根. 其中正确的命题个数是_____.R ⎩⎨⎧=≠-=101 1lg )(x x x x f x 0)()(2=++c x bf x f【例33】(2010一模崇明县14)已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为_____.【巩固训练】1.函数若关于的方程有五个不同的实数解,则的取值范围是________.2.已知函数是定义域为的偶函数. 当时,若关于的方程有且只有7个不同实数根,则实数的取值范围是_____.3.(普陀区2016届高三上学期期末18)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根. 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个(三)函数的零点【例34】(黄浦区2013届高三一模理科9)已知函数,且函数()()F x f x x a =+-有且仅有两个零点,则实数的取值范围是_____.)(x f y =R 0≥x ⎪⎩⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛=2log 20,21)(16x x x x f x.x 2[()]()0f x a f x b +⋅+=(R)a b ∈、a ⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x a【例35】(2015奉贤一模理12文12)定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为 .【例36】(虹口区2013届高三一模13)设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,当[]0,x π∈时,1)(0<<x f ,且在0,2π⎡⎤⎢⎥⎣⎦上单调递减,在,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则函数x x f y sin )(-=在[10,10]ππ-上的零点个数为_____.【例37】(2015长宁一模理14)已知52x ⎛ ⎝的展开式中的常数项为T ,()f x 是以T 为周期的偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是_____.【巩固训练】1.【2011一模长宁10】设函数[)()222,1,()2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,则函数)(x f y =的零点是_____.2.【2012年奉贤区一模文理第17题】下列函数中不能用二分法求零点的是( )A .B .C .D .3.【2012年静安区一模理科第13题】记,已知函数是偶函数(为实常数),则函数的零点为_____.(写出所有零点)()13-=x x f ()3x x f =()x x f =()x x f ln ={}⎩⎨⎧>≤=时当时当b a b b a a b a ,,,min {}34,12m in )(222+--++=x x t tx x x f t )(x f y =4.(2015徐汇一模理13)在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x x f x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是_____.5.(2011一模黄浦理14)若关于x 的方程2||3x kx x =-有四个不同的实数根,则实数k 的取值范围是 .6.(2015虹口一模理18文18)若直线1y kx =+与曲线11y x x x x=+--有四个不同交点, 则实数k 的取值范围是( )A .11,0,88⎧⎫-⎨⎬⎩⎭ B .11,88⎧⎫-⎨⎬⎩⎭ C .11,88⎡⎤-⎢⎥⎣⎦ D .11,88⎛⎫- ⎪⎝⎭四、函数性质与图像综合应用【例38】已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点.则“x 是()f x 的不动点”是“x 是()f x 的稳定点”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【例39】已知集合M 是满足下列两个条件的函数)(x f 的全体:①)(x f 在定义域上是单调函数;②在)(x f 的定义域内存在闭区间],[b a ,使)(x f 在],[b a 上的值域为⎥⎦⎤⎢⎣⎡2,2b a .若函数m x x g +-=1)(,M x g ∈)(,则实数m 的取值范围是________________.【例40】(奉贤区2013届高三一模18)定义域是一切实数的函数()x f y =,其图像是连续不断的,且存在常数λ(R λ∈)使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“λ—伴随函数”.有下列关于“λ—伴随函数”的结论:①()0f x =是常数函数中唯一一个“λ—伴随函数”;②“12—伴随函数”至少有一个零点.;③2()f x x =是一个“λ—伴随函数”;其中正确结论的个数是( )A .1个;B .2个;C .3个;D .0个;【例41】(2011一模浦东)23.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)已知函数)(x f ,如果存在给定的实数对(b a ,),使得b x a f x a f =-⋅+)()(恒成立,则称)(x f 为“S-函数”.