原子物理学 第四章答案

合集下载

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案

② m1 为α粒子, m2 为静止的 He 核,则
( L )max 90
1-9)解:根据 1-7)的计算,靶核将入射粒子散射到大于 的散射几率是
P( ) nt

4
a 2ctg 2

2
当靶中含有两种不同的原子时,则散射几率为
0.71 0.32
将数据代入得:
-5-
0
2
2
d a 1 181 4 103 tg 2100 c ( ) d 4 sin 4 4 2 10 2 6.02 10 23 sin 4 300 依题: 2 28 2 24 10 m / sr 24b / sr
1-10)解: ① 金核的质量远大于质子质量,所以,忽略金核的反冲,入射粒子被靶核散时 则: 之间得几率可用的几率可用下式求出:
nt ( )2
a 4
2 sin sin
4

t a
( )2 A 4
2 sin sin 4

2
2
a
Z1Z 2e2 1 79 1.44Mev fm 94.8 fm 4 ER 1.2Mev
1 2 1 1 2 2 Mv mve Mv 2 2 2 Mv Mv mve
m v v ve M v 2 v2 m v 2 e M
(1)
p m v p = em v p= m vee,其大小:

180
2 3 ,即为所求 1 d sin 2 sin 3
3
90

2
1-7)解
P ( 0 1800 )
1800

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。

也就是说,当α粒子和自由电子对头碰时,θ取得极大值。

此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学杨福家1_6章_课后习题答案

原子物理学杨福家1_6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则 sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 ,则 θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin注意到即单位体积内的粒子数 为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案原子物理学习题解答原子物理学习题解答原子物理学习题解答原子物理学习题解答刘富义刘富义刘富义刘富义编编编编临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教研室理论物理教研室第一章原子的基本状况1.1若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子伏?''C67.6810?特。

散射物质是原子序数的金箔。

试问散射角所对应的瞄准距离多大?79Z?150 b解:根据卢瑟福散射公式:20022cot4422KMvbbZeZe得到:米2192150152212619079(1.600)3.97104(48.510)(7.681010)ZectgctgbK式中是粒子的功能。

212KMv1.2已知散射角为的粒子与散射核的最短距离为??,试问上题粒子与散射的金原子核2202121()(1)4sinmZerMv之间的最短距离多大?mr 解:将1.1题中各量代入的表达式,得:mr2min202121()(1)4sinZerMv1929619479(1.010)1910(1)7.68101.6010sin75米143.02101.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个电荷而质量是质子的e?两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为。

当入射粒子的动能全部转化为两180?粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:,故有:220min124pZeMvKr2min04pZerK???米19291361979(1.6010)9101.410101.6010由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代minr替质子时,其与靶核的作用的最小距离仍为米。

原子物理学智慧树知到答案章节测试2023年白城师范学院

原子物理学智慧树知到答案章节测试2023年白城师范学院

绪论单元测试1.初期的原子学说有哪些()。

A:电的原子学说B:量子原子学说C:热的原子学说D:物质的原子学说答案:ACD2.世纪之交的三大发现()。

A:X射线的发现B:质子的发现C:电子的发现D:放射性的发现答案:ACD3.原子物理学的发展经过那三个阶段()。

A:原子物理新篇章B:量子力学建立C:早期原子论D:初期的原子学说答案:ACD4.1900年,哪位科学家建立了能量子概念()。

A:汤姆逊B:卢瑟福C:普朗克D:玻尔答案:C5.1895年,以下哪位科学家发现了X射线()。

A:卢瑟福B:亨利贝克勒尔C:伦琴D:居里夫妇答案:C第一章测试1.在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于50的范围内。

若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A:4B:16C:2D:8答案:B2.进行卢瑟福理论实验验证时发现小角散射与实验不符这说明()。

A:小角散射时一次散射理论不成立B:卢瑟福理论是错误的C:原子不一定存在核式结构D:散射物太厚答案:A3.在同一粒子源和散射靶的条件下观察到粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为( )A:1:8B:1:4C:4:1答案:B4.如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?( )A:1B:1/2C:4D:2答案:A5.1911年卢瑟福提出了原子的核式结构模型,根据该模型能够知道( )。

A:入射粒子的散射方向与靶物质种类无关B:原子半径在10-10m量级C:原子核由中子和质子构成D:原子核的质量远大于电子质量答案:D6.汤姆逊的原子模型是正确的,并且被α粒子散射实验所证实。

()A:错B:对答案:A7.卢瑟福的核式结构模型解释了粒子散射实验出现的大角散射。

()A:错B:对答案:B8.原子由带正电荷并几乎占有全部质量的微小中心核以及绕核运行的电子所组成。

原子物理学课后答案(褚圣麟)第3章第4章第6章

原子物理学课后答案(褚圣麟)第3章第4章第6章

第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。

3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。

因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。

试证明之。

证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。

所以,可以将上式的根式作泰勒展开。

只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。

原子物理学课后答案

原子物理学课后答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb b Z eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学课后习题详解第4章(褚圣麟)

