隧道台车计算书

合集下载

xxx隧道衬砌台车结构计算书(建筑助手)

xxx隧道衬砌台车结构计算书(建筑助手)

XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1.计算依据1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。

隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。

顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。

衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。

顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。

衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。

本衬砌台车与顶拱支撑焊接为一个整体。

进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。

侧模支撑系统的螺旋丝杆,每断面设置4个。

下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。

三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。

台车计算

台车计算

店子梁隧道台车力学计算书一、基本情况店子梁隧道台车,长度为9m。

模板面板厚度为10mm,门架面板厚14mm,门架腹板厚12mm。

本计算书针对台车的主要受力构件的强度和刚度进行检算,以验证台车的力学性能能否满足要求。

本文主要根据《GB50017-2003钢结构设计规范》《路桥施工计算手册》与《结构力学》,借助结构力学求解器来对本台车进行结构检算。

1.计算参数3砼的重力密度为:24kN/m;砼浇筑速度:2m/h;砼入模时的温度取25℃;掺外加剂。

3钢材取Q235钢,重力密度:78.5kN/m;弹性模量为206Gpa,容许拉压应力以及容许弯曲应力为215 Mpa,有部分零件为45钢,容许拉压应力计算取250Mpa(《钢结构设计规范》表3.4.1-1)。

本文计算时取2倍安全系数,所以本文计算时Q235钢容许拉压应力以及容许弯曲应力取215Mpa/2=108Mpa,45钢容许拉压应力以及容许弯曲应力取250Mpa/2=125Mpa。

2.计算载荷21)振动器产生的荷载:4.0kN/m;或倾倒混凝土产生的冲击荷2载:4.0kN/m;二者不同时计算。

2)对侧模产生的压力砼对侧模产生的压力主要为侧压力,侧压力计算公式为:P=kγh (1) 当v/T<0.035时,h=0.22+24.9v/T;当v/T>0.035时,h=1.53+3.8v/T;式中:P-新浇混凝土对模板产生的最大侧压力(kPa);h-有效压头高度(m);v-混凝土浇筑速度(m/h); T-混凝土入模时的温度(℃);3γ-混凝土的容重(kN/m);K-外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝剂作用的外加剂时k=1.2;根据前述已知条件:因为:v/T=2/20=0.1>0.035,所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 2最大侧压力为:P=kγh=1.2×24×1.91=55kN/m;2检算强度时载荷设计值为:p=55+1.4×4.0= 60.6kN/m;a3)砼对顶模产生的压力砼对顶模产生的压力由砼的重力和灌注砼的侧压力组成:32重力p=γδ=24kN/m×0.7m=16.8kN/m1其中δ为浇注砼的厚度。

隧道台车计算书

隧道台车计算书

隧道台车计算书(一)概述:根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。

此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。

根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。

(二)台车的结构设计:台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。

1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。

模板连接梁采用槽钢[20b合成.。

2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。

主要是承受顶模上部砼及模板的自重。

其上纵梁由钢板δ=14mm/δ=12mm焊成工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。

3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02—B100/55)。

平移油缸的作用是利用其左右移动来调整模板中心线与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨,水平移动行程为左右各100 m m。

4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。

各横梁及立柱用连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。

是整个台车的主要承重结构件。

门架下纵梁用δ14mm和δ12m m钢板焊成箱形截面。

立柱和横梁采用δ14mm和δ12mm钢板焊接成工字截面,以增加门架抗砼的侧压力。

5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。

隧道仰拱台车结构验算计算书

隧道仰拱台车结构验算计算书

隧道仰拱台车结构验算计算书2016年5月21日目录一、工程概况 (1)1.1 工程背景 (1)2.2 结构概况 (1)二、依据 (4)2.1 规范 (4)2.2 工况环境 (4)三、载荷分析 (4)四、整体结构分析 (6)4.1 材料及其特性 (6)4.2 模型建立 (6)4.2 载荷加载 (7)4.3 结果分析 (8)五、细部分析 (11)5.1 栈桥分段处连接螺栓校核 (11)5.2 支腿处连接副 (13)5.3 主引桥处连接副 (14)一、工程概况1.1 工程背景现代隧道结构复杂,工期短、质量高,对施工工艺的创新提出了较高的要求。

隧道施工主要由:开挖、衬砌、装修三道工序组成。

影响隧道使用寿命和隧道建设周期的主要因素由开挖及衬砌两道工序决定。

这两道工序在隧道狭小的空间内同时进行,要求施工质量的同时不能互相干扰,这对施工方法和施工管理提出了极高的要求。

目前的施工方法是:首先在隧道前方进行开挖作业;然后在后方进行衬砌作业。

开挖作业按围岩状况选择开挖方式并配合相应的衬砌方式。

各施工作业相间,依序进行。

每一个环节的作业要求要严格紧密配合才能保证计划工期,控制建设投资不超预算。

隧道仰拱及二次衬砌混凝土让隧道在开挖完成后形成一封闭受力结构,承受围岩压力,防止隧道崩塌,其质量决定了隧道的使用寿命。

仰拱填充混凝土则起到缓冲作用,其质量影响到车辆行驶的安全性和舒适性;附属的水沟及电缆槽等构造质量影响隧道能否正常使用。

因而,仰拱、仰拱填充及水沟等附属构造的质量、施工工序时间、对隧道建设至关重要,也是目前隧道施工的难点和重点。

以目前隧道施工最常见的台阶开挖方式为例,隧道施工中,仰拱及仰拱填充施工流程为:施工准备→仰拱开挖基底处理→初期支护铺设防水层→钢筋绑扎、安装仰拱模板→仰拱混凝土灌注→仰拱脱模→中心水沟测量放样→中心水沟立模→仰拱填充混凝土灌注→养护至强度满足机械行走→结束。