(1)判断函数xx f x x f 3)(,)(21==是否是“S-函数”;(2)若x x f tan )(3=是一个“S-函数”,求出所有满足条件的有序实数对),(b a ;(3)若定义域为R 的函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(,当]1,0[∈x 时,)(x f 的值域为]2,1[,求当]2012,2012[-∈x 时函数)(x f 的值域.【巩固训练】1.【2012年闵行区一模文理第12题】若偶函数满足,且当时,,则函数的零点个数为_____个.2.若是定义在上的奇函数,且对任意的实数,总有正常数,使得成立,则称具有“性质”,已知函数具有“性质”,且在上,;若当时,函数恰有8个零点,则实数__________.3.(杨浦区2016届高三上学期期末14)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11()y f x =()x ∈R (1)(1)f x f x +=-[1,0]x ∈-2()f x x =()()lg g x f x x =-个不同的公共点,则实数k 的取值范围为____________.4.(黄浦区2013届高三一模理科23)(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.对于函数()y f x =与常数,a b ,若(2)()f x af x b =+恒成立,则称(,)a b 为函数)(x f 的一个“P 数对”;若(2)()f x af x b ≥+恒成立,则称(,)a b 为函数)(x f 的一个“类P 数对”.设函数)(x f 的定义域为R +,且(1)3f =.(1)若(1,1)是()f x 的一个“P 数对”,求(2)(*)N n f n ∈;(2)若(2,0)-是()f x 的一个“P 数对”,且当[1,2)x ∈时()f x =23k x --,求()f x 在区间[1,2)n (*)N n ∈上的最大值与最小值;(3)若()f x 是增函数,且(2,2)-是()f x 的一个“类P 数对”,试比较下列各组中两个式子的大小,并说明理由.①(2)n f -与2n -+2(*)N n ∈;②()f x 与22x +((0,1])x ∈.1、1.在函数性质应用时必须首先考虑定义域,这也是学生解决问题时容易忽略的地方.(1)具有奇偶性的函数的定义域的特征:定义域关于原点对称,为此确定函数的奇偶性时,务必先判断函数定义域是否关于原点对称.(2)讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集.(3)讨论函数的周期性,一般情况下定义域是无限集,所以判断函数是否为周期函数要在整个定义域上观察函数的图像.2.初等函数的单调性如:一次函数的单调性取决于一次项系数的符号,二次函数的单调性决定于二次项系数的符号及对称轴的位置,指数函数、对数函数的单调性决定于其底数的范围.特别在解决涉及指、对复合函数的单调性问题时要树立分类讨论的数学思想. 3.对称性问题和奇偶性问题:(1)若函数)(x f 在其定义域上满足)()(x b f a x f -=+,则函数)(x f 的图像关于直线2ba x +=对称.(2)奇偶性问题的判定方法:先特殊判定,后定义证明;是对数函数的,先考虑真数,后证明结论. 4.周期性问题推广:若T 是函数)(x f 的一个周期,则)(),()(Z k x f kT x f ∈=+. 5.函数图像是高考的必考内容,其中包括作图、识图、用图.作图一般有两种方法:描点法、图像变换法.图像变换法中,有平移变换、对称变换和伸缩变换,要记住它们的变换规律.利用描点法作函数图像其基本步骤是①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);④列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);⑤描点,连线.识图时,要留意它们的变化趋势,以及坐标轴的交点及一些特殊点.特别是对称性、周期性等图形特点,应引起足够的重视. 用图,主要是数形结合思想的应用.1.若关于x 的不等式2-x 2>|x -a |至少有一个负数解,则实数a 的取值范围是________.课后练习反思总结2.(宝山区2013届期末8)设函数)(x f 是定义在R 上周期为3的奇函数,且2)1(=-f ,则(2011)(2012)f f +=____.3.(2015崇明一模理11文11)设()f x 是定义在R 上且周期为2的函数,在区间[]1,1-上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 .4.设)(x f 是定义在R 上的函数,若81)0(=f ,且对任意的R x ∈,满足 x x x f x f x f x f 310)()4(,3)()2(⨯≥-+≤-+,则=)2014(f _____.5.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作 ,在此基础上给出下列关于函数的四个命题:①函数的定义域为,值域为;②函数在上是增函数;③函数是周期函数,最小正周期为1;④函数的图像关于直线对称.其中正确命题的序号是_____.6.