原子物理学课后习题详解第4章(褚圣麟)

原子物理学课后习题详解第4章(褚圣麟)第四章碱金属原子4、1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ολA 3519=∞。

求锂原子第一激发电势与电离电势。

解:主线系最长波长就是电子从第一激发态向基态跃迁产生得。

辅线系系限波长就是电子从无穷处向第一激发态跃迁产生得。

设第一激发电势为1V ,电离电势为∞V ,则有:伏特。

伏特375.5)11(850.111=+=∴+===∴=∞∞∞∞λλλλλλe hc V c h c h eV ehc V c heV 4、2 Na 原子得基态3S 。

已知其共振线波长为5893οA ,漫线系第一条得波长为8193οA ,基线系第一条得波长为18459οA ,主线系得系限波长为2413οA 。

试求3S 、3P 、3D 、4F 各谱项得项值。

解:将上述波长依次记为οοοολλλλλλλλAA A A p f d p p f d p 2413,18459,8193,5893,,,,max max max max max max ====∞∞即容易瞧出: 16max3416max 3316max316310685.0110227.1110447.21110144.41~---∞-∞∞=-=?=-=?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ4、3 K 原子共振线波长7665οA ,主线系得系限波长为2858οA 。

已知K 原子得基态4S 。

试求4S 、4P 谱项得量子数修正项p s ??,值各为多少?解:由题意知:P P s p p v T A A λλλοο/1~,2858,76654max ====∞∞由24)4(s R T S ?-=,得:S k T R s 4/4=?- 设R R K ≈,则有max411,229.2P P P T s λλ-==?∞ 与上类似 764.1/44=-≈?∞P T R p4、4 Li 原子得基态项2S 。

(整理)原子物理学杨福家1-6章 课后习题答案

(整理)原子物理学杨福家1-6章 课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案在学习原子物理学这门课程时,杨福家第四版教材是许多同学的重要参考资料。

然而,课后习题的解答往往成为同学们巩固知识、加深理解的关键环节。

以下是为大家精心整理的原子物理学杨福家第四版课后答案。

第一章主要介绍了原子的基本概念和卢瑟福模型。

课后习题中,关于α粒子散射实验的相关问题较为常见。

例如,计算α粒子在不同散射角度下的散射几率,这需要我们深刻理解库仑散射公式以及散射截面的概念。

答案的关键在于正确运用公式,代入相关参数进行计算。

第二章重点是玻尔的氢原子理论。

在课后习题中,经常会出现让我们根据玻尔理论计算氢原子的能级、轨道半径以及跃迁时辐射的光子能量等问题。

以计算氢原子从激发态跃迁到基态辐射的光子能量为例,首先要明确能级公式,然后根据初末态的能级差来计算光子能量。

第三章讲述了量子力学初步。

其中涉及到的薛定谔方程的应用是重点也是难点。

比如,求解一维无限深势阱中粒子的波函数和能量本征值。

在解答这类问题时,需要熟练掌握薛定谔方程的求解方法,结合边界条件确定波函数和能量的表达式。

第四章是原子的精细结构。

这一章的课后习题中,对于碱金属原子光谱的精细结构和塞曼效应的考察较多。

比如,解释碱金属原子光谱精细结构的产生原因,答案要从电子的自旋轨道耦合作用入手,分析能级的分裂情况。

第五章是多电子原子。

在这部分的习题中,经常会要求分析多电子原子的能级结构和电子组态。

例如,确定某个多电子原子的基态电子组态,需要遵循泡利不相容原理、能量最低原理和洪特规则。

第六章是在磁场中的原子。

关于原子在外磁场中的塞曼分裂以及顺磁共振等问题是常见的考点。

解答这类题目时,要清楚磁场对原子能级和光谱的影响机制。

第七章是原子的壳层结构。

会涉及到原子核外电子的填充规则以及原子基态的确定等问题。

第八章是 X 射线。

对于 X 射线的产生机制、波长和强度的计算等是常见的习题类型。

第九章是原子核物理概论。

重点是原子核的基本性质、结合能的计算以及核反应等内容。

原子物理学第四,五,六,七章课后习题答案

原子物理学第四,五,六,七章课后习题答案

第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。

试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。

原子物理学第四,五,六,七章课后习题答案-推荐下载

原子物理学第四,五,六,七章课后习题答案-推荐下载

原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~



R (4 S )2
1 p
~
p n

~


1 2.858 107
~
T4S 3.4990 106 m 1

T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1

R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F

1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1

5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案原子物理学是物理学的一个重要分支,它研究原子的结构、性质和相互作用等方面的知识。