仰拱中部因坡度较小,可用人工摊铺方式,两侧采用模筑混凝土。

公路隧道台车计算书

公路隧道台车计算书

弥楚台车检算资料一、检算依据1、林织铁路《衬砌模板台车设计图》2、《钢结构设计手册》3、《铁路混凝土与砌体工程施工规范》4、《路桥施工计算手册》二、台车组成的主要参数1、台车的结构衬砌台车主要由模板总成、托架总成、平移机构、门架总成、台车大梁、主从行走机构、侧向液压油缸、侧向支撑千斤、顶撑液压油缸、基础千斤等组成。

2、主要技术参数台车总重量(自重) 850 KN一个工作循环的理论衬砌长度12 m最大衬砌厚度(包括开挖回填厚度)600 mm (平均开挖多50 mm)。

三、检算有关取值说明:1、混泥土侧压力混泥土浇注速度 V= 2 m/h混泥土浇注温度 T=20℃识现场具体工定,这里按照该温度计算。

初凝时间t0=200/(T+15)=5.71h侧面模板最大压力:Pm=0.22γt0β1β2v1/2或24h(h为混凝土的有效压头)取二者较小值使用式中:β1坍落度修正系数(≤3cm,β1=0.85,5~9cm,β1=1,11~15cm,β1=1.2);β2外加剂修正系数(不加时β2=1,掺缓凝剂β2=1.2);混凝土容重取γ=24KN/m3这里以24为基数进行计算;h为有效压头高度;H为浇筑高;Pm=61.4KPa(这里修正系数均取1.2进行检算) 内部捣鼓压力 P1 =4Kpa 侧面压力泵送冲击力及混凝土倾倒冲击力 P2 =2Kpa混凝土侧压力 P =67.4Kpa2、考虑砼灌注时,衬砌断面可能存在开挖现象,混凝土厚度按600mm取值。

浇筑时模板受力情况3、振捣砼产生的水平力对水平面模板按2kPa计算,对垂直面模板按4kPa计算。

4、各部分检算时都做了偏于安全的简化,以确保结构安全。

5、不含有关丝杠、走行轮的检算。

四、主要部件的检算1、模板的检算1.1 模板检算顶拱模板主要承受混凝土的重力和泵送的冲击力。

混凝土的容重取γ=24KN/m3。

泵送冲击力对模板的局部作用力很大,但一般注浆孔都做了局部的加强,为了简化计算这里不做泵送时对局部模板的压力计算。

隧道台车结构计算书.

隧道台车结构计算书.

贵阳9米台车结构计算书一概括模板台车就位完毕,整个台车两端各设一个底托传力到初支底面上。

枕木高度:H=200mm;钢轨型号为:43Kg/m(H=140mm);台车长度为9米,面板为δ10mm×1500mm,二衬混凝土灌注厚度0.5米,一次浇注成型。

模板台车支架如图1。

计算参照《建筑结构载荷规范》(GB5009-2001)、《混凝土结构工程施工质量验收规范》(GB50204-2002)、《水工混凝土施工规范》(DL/T5144-2001)、《钢结构设计规范》(GB50017-2003)。

模板支架图二载荷计算(1)载荷计算1)上部垂直载荷永久载荷标准值:上部混凝土自重标准值:1.9×0.5×9×24=205.2KN钢筋自重标准值:9.8KN模板自重标准值:1.9×9×0.01×78.5=13.4KN弧板自重标准值:9×0.3×0.01×2×78.5=4.2KN台梁立柱自重:0.0068×(1.0 +1.25)×2×78.5=2.4KN上部纵梁自重:(0.0115×5.2+0.015×1.9×2)×78.5=9.17KN 可变载荷标准值:施工人员及设备载荷标准值:2.5KN/㎡振捣混凝土时产生的载荷标准值:2.0KN/㎡2)中部侧向载荷永久载荷标准值:新浇注混凝土对模板侧面的压力标准值:F=0.22r c t0β1β2v1/2=0.22×25×8×1.2×1.15×10.5=60.6KN/㎡F=r c H=25×3.9=97.5KN/㎡取两者中的较小值,故最大压力为60.6KN/㎡有效压力高度h=2.42m换算为集中载荷:60.6×1.9×0.6=69.1KN其中:F——新浇混凝土对模板的最大侧压力;r c——混凝土的表观密度;t0——新浇混凝土的初凝时间;v——混凝土的浇注速度;H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度;β1——外加剂影响修正系数;β2——混凝土坍落度影响修正系数;h——有效压力高度。

台车计算

台车计算

店子梁隧道台车力学计算书一、基本情况店子梁隧道台车,长度为9m。

模板面板厚度为10mm,门架面板厚14mm,门架腹板厚12mm。

本计算书针对台车的主要受力构件的强度和刚度进行检算,以验证台车的力学性能能否满足要求。

本文主要根据《GB50017-2003钢结构设计规范》《路桥施工计算手册》与《结构力学》,借助结构力学求解器来对本台车进行结构检算。

1.计算参数砼的重力密度为:24kN/m3;砼浇筑速度:2m/h;砼入模时的温度取25℃;掺外加剂。

钢材取Q235钢,重力密度:78.5kN/m3;弹性模量为206Gpa,容许拉压应力以及容许弯曲应力为215 Mpa,有部分零件为45钢,容许拉压应力计算取250Mpa(《钢结构设计规范》表3.4.1-1)。