已知函数02,()1(2),2,2x f x f x x ≤<=-≥⎪⎩若对于正数n k (*N ∈n ),直线x k y n ⋅=与函数)(x f y =的图像恰有12+n 个不同交点,则2nk =_____.7.(2015虹口二模理14)若()f x 是定义在R 上的奇函数,且对任意的实数0x ≥,总有正常数T ,使得()()f x T f x T +=+成立,则称()f x 具有“性质p ”,已知函数()g x 具有“性质p ”,且在[]0,T 上,()2g x x =;若当[],4x T T ∈-时,函数()y g x kx =-恰有8个零点,则实数k =___.8.【2012年长宁区区一模文理第13题】已知函数的定义域为,且对任意,都有.若,则_______.1122m x m -<+≤{}x m =(){}f x x x =-()y f x =R 10,2⎡⎤⎢⎥⎣⎦()y f x =11,22⎡⎤-⎢⎥⎣⎦()y f x =()y f x =2kx =()k Z ∈()f x R x Z ∈()()()11f x f x f x =-++()()12,13f f -==()()20122012f f +-=9.【2010一模卢湾区14】方程2cos 0x x -=的解可视为函数cos y x =的图像与函数2y x =的图像交点的横坐标.方程210sin 102xx x π-+=实数解的个数为_____.10.方程有3个或者3个以上解,则常数的取值范围是_____.11.已知)(x f 是定义在R 上的且以2为周期的偶函数,当10≤≤x 时,2)(x x f =,如果直线a x y +=与曲线)(x f y =恰有两个交点,则实数a 的值是 ( )A .0B .)(2Z k k ∈C .k 2或)(412Z k k ∈-D .k 2或)(412Z k k ∈+12.对实数a 和b ,定义运算“□”:a □b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)□(x -1),x ∈R .若函数y=f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]13.(2015浦东一模理19文19)函数1, 0()=2ln , >0x x f x xx x ⎧-<⎪⎨⎪-+⎩的零点个数为( )A .0B .1C .2D .314.【2012年嘉定区一模理科第17题】设,则函数的图像大致形状是( )k x x x +=--2322k b a <<0)(||b x a x y --=yb xx15.(2011一模嘉定17)方程22xx=的实数解的个数是()A.0B.1C.2D.316.(2015嘉定一模理17文17)定义在区间),1[∞+上的函数)(xf满足:①)(2)2(xfxf=;②当42≤≤x时,|3|1)(--=xxf,则集合)}34()({fxfxS==中的最小元素是()A.2B.4C.6D.817.【2012年卢湾区一模文理第18题】已知函数,若,且,则()A.()B.)C.()D.()18.(宝山区2013届期末18)已知21,[1,0),()1,[0,1],x xf xx x+∈-⎧=⎨+∈⎩则下列函数的图像错误的是()A.)1(-xf的图像B.)(xf-的图像C.|)(|xf的图像D.|)(|xf的图像19.(2010一模黄浦区18)已知函数)()()1(1)1(|1|1)(2=++⎪⎩⎪⎨⎧=≠-=cxbfxfxxxxxf的方程,若关于有且仅有3个实数根=++232221321xxxxxx,则、、( )A.5 B.2222bb+C.3 D.2222cc+20.(2015青浦一模理18文18)设函数*()1,[,1),f x n x n n n N=-∈+∈,函数2()logg x x=,则方程()()f xg x=实数根的个数是()2()|1|f x x=-0x y<<()()f x f y=24y x-02x<<24y x=-02x<<22y x-02x<<22y x=-01x<<A .1个B .2个C .3个D .4个21.(2011一模黄浦文18)若函数4||y y x a x==-和的图像有三个不同的公共点,则实数a 的取值范围是()A .4a >-.B .4a ≤-.C .4a ≤.D .4a >22.(嘉定区2013届高三一模理科18)设函数)(x f y =是定义在R 上以1为周期的函数,若函数x x f x g 2)()(-=在区间]3,2[上的值域为]6,2[-,则)(x g 在区间]12,12[-上的值域为( )A .]6,2[-B .]28,24[-C .]32,22[-D .]34,20[-24.对于函数)(x f ,D x ∈,若存在D x x ∈21、,对任意的D x ∈,都有)()()(21x f x f x f ≤≤,则称)(x f 为“幅度函数”,其中)()(12x f x f -称为)(x f 在D 上的“幅度”.(1)判断函数223)(x x x f --=是否为“幅度函数”,如果是,写出其“幅度”;(2)已知022)1(1=+---n n y y x n Z x ,(∈为正整数),记y 关于x 的函数的“幅度”为n b ,求数列}{n b 的前n 项和n S ;(3)在(2)的条件下,试比较n n n b b b 2212lg2lg2lg+++++Λ与21lg 2n 的大小,并说明理由.25.已知:函数b ax ax x g ++-=12)(2)1,0(<≠b a ,在区间]3,2[上有最大值4,最小值1,设函数x x g x f )()(=. (1)求a 、b 的值及函数)(x f 的解析式;(2)若不等式02)2(≥⋅-x x k f 在]1,1[-∈x 时恒成立,求实数k 的取值范围; (3)如果关于x 的方程0)3124()12(=--⋅+-xx t f 有三个相异的实数根,求实数t 的取值范围.26.【2012年青浦区一模文理第22题】(本题满分16分) 本题共有2个小题,第1小题满分10分,第2小题满分6分.定义在R 上的奇函数有最小正周期4,且时,(1)判断并证明在上的单调性,并求在上的解析式; (2)当为何值时,关于的方程在上有实数解?27.(虹口区2013届高三一模23)(本题满分18分)如果函数)(x f y =的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立,则称此函数具有“)(a P 性质”.(1)判断函数x y sin =是否具有“)(a P 性质”,若具有“)(a P 性质”求出所有a 的值;若不具有“)(a P 性质”,请说明理由.(2)已知)(x f y =具有“)0(P 性质”,且当0≤x 时2)()(m x x f +=,求)(x f y =在]1,0[上的最大值;(3)设函数)(x g y =具有“)1(±P 性质”,且当2121≤≤-x 时,x x g =)(.若)(x g y =与mx y =交点个数为2013个,求m 的值.()f x ()0,2x ∈142)(+=x xx f ()f x ()0,2()f x []2,2-λx ()f x λ=[]6,228.【2012年浦东新区一模理科第23题】(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.如图所示,在平面直角坐标系上放置一个边长为的正方形,此正方形沿轴滚动(向左或向右均可),滚动开始时,点位于原点处,设顶点的纵坐标与横坐标的函数关系是,该函数相邻两个零点之间的距离为.(1)写出的值并求出当时,点运动路径的长度; (2)写出函数的表达式;研究该函数的性质并填写下面表格:(3)试讨论方程在区间上根的个数及相应实数的取值范围.xOy 1PABC PABC x P ()y x P ,()y f x =(),R y f x x =∈m m 0x m ≤≤P l [](),42,42,y f x x k k k Z =∈-+∈()f x a x =[]8,8-a。
函数的周期性学生版
一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则()x f 叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数()y f x =满足()()x f a x f -=+,(0>a ),则()x f 为周期函数且a T 2=是它的一个周期。
3、 若函数()()f x a f x a +=-,(0>a )则()x f 为周期函数且a T 2=是它的一个周期。
4、 y=f(x)满足()()x f a x f 1=+ ,(0>a ),则()x f 为周期函数且a T 2=是它的一个周期。
5、若函数y=f(x)满足 ()()x f a x f 1-=+,(0>a ),则()x f 为周期函数且a T 2=是它的一个周期。
6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1()f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数. 三、重要题型:题型1.确定函数的周期,并利用周期求函数值1. 已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为( )A.1-B.0C.1D.2练1.设()f x 是()+∞∞-,上的奇函数,()()x f x f -=+2,当10≤≤x 时,()x x f =,则()=5.7f ( ) A.0.5 B.-0.5 C.1.5 D.-1.5练 2. 设偶函数()f x 对任意x R ∈,都有1(3)()f x f x +=-,且当[]3,2x ∈--时,()2f x x =,则(113.5)f =( ) .A 27- .B 27 .C 15- .D 15练3.定义在R 上的偶函数()f x 满足(2)()1f x f x +⋅=对于x R ∈恒成立,且()0f x >,则(119)f =2. 函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15f =-,则()()5f f =3.定义在R 上的函数()x f 是奇函数,又是以2为周期的周期函数,则=++)7()4()1(f f f ( )A.-1B.0C.1D.4练1.设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则)3()2()1(f f f ++=++)5()4(f f练2.已知定义在R 上的函数()f x 满足3()()2f x f x =-+且=-=-)1()2(f f 1-,(0)2f =, 则(1)(2)(2008)(2009)f f f f ++++=…( ) A.2- B.1- C.0 D.14.设()x f 是定义在R 上的正值函数,且满足()()()x f x f x f =-+11.若()x f 是周期函数,则它的一个周期是( ) A .3 B .2 C .6 D .4练1.已知函数)(x f 满足),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f练2.