本文计算时取2倍安全系数,所以本文计算时Q235钢容许拉压应力以及容许弯曲应力取215 Mpa/2=108Mpa,45钢容许拉压应力以及容许弯曲应力取250Mpa/2=125Mpa。

2.计算载荷1)振动器产生的荷载:4.0kN/m2;或倾倒混凝土产生的冲击荷载:4.0kN/m2;二者不同时计算。

2)对侧模产生的压力砼对侧模产生的压力主要为侧压力,侧压力计算公式为:P=kγh (1)当v/T<0.035时,h=0.22+24.9v/T;当v/T>0.035时,h=1.53+3.8v/T;式中:P-新浇混凝土对模板产生的最大侧压力(kPa);h-有效压头高度(m);v-混凝土浇筑速度(m/h);T-混凝土入模时的温度(℃);γ-混凝土的容重(kN/m3);K-外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝剂作用的外加剂时k=1.2;根据前述已知条件:因为:v/T=2/20=0.1>0.035,所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m最大侧压力为:P=kγh =1.2×24×1.91=55kN/m2;检算强度时载荷设计值为:p a=55+1.4×4.0= 60.6kN/m2;3)砼对顶模产生的压力砼对顶模产生的压力由砼的重力和灌注砼的侧压力组成:重力p1=γδ=24kN/m3×0.7m=16.8kN/m2其中δ为浇注砼的厚度。

模板台车设计计算书

模板台车设计计算书

隧道衬砌台车设计计算书中煤第三建设(集团)有限责任公司二O一二年四月二十七日隧道衬砌台车设计计算书一、台车系统结构概述本台车适用于中煤第三建设(集团)有限责任公司,大连市地铁2号线工程项目,湾家站至红旗西路站区间、红旗西路至南松路区间隧道衬砌的模筑混凝土施工。

台车系统由模板系统、门架支撑系统、电液控制系统组成。

支收模采用液压控制,行走采用电动自动行走系统。

模板结构:台车模板长度为9m,共5榀支撑门架,门架间距为2.05m;上上纵连梁3根,单侧支撑连梁4根(结构见台车设计图)。

面板Q235,t=10mm钢板;连接法兰-12*220钢板;背肋,[12#槽钢,间距300mm;门架采用H2940*200*8*12型钢;底梁采用H482*300*11*15型钢;上纵连梁采用H200*200*8*12型钢;侧面模板支撑连梁采用双拼[16a#槽钢。

顶升油缸4个,侧向油缸4个,平移油缸2个;行走系统为两组主动轮系和两组被动轮系组成。

电液控制系统一套。

二、设计计算依据资料1、甲方提供的台车性能要求及工况资料、区间断面图纸;2、《钢结构设计规范(GB50017—2003)》3、《模板工程技术规范(GB50113—2005)》4、《结构设计原理》5、《铁路桥涵施工规范(TB10230—2002)》6、《钢结构设计与制作安装规程》7、《现代模板工程》三、结构计算方法与原则台车的主受力部件为龙门架、底粱、上部纵联H钢及钢模板,只需进行抗弯强度或刚度校核。

根据衬砌台车结构形式,各主要受力部件均不需要进行剪切强度校核和稳定性校核。

四、计算荷载值确定依据泵送混凝土施工方式以20立方米/小时计。

混凝土初凝时间为t=4.5小时。

振动设备为50插入式振动棒和高频附着式振动器。

混凝土比重值取r=2.4t/m3=24kN/m3 ;坍落度16—20cm。

荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。

钢材容许应力(单位;N/mm2)五、衬砌台车载荷计算:台车长度L=9m,衬砌厚度为0.3m。

砌衬台车计算书

砌衬台车计算书

• v =0.77mm< l/250=1.1mm 满足要求
• 根据计算结果,钢模板面板适合采用10mm厚的钢板。
• 模板肋板计算 • 横肋布置按500mm考虑,计算简图如下:
• 故:Mmax=0.125ql2=0. 125×68.95×0.52 =
2. 1KN.m
• 模板钢材Q235 ,90×56×6钢板的截面力学参

q 5=γ R, + C R,— 内部插入震捣器影响半径 ,采用0.75m
2
• 模板面板计算
• 面板是以肋板为支座的连续梁 ,可简化为 五跨连续梁进行计算 。按照荷载组合1 ,取 1m宽的板条计算:
• 对拱顶面板: • q =1.2×1.0×(25×1.0+78.5×0.01)+2.0×1.4 =33.6KN/m • 对侧墙面板: • q =1.2×1.0×60.6+6.0×1.4 =81.12KN/m • 取侧墙模板进行验算,取荷载调整系数0.85,有: • q=81.12×0.85 =68.95KN/m • 故:Mmax =0.105ql2 =0.105×68.95×0.282 =0.57KN.m

=376000×3.516×106/(6.013×108 ×12)
• = 183.2 N/mm2 >=125 N/mm2 不 安 全
=
• 台梁立柱自重: 0.0068×(1.9+0.9)×2×78.5 =3.0KN •3.5上4K部N纵梁自重:(0.22×2+0.5) ×0.012×2×2×78.5 = • 可变荷载标准值: • 施工人员及设备荷载标准值:2.5KN/m2 • 振捣混凝土时产生的荷载标准值: 2.0KN/m2
• (2) 中部侧向荷载

xxx隧道衬砌台车结构计算书

xxx隧道衬砌台车结构计算书

XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1.计算依据1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。

隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。

顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。

衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。

顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。

衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。

本衬砌台车与顶拱支撑焊接为一个整体。

进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。

侧模支撑系统的螺旋丝杆,每断面设置4个。

下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。

三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。

隧道二衬台车模板力学设计检算计算书

隧道二衬台车模板力学设计检算计算书

莫家寨隧道模板台车设计检算根据台车的使用情况,台车在每一模注浆即将完毕时,整模砼仍 处于流体状态时所受作用力最大。

这时台车顶模、侧模、前后端的堵 头板及隧道开挖面组成一个封闭的空间,其间的混泥土处于流体状 态,故可依据流体力学计算台车的受力。

p-混凝土密度;g-重力加速度;I -台车衬砌长度;顶拱受力分析:顶拱混凝土在没有凝固时,对顶拱的作用力可分解为水平压力90°F 11 = [2° PgR (1 -sin 日)R | cos^dT321 = 2.45 10 9.8 4.219 sin - cos2490°2 .F_= 12° PgR I (rsi ) sin ^d -= 2.45 103 9.8 4.212 9 一cos —sin2:IL 42边墙部分受力分析:当混泥土处于流体状态时,侧模 只受水平向上的压力,并且,随着混 凝土的逐渐凝固,这种压力越来越小。

£.17F11 -" -- 3.32£17 331-2 -8.17pgy.ldy2.45 109.8 9 ydy 二 2.45 109.8 9 — y6021KN(F11)和垂直压力(FQ 。

= 1201KN900二749 KN当混凝土凝固时,顶拱只承受顶部混凝土的重力,而侧拱不受力。

这时,顶部混凝土的重力计算如下:根据以上分析,整个台车的受力可分解为水平受力(F ii )和重力直压力(F 丄),故有:印=1201 2 = 2402KNF_ = 2182KN三、 台车主要零部件的强度校核1.上部台架立柱(4 X 7+4 )N 丄〕=2182 15 9.8 =72.8KN.[说明:15 X 9.8 为拱板重量]; n 323而[ o]=235MP m72.8!2 8.MPa ;cV [°s ];故满 s 2 5.1 5 41 0足强度条件。

2、顶升千斤(主要承受竖直方向的压力共有6+2+4=12根)Kl F 218215 9.8 N194.1 KN .n12194.1 103 = 82.5MP a (1142 -1002) 10 “4而[o]=235MP a ;°v [os ];故满足强度条件3.侧向千斤和上部台架横梁(共有 6 >4+7+12/3=35 根)F \ 2402N68.6 KN .n 3568.6 103:二 2 2-6(114 -100 ) 10 4= pvg =2.45 1039.8 (4.21 -0.5) 3.14 278° 2 36001 9=2182KNN cr =s= 40.1MP12 2而[q =235MP a ;°V [os ];故满足强度条件。

隧道台车计算书

隧道台车计算书

隧道台车计算书(一)概述:根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。

此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。

根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。

(二)台车的结构设计:台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。

1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。

模板连接梁采用槽钢[20b合成.。

2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。

主要是承受顶模上部砼及模板的自重。

其上纵梁由钢板δ=14mm/δ=12mm焊成工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。

3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02—B100/55)。

平移油缸的作用是利用其左右移动来调整模板中心线与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨,水平移动行程为左右各100 m m。

4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。

各横梁及立柱用连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。

是整个台车的主要承重结构件。

门架下纵梁用δ14mm和δ12m m钢板焊成箱形截面。

立柱和横梁采用δ14mm和δ12mm钢板焊接成工字截面,以增加门架抗砼的侧压力。

5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。

隧道横洞衬砌台车Midas计算书

隧道横洞衬砌台车Midas计算书

隧道横洞衬砌台车Midas计算书一、计算说明本衬砌台车采用商业有限元软件Midas Civil2006进行力学计算。

计算时根据结构尺寸和使用材料截面建立空间模型,对于模板面板采用板单元模拟,其他杆件采用梁单元模拟,梁柱之间刚性连接,计算时认为门架柱脚为固定支座,能够提供各个方向的约束。

对于衬砌上时浇筑砼荷载认为是流体荷载,采用Midas软件提供的“流体压力”荷载加载,计算顶模时认为拱顶压力P0=0,拱脚压力P1=γh,γ为砼容重,取25kN/m3,h为拱高,h=2.6m,期间线性变化。

计算侧模时认为侧模顶压力P2=0,侧模底压力P3=γH,γ为砼容重,取25kN/m3,H为侧模高,H=3.4m,期间线性变化。

由于把砼完全按流体计算,此荷载较实际大得多,故振动冲击荷载不同时考虑。

台车各杆件构造如下图所示计算模型如下图所示二、计算结果(1)模板面板面板正应力如下图所示面板正应力166MPa<[σ]=215MPa,满足抗弯强度要求。

面板剪应力如下图所示面板剪应力84MPa<[σ]=125MPa,满足抗剪强度要求。

面板位移如下图所示面板位移3.5mm,面板位移偏大,建议增加横向加劲肋。

(2)面板加劲肋正应力如下图所示正应力133.8MPa<[σ]=215MPa,满足抗弯强度要求。

加劲肋剪应力61.7MPa<[σ]=125MPa,满足抗剪强度要求。

加劲肋变形图如下图所示加劲肋变形3.1mm,加劲肋变形较大,建议增加横向加劲肋。

(2)上立柱上立柱正应力如下图所示正应力43MPa<[σ]=215MPa,满足抗弯强度要求。

轴力如下图所示较长杆受拉,拉力24.7kN ,较短杆受压,压力为24.7kN ,杆件长1.3m ,截面为I18工字钢。

ix=7.37cm ,iy=2cm A=30.7cm 2 λx=1837.7130i x x ==L λy=652130i yy ==L 根据λy 查b 类截面稳定系数表得到稳定系数φ=0.78MPa MP N 215][a 3.101007.3078.010007.24A φ=<=×××=σ 满足压杆稳定要求。