定义在R 上的函数)(x f 满足=)(x f ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则)2009(f 的值为( )A. -1B. 0C. 1D. 25. 设函数)(x f 是定义域R 上的奇函数,对任意实数x 有)23()23(x f x f --=+成立(1)证明:)(x f y =是周期函数,并指出周期; (2)若2)1(=f ,求)3()2(f f +的值题型2.确定函数的周期、函数的单调性并比较函数值得大小1. 函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0- 上是减函数,那么()f x 在[]2,3上是( ) .A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数2.在R 上定义的函数()x f 是奇函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )A.在[]2,3--上是增函数, []4,3上是增函数B.在[]2,3--上是增函数, []4,3上是减函数C.在[]2,3--上是减函数, []1,0上是增函数D.在[]1,2--上是减函数, []4,3上是减函数 3. 设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x = 的图像关于直线3x =对称,则下面正确的结论是( ).A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f <<.C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f <<4.定义在R 上的偶函数)(x f 满足=+)1(x f )(x f -,且在]0,1[-上单调递增,设)3(f a =,)2(f b =,)2(f c =,则c b a ,,大小关系是( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>5. 设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则( ).A 2a > .B 2a <- .C 1a > .D 1a <-题型4.利用函数的周期性确定方程根的个数1. )(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间()6,0内解的个数的最小值是( ) A .5 B .4 C .3 D .22. 已知函数)(x f 的定义域为R ,且满足)()2(x f x f -=+(1)求证:)(x f 是周期函数;(2)若)(x f 为奇函数,且当10≤≤x 时,()x x f 21=,求使21)(-=x f 在[]2009,0上的所有x 的个数。
函数对称性、周期性的应用(含解析)
函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
函数的对称性与周期性
函数的对称性与周期性一 函数的对称性 (一)函数图象的自对称所谓函数图象的自对称是指一个函数图象的对称(中心对称或轴对称)图象是其本身. 关于函数图象的自对称,有下列性质:1、奇函数的图象关于 对称,偶函数的图象关于 对称,反之亦然。
2、二次函数)0(2≠++=a c bx ax y 的图象关于直线 对称。
3、三角函数xy sin =的图象关于直线 对称,它也有对称中心是 ;xy c o s =的图象的对称轴是 ,对称中心是 。
4、函数()x f y =若对于定义域内任意一个x 都有()()x b f x a f -=+,则其图象关于直线对称。
5、函数()x f y =若对于定义域内任意一个x 都有()()b x a f x a f=-++,则其图象关于点对称。
6、曲线()x f y =关于直线a x =与bx =(a <b )对称,则()x f y =是周期函数且周期为()a b -2(二)函数图象的互对称所谓函数图象的互对称是指两个函数图象的上的点一一对应,且对应点相互对称(中心对称或轴对称)。
关于函数图象的互对称,有下列性质:1、互为反函数的两个函数的图象关于直线 对称;反之, 。
2、函数()x f y =与函数()x f b y -=2的图象关于直线 对称。
3、函数()x a f y +=与函数()x b f y -=的图象关于直线 对称。
4、函数()x f y=与函数()x h f k y --=22的图象关于点 对称。
二 函数的周期性如果函数y =f(x)对于定义域内任意的x ,存在一个不等于0的常数T ,使得f(x +T)=f(x)恒成立,则称函数f(x)是周期函数,T 是它的一个周期.一般情况下,如果T 是函数f(x)的周期,则kT(k ∈N +)也是f(x)的周期. 关于函数的周期性的结论: 1、已知函数()x f y=对任意实数x,都有()()x f a x f-=+,则()x f y=是以 为周期的函数;2、已知函数()x f y=对任意实数x ,都有()x a f+=f(x)1,则()x f y =是以 为周期的函数; 3、已知函数()x f y =对任意实数x ,都有()x a f+=-f(x)1-,则()x f y =是以 为周期的函数. 