隧道台车计算书

隧道台车计算书

隧道台车计算书(一)概述:根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。

此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。

根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。

(二)台车的结构设计:台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。

1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。

模板连接梁采用槽钢[20b合成.。

2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。

主要是承受顶模上部砼及模板的自重。

其上纵梁由钢板δ=14mm/δ=12mm焊成工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。

3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02—B100/55)。

平移油缸的作用是利用其左右移动来调整模板中心线与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨,水平移动行程为左右各100 m m。

4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。

各横梁及立柱用连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。

是整个台车的主要承重结构件。

门架下纵梁用δ14mm和δ12m m钢板焊成箱形截面。

立柱和横梁采用δ14mm和δ12mm钢板焊接成工字截面,以增加门架抗砼的侧压力。

5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。

引水隧洞衬砌钢模台车受力计算书

引水隧洞衬砌钢模台车受力计算书

XX引水隧洞土建工程(合同编号: MP2010/CⅡ)引水隧洞衬砌钢模台车受力计算书批准:审核:编写:中国水利水电第X工程局有限公司XX水电站项目部目录1、工程概况 (1)2、引水隧洞钢管脚手架受力分析 (1)2.1、刚筋钢拱架受力分析 (1)2.1.1、荷载取值 (1)2.1.2、荷载分项系数 (3)2.1.3、荷载计算 (3)2.1.4、受力分析 (3)2.2、脚手架受力分析 (5)2.2.1、荷载取值 (5)2.2.2、总荷载计算 (5)2.2.3、立杆长细比计算 (5)2.2.4、立杆稳定性计算 (6)1、工程概况引水隧洞边顶拱混凝土施工采用的模板支撑方案为:在顶拱部位采用Φ25的钢筋制作成刚筋拱架直接支撑模板,刚筋拱架间距0.3m ,顶拱跨度为5.6m 。

拱架下部采用Φ48mm 的钢管脚手架支撑拱架,钢管脚手架立杆横距0.5m ,立杆纵距0.5m ,步距0.5m 。

为确保该支撑系统安全可靠,我部对其进行了受力分析计算,证明该支撑系统满足施工安全要求,其受力分析过程如下。

2、引水隧洞钢管脚手架受力分析根据引水隧洞工程混凝土浇筑分仓情况,由于每仓边顶拱混凝土为2.8m 高,顶拱混凝土起拱位置的模板受水平压力最大,而顶拱中心点位置的模板受竖直压力最大,故取顶拱部位起拱点和顶拱中心点作为最不利位置进行受力分析。

2.1、 刚筋钢拱架受力分析2.1.1、 荷载取值(1)竖向荷载竖向荷载最大值出现在顶拱中心点位置。

① 混凝土侧压力计算混凝土最大侧压力按下列二式计算,并取两个计算结果中的较小值:1/20120.22c p =γt ββv ;c p =γH ;式中:p ——新浇筑混凝土对模板的最大侧压力,kN/m 2;c γ——混凝土的表观密度,根据本工程实际情况,钢筋混凝土取25kN/m 3;0t ——新浇筑混凝土的初凝时间,h ,可按实测确定。

当缺乏试验资料时,可采用0200/15t =T +()计算(T 为混凝土的浇筑温度)。

汉十隧道开挖台车设计计算单

汉十隧道开挖台车设计计算单

隧道开挖台车计算书计算:复核:审核:审定:2016年4月隧道开挖台车计算书1. 设计依据⑴《铁路隧道设计规范》(TB10003-2005)⑵《高速铁路隧道工程施工技术指南》(铁建设【2010】241号)⑶《铁路隧道工程施工安全技术规程》(TB10304-2009)⑷《铁路隧道施工规范》(TB10204-2002)⑸《钢结构设计规范》(GB50017-2003)⑹《客运专线铁路隧道工程施工技术指南》(TZ214-2005)⑺朱国梁《简明施工计算手册》2. 设计参数⑴台车长度:5.5-7m。

⑵台车门架:3-4片,间距1.375-2m。

⑶台车门架材料:I16型钢加工。

3. 设计说明本工作台车适用于岘山一号隧道、岘山二号隧道、岘山三号隧道、黄家湾隧道。

台车设计方案分别是:三台阶开挖,上下台阶开挖,全断面开挖,挂布、修补工作台车。

3.1 三台阶开挖方案1)采用四片门架,门架间距离1.375米,台车长度5.5米,每部台车系梁4片,装载机托梁2片;2)每部台车7台28钻机,最多8人上台车工作,荷载800kg;3)台车顶面所有台阶及左右两边每个工作平台都采用Φ10螺纹钢10×10cm的网片焊接。

荷载考虑8个集中力,每个点100kg,作用在中间的一片门架上最为不利。

采用SAP2000建立整体模型:得中间门架横梁 Mmax=0.3t.m Qmax=0.3t f max=0.15mm中间门架竖杆 Nmax=0.75t中间门架牛腿端部f=2.2mm材料均采用I18,Wx=185cm3,截面面积S=30.6cm2,Ix=1660cm4 Sx=106.5cm3 b=6.5mmσ = M/W =16.2Mpa < 170Mpaτ= QS/Ib =3.0Mpa < 100Mpaf=2.2mm < L/250=8.4mm综上,台车强度、刚度、稳定性均满足要求。

3.2 上下台阶开挖方案1)采用四片门架,门架间距离1.375米,台车长度5.5米,每部台车系梁8片,装载机托梁2片,底系梁2片;2)每部台车15台28钻机,最多15人上台车工作,立钢架时最多3榀,设计荷载2400kg;3)台车顶面所有台阶及左右两边每个工作平台都采用Φ10螺纹钢10×10cm的网片焊接。

单线铁路隧道台车标准化计算书

单线铁路隧道台车标准化计算书

标准化单线台车结构验算一依据1、标准化《隧道衬砌台车设计图》2、《钢结构设计手册》3、《铁路混凝土与砌体工程施工规范》4、《路桥施工计算手册》二参数1、台车的结构衬砌台车主要由模板总成、托架总成、平移机构、门架总成、台车大梁、主从行走机构、侧向液压油缸、侧向支撑千斤、顶撑液压油缸、基础千斤等组成。

详见下图所示:图 1 标准化单线台车结构图 2 标准化双线台车结构图2、台车技术参数:台车总重量(自重):60吨(估算);有效浇筑长度:12m;最大开挖厚度:450mm;三载荷取值1、混泥土侧压力混泥土浇注速度:V=2m/h混泥土浇注温度:T=20℃,实际根据现场测量温度定,计算采用该温度;初凝时间:t0=200/(T+15)=5.71h(取t0=6h进行计算)侧面模板最大压力P m:P m=0.22γt0β1β2v1/2或P m=24h(h为混凝土的有效压头)式中:β1坍落度修正系数(≤3cm,β1=0.85,5—9cm,β1=1,11—15cm,β1=1.2,计算时β1=1.2);β2外加剂修正系数(不加时β2=1,掺缓凝剂β2=1.2,计算时β2=1);混凝土容重γ=24KN/m3均按照最大取值可得混凝土最大侧压力P m:P m=53.76KN/㎡内部捣鼓侧面压力:P1=4Kpa泵送冲击力及混凝土倾倒冲击力或者捣鼓压力P2:P2=2Kpa混凝土侧压力:P=53.76+4+2=59.76Kpa(计算时P=60Kpa)2、考虑砼灌注时,衬砌断面可能存在开挖现象,混凝土厚度按500mm取值。

四台车整体结构验算计算时采用压力载荷,加载在模板上,下纵梁的斜撑约束地面端位置。

下纵梁的门架位置采用撑地千斤支撑。

1、门架结构门架的整体变形如下所示:图 3 门架X方向变形图 4 门架Z方向变形根据计算可知,X方向最大变形为2.36mm;Z方向最大变形为-0.59mm;杆件自由长度最短为3m,容许变形值8mm;图 5 最大组合应力图 6 门架结构弯曲应力图7 门架的剪切应力最大组合应力为74.49Mpa<180MPa(钢结构许用应力),弯曲应力最大值为55.92Mpa;最大剪切应力为:32.4Mpa,弯曲应力和剪切应力均小于钢结构设计规范许用应力,满足设计要求;2、模板背杠模板背杠结构如下所示:图8 模板连接梁图纸图9 模板连接梁X方向变形图10 模板连接梁Z方向变形模板连接梁的X方向变形为3.85mm,Z方向变形为2.62mm,模板连接梁的容许变形值为1.9m÷500=3.8mm,满足要求;图11 模板连接梁的组合应力分布图12 模板连接梁弯曲应力图13 模板连接梁剪切应力最大组合应力为100.78Mpa<180MPa(钢结构许用应力),弯曲应力最大值为71.64Mpa;最大剪切应力为:27.88Mpa,弯曲应力和剪切应力均小于钢结构设计规范许用应力,满足设计要求;3、槽钢模板加强筋10#槽钢为模板横向加强筋图14 槽钢的X方向的变形图15 槽钢Z方向变形槽钢的X方向变形为4.72mm,Z方向变形为2.74mm加劲板槽钢最大变形在5mm以内,满足混凝土的要求;图16 槽钢的最大应力图17 槽钢的弯曲应力图18 槽钢的剪切应力最大组合应力为29.31Mpa<180MPa(钢结构许用应力),弯曲应力最大值为26.53Mpa;最大剪切应力为:7.63Mpa,弯曲应力和剪切应力均小于钢结构设计规范许用应力,满足设计要求;4、模板纵向肋图19 板肋X方向变形图20 板肋Z方向变形槽钢的X方向变形为5.11mm,Z方向变形为2.9mm加劲板。

某隧道二衬台车强度刚度计算书

某隧道二衬台车强度刚度计算书

目录一、台车的主体结构图 (2)二、台车模板的校核分析 (3)三、台车架子的校核分析 (11)某隧道模板台车主视图某隧道模板台车侧视图第一部分:台车模板的校核分析1、计算模型台车模板主要由半径为6180mm的拱形顶模板、边模板和支撑油缸丝杆。

顶模和边模用铰链连接,模板是厚度10mm的钢板,其上有三行每行6个500×500的贯通工作窗口;顶模和边模的两侧和中间有厚度12mm的边模板和腹板。

在模板内侧有纵向分布的厚度6mm的角钢。

每根角钢与模板之间有4段焊接,每段焊接长度为75mm。

顶模和边模由固定于模板台车上的油缸丝杆支撑。

模板材料为Q235B,容许应力为170MPa。

弹性模量E=2.1Gpa,波松比μ=0.3。

模型受力主要是自重和浇灌水泥层对模板的压力。

浇灌水泥时,两侧可能不均衡,最多有1,5米高度差。

水泥浆的比重按15kN/m3计算。

2、计算方案用商业有限元软件ansys计算。

鉴于模板、边模板及角钢的厚度与其长宽尺寸比均很小,因此对这些构件采用板壳单元。

顶模和边模之间的铰链连接结构,采用耦合节点约束法实现。

板壳单元的节点有六个自由度,即三个方向的位移和三个方向的转角,在构件相接处,令两个构件的相连接节点x、y、z方向的位移耦合,即有相同的位移,但可以相对绕z轴转动(另两个方向的转动也被限制)。