4、已知函数()x f y =对任意实数x,都有()()b x f x a f=++,则()x f y =是以 为周期的函数5、已知函数()x f y=对任意实数x ,都有f(x +m)=f(x -m),则 是()x f y=的一个周期.6、已知函数()x f y=对任意实数x ,都有f(x +m)=)x (f 1)x (f 1+-,则 是f(x)的一个周期.7、已知函数()x f y=对任意实数x,都有f(x +m)=-)x (f 1)x (f 1+-,求证:4m 是f(x)的一个周期.1. 证明:由已知f(x +2m)=f[(x +m)+m])(1)(1)(11)(1)(11)(1)(1x f x fx f x f x fm x f m x f -=+--+-+-=+++--= 于是f(x +4m)=-)m 2x (f 1+=f(x) 所以f(x)是以4m 为周期的周期函数.8、已知函数f(x)对任意实数x,都有f(a +x)=f(a -x)且f(b +x)=f(b -x), 求证:2|a -b|是f(x)的一个周期.(a≠b)证明:不妨设a >b于是f(x +2(a -b))=f(a +(x +a -2b)) =f(a -(x +a -2b))=f(2b -x)=f(b -(x -b)) =f(b +(x -b))=f(x) ∴ 2(a -b)是f(x)的一个周期 当a <b 时同理可得 所以,2|a -b|是f(x)的周期 例题应用 1、已知()1+x f 是偶函数,则函数()x f y 2=的图象的对称轴是( )A.1-=x B. 1=x C . 21-=x D. 21=x2、函数()()2122+-+=x a x x f 在区间()4,∞-上是减函数,那么实数a 的取值范围是( )A .3≥aB. 3-≤aC. 5≤aD. 3-=a3、函数⎪⎭⎫ ⎝⎛+=252sin πx y的图象的一条对称轴方程是( )A.2π-=x B.4π-=x C.8π=x D.45π=x4、如果函数f(x)=x 2+bx +c 对任意实数t 都有f(2+t)=f(2-t),那么A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)5、函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,则a 的值为( )A. 1B. 2-C. 2D. 1-6、如果直线3-=x与2=x 均为曲线()x f y =的对称轴且()01=f 则()11f 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲函数的周期性与对称性(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。
⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。
前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx │就没有对称性,而y=│sinx│却仍然是轴对称(二)中心对称1.概念:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2.对称性的三个常用结论(1)若函数y =f(x +a)是偶函数,即f(a -x)=f(a +x),则函数y =f(x)的图象关于直线x =a 对称; (2)若对于R 上的任意x 都有f(2a -x)=f(x)或f(-x)=f(2a +x),则y =f(x)的图象关于直线x =a 对称; (3)若函数y =f(x +b)是奇函数,即f(-x +b)+f(x +b)=0,则函数y =f(x)关于点(b,0)中心对称. 二、.周期性(1)周期函数:对于函数y =f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y =f(x)为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.考向一 周期性【例1】(1)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.(2)已知定义在R 上的函数f(x)满足f(2)=2-3,且对任意的x 都有f(x +2)=1-f (x ),则f(2 020)=________.(3)已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x -2).若当x ∈[-3,0]时,f(x)=6-x,则f(919)=________【举一反三】1.设定义在R 上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x +2);③当0≤x<1时,f(x)=2x-1,则f ⎝ ⎛⎭⎪⎫12+f(1)+f⎝ ⎛⎭⎪⎫32+f(2)+f ⎝ ⎛⎭⎪⎫52=________. 2.已知函数f(x)的定义域为R.当x<0时,f(x)=x 3-1;当-1≤x ≤1时,f(-x)=-f(x);当x>12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f(6)=( )A.-2B.-1C.0D.23.定义在R 上的函数f(x)满足f(x +6)=f(x),当-3≤x<-1时,f(x)=-(x +2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2018)等于( )A .336B .339C .1678D .20124.设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f(x)=⎩⎪⎨⎪⎧ax +1,-1≤x<0,bx +2x +1,0≤x ≤1,其中a ,b∈R.