顶模和边模的支撑油缸丝杆采用link杆单元。

为简化计算,认为台车架刚度比较大,相当是一个固定基座,支撑顶板、边板的杆单元连接于台车架相当连接在固定基座上。

因此,有限元模型不涉及台车架,只需将杆单元与台车架连接的一端约束即可。

共划分了54509个节点,50801个单元。

有限元网格模型见下图。

图1 有限元模型网格正视图节点耦合处节点耦合处杆单元板壳元图2 有限元模型网格立体图3、计算结果右侧承受1.5米高的水泥浆图3右侧承受1.5米高的水泥浆时x(水平)方向位移图235MPa,结构强度满足要求。

图4、右侧承受1.5米高的水泥浆时y(垂直)方向位移图图6、两侧同时承受1.5米高的水泥浆时x(水平)方向位移图图7、两侧同时承受1.5米高的水泥浆时y(垂直)方向位移图图8、两侧同时承受1.5米高的水泥浆时Mesis应力分布图图9、左侧承受1.5米右侧承受3.0米高的水泥浆时x(水平)方向位移图图10、左侧承受1.5米右侧承受3.0米高的水泥浆时y向位移图图11、左侧承受1.5米右侧承受3.0米高的水泥浆时Mesis应力分布图图12、浇灌完成时x向位移图图13浇灌完成时y向位移图图14、浇灌完成时Mesis应力分布图第二部分:台车架子的校核分析1门架强度校核1.1计算单元0.50.512006586F 模板长有效受力高度门架=32900Kgf1.2计算模型门架中,A 截面(正中间)最为薄弱,故只校核A 截面抗弯能力1.3公式 0.5M336BH bh H =333010014.497.6/6100=276873cm544M F =54432900=17897600Kgfcm0.5M =(17897600/27687) 0.5=323.22Kgf/cm <13002Kgf/cm 合格。

隧道衬砌台车结构计算书

隧道衬砌台车结构计算书

XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图。

隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。

顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。

衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。

顶拱支撑采用H200×200×立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。

衬砌台车门式框架立柱采用H200×200×型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。

本衬砌台车与顶拱支撑焊接为一个整体。

进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。

侧模支撑系统的螺旋丝杆,每断面设置4个。

下部螺旋丝杆水平支承于台车的I20a纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。

三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。

模板系统及台车构件均采用Q235普通型刚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道台车计算书(一)概述:根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。

此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。

根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。

(二)台车的结构设计:台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。

1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。

模板连接梁采用槽钢[20b合成.。

2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。

主要是承受顶模上部砼及模板的自重。

其上纵梁由钢板δ=14mm/δ=12mm焊成工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。

3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02—B100/55)。

平移油缸的作用是利用其左右移动来调整模板中心线与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨,水平移动行程为左右各100 m m。

4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。

各横梁及立柱用连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。

是整个台车的主要承重结构件。

门架下纵梁用δ14mm和δ12m m钢板焊成箱形截面。

立柱和横梁采用δ14mm和δ12mm钢板焊接成工字截面,以增加门架抗砼的侧压力。

5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。

主动机构由2台5.5KW同步电机驱动摆线减速器,再通过链条、链轮减速驱动门架行走。

利用电机的正反转可实现台车的前进与后退,其行走速度为6m/min,行走轮直径为φ300mm。

从动机构不安装电机和减速器。

起支撑和行走作用。

6、液压系统:液压系统由4个竖向油缸(前已作叙述)、6个侧向油缸(HSGK—B100/55 mm)、4个平移油缸(前面已作叙述)和一套泵站组成。

侧模板的立模和脱模由侧模油缸来完成。

同时起着支承侧模板及侧墙砼压力的作用,其工作压力为16MPa,推力为30吨。

泵站系统利用一个三位四通换向阀进行换向,控制各油缸的伸缩。

4个竖向油缸各由一个换向阀控制,侧模每边3个油缸由一个换向阀控制,4个平移油缸前后各2个由一个换向阀控制。

每个竖向油缸安装1个液压锁紧阀来锁定每个竖向油缸,确保台车在浇注时不致下降.液压油泵流量为10L/ min,电机功率为4KW,液压系统工作压力为16M Pa。

7、支承千斤:支承千斤由台架千斤、侧向千斤和门架支承千斤三部份组成。

侧向千斤主要用来支承砼的侧向压力和调整侧模板位置,螺杆直径为φ60mm,调整行程为200 mm。

门架支承千斤连接在门架下纵梁下面,顶在轨面上,主要是承受台车和砼的重量,确保台车的稳定性,其螺杆直径为φ80mm,调整行程为120 mm。

8、电气系统:电气系统主要是对液压系统油泵电机的开关和行走机构电机的正反转进行控制。

行走电机设有过载保护。

9、台车的主要技术参数:顶拱半径: R8350mm(按常规设计是加大50mm)边拱半径: R5650mm(按常规设计是加大50mm)拱高: 8177mm重量: 126T砼衬砌长度: 12米额定电压: 380V油泵电机功率: 4KW行走轮电机功率: 11KW(5.5KW*2=11KW)台车行走速度: 6m/min(三)、台车模板受力分析及刚度、强度校核1、概述台车结构的受力分析分工作和非工作两种状态。