若f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.考向二 对称性【例2】(1)已知定义在R 上的函数f(x)满足f(x +6)=f(x),且y =f(x +3)为偶函数,若f(x)在(0,3)内单调递减,则下面结论正确的是( )A . f(−4.5)<f(3.5)<f(12.5)B . f(3.5)<f(−4.5)<f(12.5)C.f(12.5)<f(3.5)<f(−4.5) D.f(3.5)<f(12.5)<f(−4.5)(2)已知函数f(x)满足f(1−x)=f(1+x),当(−∞,1]时,函数f(x)单调递减,设a=f(log412),b=f(log133),c=f(log39),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.a<c<b D.c<b<a(3)已知函数f(x−1)(x∈R)是偶函数,且函数f(x)的图象关于点(1,0)成中心对称,当x∈[−1,1]时,f(x)= x−1,则f(2019)=()A.−2 B.−1 C. 0 D. 2【举一反三】1.设函数f(x)的定义域为[0,4],若f(x)在[0,2]上单调递减,且f(x+2)为偶函数,则下列结论正确的是A.f(e)<f(√5)<f(1) B.f(1)<f(√5)<f(e)C.f(√5)<f(e)<f(1) D.f(√5)<f(1)<f(e)2.定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x ∈R ,都有f(x +1)=f(x −1); ②函数y =f(x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],都有(f (x 1)−f (x 2))(x 1−x 2)>0 则f (32)、f(2)、f(3)从小到大的关系是( )A .f (32)>f(2)>f(3)B .f(3)>f(2)>f (32) C .f (32)>f(3)>f(2)D .f(3)>f (32)>f(2)3.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),f (1)=2,则f (-1)+f (3)=( ) A .4B .0C .−2D .−44.已知定义在R 上的函数f(x),g(x)满足g(x)=f (|x −1|),则函数y =g(x)的图象关于( ) A .直线x =−1对称 B .直线x =1对称C .原点对称D .y 轴对称5.已知函数f (x )={sin (π2x)−1,x <0log a x(a >0,且a ≠1),x >0 的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) A .(0,√33) B .(√55,1) C .(√33,1) D .(0,√55) 考向三 函数基本性质的综合运用【例3】 (1)设f(x)是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f(x)=⎩⎪⎨⎪⎧ax +b ,-2≤x<0,ax -1,0<x ≤2,则f(2 021)=________.(2)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=________.(3)已知函数f (x )满足:f (2−x )=f (x ),当x ≥1时,f (x )={2−x,x ∈[1,2),x 2−4,x ∈[2,+∞),若不等式f (x )≥6x +a 恒成立,则实数a 的取值范围是 。
【举一反三】1.已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.2.已知函数g(x)是R 上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x>0,若f(6-x 2)>f(x),则实数x 的取值范围是________.3.若函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f(ln t)+f⎝ ⎛⎭⎪⎫ln 1t ≤2f(1),那么t 的取值范围是________. 4.已知函数f(x)=sin x -x +1-4x2x ,则关于x 的不等式f(1-x 2)+f(5x -7)<0的解集为________.1.若函数f (x )的图像与函数g (x )=10x 的图像关于直线y =x 对称,则f (100)=( ) A .10 B .-1 C .2 D .-22.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .f(2)<f(−1)<f(1) B .f(1)<f(2)<f(−1) C .f(1)<f(−1)<f(2)D .f(2)<f(1)<f(−1)3.函数f(x)满足:①y =f(x +1)为偶函数:②在[1,+∞)上为增函数.若x 2>−1,且x 1+x 2<−2,则f(−x 1)与f(−x 2)的大小关系是( ) A .f(−x 1)>f(−x 2) B .f(−x 1)<f(x 2) C .f(−x 1)≤f(−x 2)D .不能确定4.已知函数f (x)=f (π−x ),且当x ∈(−π2,π2)时,f (x)=x+sinx,设a=f (1),b=f (2),c=f (3),则 A .a<b<cB .b<c<aC .c<b<aD .c<a<b5.