在做受力分析和刚度、强度校核时应以工作时的最大荷截为依据。

故在此我单位对台车非工作状况下不做分析与校核。

2、模板受力分析台车模板分为顶部模板和左右侧模板2部份。

顶部模板的载荷主要由砼自重和顶部注浆口封堵时产生的挤压力构成。

砼的自重可通过理论计算,但注浆口封堵时产生的挤压力为不确定值,与封堵灌浆时的操作、输送泵的操作等有很大的关系,当注浆口处的砼已浇满时,如输送泵仍继续送料,则输送泵送料时间越长,则注浆口处的顶模承受的挤压力越大,甚至于使顶模板变形和损坏,若台车及输送泵操作人员按规范严格操作,此挤压力便不存在或者很小,即便如此,我单位在台车设计和制作时仍对注浆口处进行了有效的加强。

侧部模板左右对称,结构及受力相同,不承受混凝土自重,因此边模板只考虑砼的侧向压力即可。

3、模板的强度刚度验核(1、参考文献:《机械设计手册第一卷》机械工业出版社出版。

2、计算条件:按每小时浇灌2m高度的速度,每平方米承受 5T载荷的条件计算。

)3.1、面板校核 (每块模板宽1500mm,纵向加强角钢间隔250mm)计算单元图:其中:q—砼对面板的均布载荷 q =0.5Kgf/cm23.1.1、强度校核模型根据实际结构,面板计算模型为四边固定模型公式:qtb2 max)(ασ=其中α——比例系数。

当 a/b=150/25=6 α取0.5t——面板厚 t=1.2 cmb——角钢间隔宽度 b=25cmσmax——中心点最大应力得σmax=0.5x(25/1.2)^2x0.5=108.47 Kgf/cm2<[σ]=1300Kgf/cm2。

合格。

3.1.2 、刚度校核见强度校核模型公式:tEqtb4max)(βω=式中:β——比例系数。

由 a/b=150/25=6 β取 0.0284 E——弹性模量 A3钢板E=1.96x106kgf/cm2ωmax——中点法向最大位移。

得:cm0055.08.01096.15.0)8.025(0284.064max=⨯⨯⨯⨯=ω中点法向位移ωmax=0.0055cm<0.035cm。

合格。

3.2、面板角钢校核。

3.2.1、计算单元3.2 .2、强度校核3.2.2.1、计算模型根据实际结构,角钢计算模型为两端固定。

3.2.2 .2、强度校核公式:122max ql M = [x=L ,最大弯矩在两端处] 得:121505.122max ⨯=M =23437 kgfcm公式:242ql M = [x=L/2 角钢中点弯矩] 得:241505.122⨯=M =11718 kgfcm由W M=σ 如图:H bh BH W 633-==1.767.55.53.61.733⨯⨯-⨯=30.66 cm3所以 两端66.3023437max =σ=764kgf/cm2<1300kgf/cm2 中点66.3011718=σ=382kgf/cm2<1300kgf/cm2 。

合格。

3.2.2.3、刚度校核。

见强度校核模型。

公式:EI ql y 3844max =(中点挠度)1233bh BH I -==108.87 cm4得87.1081096.13841505.1264max ⨯⨯⨯⨯=y =0.077cm 中点位移 ymax=0.77mm 。

合格。

)8.0147254.2(28.0147254.2)(222221⨯+⨯⨯+⨯=++=bd aH bd aH e y =4.48 12y e H e y -==25-4.48=20.52 得:48.4216991=z W =4843 cm3 52.20216992=z W =1057cm3 故:面板端应力:48432109371=σ=43.5 kgf/cm2<1300 kgf/cm2 腹板端力:10572109372=σ=199.5 kgf/cm2<1300kgf/cm2 由于实际应力小于许用应力。

故不用再校核刚度。

3.4、门架强度校核: 3.4.1、计算单元:F=0.5x0.5x900(模板长)x385(有效受力高度)/5(门架)=17325kgf3.4.2、计算模型:门架中。

A-A 截面(正中间)为门架整体抗弯受力的最大集中点,故只校核A 截面抗弯能力。

B-B 截面为门架立柱的抗弯受力的最大集中点,故还需要校核B —B 截面的抗弯能力。

3.4.3、公式:WM=σ门架横梁A-A 截面如上图H bh BH W 633-==(30x90^3-16x87.6^3)/(6x90)=20582cm3M=425F=425x17325=7363125kgfcm 故:W M=σ=7363125/20582=358kgf/cm2<1300kgf/cm2 。

合格门架立柱B —B 截面如上图H bh BH W 633-==(30x65^3-16x62.6^3)/(6x65)=11060cm3M=210F=210x17325=3638250kgfcm 故:W M=σ=3638250/11060=329kgf/cm2<1300kgf/cm2 。

合格为了计算的方便,取长为1.5米,宽为0.25米,混凝土厚1.5米,计算承受重量: P=1.5×0.25×1.5×2.2=1.23T换算成线载荷为: 1.23/1.5=0.82 t/m将此段模板作为简支梁计算得:Mmax=ql2/8=0.82×1.52/8=0.23tm即为0.23×9.8×103=2.25×103Nm为了计算弯曲应力,必须求出横截面的形心,此截面是由∠70×70×6的角钢及140×8的钢板组成,查表可知:.. 角钢截面积为 S =816mm2惯性矩 Ix=377700 mm4重心距离 Zo=19.5 mm截面形心: Y坐标=(140×8×70+816×19.5)/(1120+816)=48.7 mm 截面的惯性矩Ix=140×63/12+6×140×24.662+377700+816×33.642=1424 m m4抗弯截面模数 W=Ix/Y= 1424/48.7=29.2梁的最大弯曲应力σ=Mmax/W=2.25×103/29.2=77Mpa对Q235钢 [σS]=160 Mpa 77<160由此可知:模板强度与刚度是足够的.。

相关文档
最新文档