已知函数f(x)=x 2+log 2|x |,则不等式f(x +1)−f(2)<0的解集为( )A .(−3,−1)∪(−1,1)B .(−3,1)C .(−∞,−1)∪(3,+∞)D .(−1,1)∪(1,3)6.已知函数y =f(x +1)关于直线x =−1对称,且f(x)在(0,+∞)上单调递增,a =f (−log 315),b =f (−2−0.3),c =f (2log 32),则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a7.已知函数f (x )为偶函数,且函数f (x )与g (x )的图象关于直线y =x 对称,若g (2)=3,则f (−3)= A .−2 B .2 C .−3 D .38.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x −1)对任意的x ∈[−1,0]恒成立,则实数m 的取值范围是( )A .[−3,1]B .[−4,2]C .(−∞,−3]∪[1,+∞)D .(−∞,−4]∪[2,+∞) 9.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x ≥1时,f(x)=lnx ,则有A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13)10.已知函数f (x )的定义域为R 的奇函数,当x ∈[0,1]时, f (x )=x 3,且∀x ∈R , f (x )=f (2−x ),则f (2017.5)= A .−18B .18C .0D .111.函数y =f(x)的图象关于直线x =2对称,如图所示,则方程(f(x))2−5f(x)+6=0的所有根之和为( )A .8B .6C .4D .212.定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0,1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ). A .3B .4C .5D .613.已知函数f(x)=m3x −1−52的图象关于(0,2)对称,则f(x)>11的解集为( ) A .(−1,0)B .(−1,0)∪(0,1)C .(−1,0)∪(0,+∞)D .(−1,0)∪(1,+∞)14.已知定义域R 的奇函数f (x )的图像关于直线x =1对称,且当0≤x ≤1时,f (x )=x 3,则f (52)=( )A .−278B .−18C .18D .27815.已知函数f(x)在[3,+∞)上单调递减,且f(x +3)是偶函数,则a =f(0.31.1),b =f(30.5),c =f(0)的大小关系是( ) A .a >b >cB .b >c >aC .c >b >aD .b >a >c16.若函数y =6lnx 的图象上各点的纵坐标保持不变,横坐标变为原来的λ(λ>0)倍,所得函数的图象与函数y =−(x +2)2+a 图象上存在关于原点对称的点,且a 的最小值为1−3ln3,则实数λ=( ) A .√3B .2C .3D .917.已知函数f(x)=e x+a+e−x−a2(a∈R)满足f(x+2)=f(2−x),则f(0)=()A.e 2+12eB.e4+12e2C.e2+12D.e4+1218.已知函数f(x)=log2|2x−a|(a∈R)满足f(x+1)=f(1−x),则f(0)=()A.2 B.1 C.0 D.−119.已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x−1)>f(x+2)的解集为()A.(−∞,3) B.(12,3) C.(−13,3) D.(13,3)20.已知函数f(x)是(−∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x−1,则f(2018)的值为()A.−2 B.−1 C.0 D.121.已知函数f(x)在[3,+∞)上单调递减,且f(x+3)是偶函数,则a=f(log32),b=f(30.5),c=f(log264)的大小关系是()A.a>b>c B.b>c>a C.c>b>a D.b>a>c22.已知函数f(x)=1x+1+x+a−1是以(−1,−1)为中心的中心对称图形,g(x)=e bx+ax2+bx,曲线y= f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,则a+b=__________.23.已知定义在R上的可导函数f (x)的导函数为f′(x),满足f′(x)<f (x),且f (x+2)为偶函数,f (4)=1,则不等式f (x)<e x的解集为________.24.已知定义在R上的偶函数y=f(x+2),其图像连续不间断,当x>2时,函数y=f(x)是单调函数,则满足f(x)=f(1−1x+4)的所有x之积为______.25.已知函数y=f(x)是定义在R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),当x1,x2∈[0,3],且x1≠x2时,f(x1)−f(x2)x1−x2>0,给出如下命题:①f(3)=0;②直线x=−6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[−9,−6]上为增函数;④函数y=f(x)在[−9,9]上有四个零点.其中所有正确命题的序号为。