杨福家所著的《原子物理学》第四版是一本备受欢迎的教材,为学生深入理解原子世界提供了坚实的基础。

以下是为您精心整理的该教材的课后答案。

第一章主要介绍了原子物理学的发展历程和一些基本概念。

课后习题可能会要求学生阐述卢瑟福散射实验的原理和意义。

卢瑟福散射实验是原子物理学中的一个关键实验,它证明了原子的核式结构。

在回答这类问题时,要清晰地说明实验的步骤、观察到的现象以及得出的结论。

例如,α粒子在穿过金箔时,大部分粒子直线通过,只有少数发生大角度偏转,这表明原子的正电荷和绝大部分质量集中在一个很小的核上。

第二章关于原子的能级和光谱,可能会有关于氢原子光谱线系的计算和解释的题目。

对于氢原子的能级公式和光谱线的频率、波长的计算,需要牢记相关公式并能准确运用。

比如,巴尔末系的波长可以通过公式计算得出,同时要理解为什么氢原子会产生这些特定的光谱线系,这涉及到电子的能级跃迁。

第三章的重点是量子力学初步。

在回答课后问题时,要理解波函数的物理意义以及薛定谔方程的应用。

例如,对于一个给定的势场,如何求解薛定谔方程得到波函数,并根据波函数计算出粒子在不同位置出现的概率。

这需要掌握一定的数学运算和物理概念。

第四章关于碱金属原子和电子自旋,可能会要求分析碱金属原子光谱的精细结构,并解释电子自旋的概念和作用。

在回答这类问题时,要清楚地说明由于电子自旋与轨道运动的相互作用,导致了碱金属原子光谱的精细分裂。

同时,要理解电子自旋的量子特性以及它对原子能级和光谱的影响。

第五章讲到了多电子原子。

这部分的课后习题可能会涉及到多电子原子的能级结构、电子组态和原子态的确定。

回答时需要运用泡利不相容原理、能量最低原理等规则来确定电子的排布,从而得出原子的可能状态。

第六章是在原子的壳层结构基础上,进一步探讨了 X 射线。

对于 X 射线的产生机制、特征谱线以及与物质的相互作用等问题,需要有清晰的理解和准确的表述。

原子物理学第4章

原子物理学第4章

Rhc En 2 (n D l )
-e

r Rnl
●ห้องสมุดไป่ตู้
2
2
21
20
n=2
r r1
图4-5、轨道的贯穿
0
4
r Rnl
2
2
32
31
30
n=3
r r1
0 9
l 越小,电子波 函数靠近核的概率 越大,贯穿的几率 越大,能量越低
小结:碱金属原子光谱
1、实验规律:
所有的碱金属原子的光谱,具有相仿的结构,实验观 察的谱线一般分为四个线系。

~D相同而n不同的光谱 和
R R 2、碱金属原子的光谱项: Tnl 2 n (n D l ) 2
• 量子数亏损:D l

nn

(由于存在内层电子)
由于存在内层电子,n相同时能量对l 的简并消除。光 谱项需用两个量子数 n 、l 来描述。
用 Ds , Dp , Dd , Df 分别表示电子所处状态的轨道角动量 量子数 l = 0 , 1 , 2, 3时的量子数亏损。
价电子的轨道:n ≥ 2
Li: Z=3=212+1 Na:Z=11=2(12+22)+1 K: Z=19=2(12+22+22)+1 Rb:Z=37=2(12+22+32+22)+1 Cs:Z=55=2(12+22+32+32+22)+1 Fr:Z=87=2(12+22+32+42+32+22)+1


Li:Ds=0.40, Dp=0.50, Dd=0.001, Df =0.000;

《原子物理学》习题答案(褚圣麟 版)

《原子物理学》习题答案(褚圣麟 版)
1.5 粒子散射实验的数据在散射角很小 ( 15 ) 时与理论值差得较远,时什么原

因? 答: 粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射 合成的结果。 既然都是小角散射, 哪一个也不能忽略, 一次散射的理论就不适用。 所以, 粒 子散射的实验数据在散射角很小时与理论值差得较远。 1.6 已知 粒子质量比电子质量大 7300 倍。 试利用中性粒子碰撞来证明: 粒子散射“受 电子的影响是微不足道的”。 证明:设碰撞前、后 粒子与电子的速度分别为: v , v ', 0, ve 。根据动量守恒定律,得:
临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教理论物理教研室第一章原子的基本状况11若卢瑟福散射用的粒子是放射性物质镭放射的其动能为电子伏676810特
原子物理学习题解答
刘富义 编
临沂师范学院物理系 理论物理教研室
第一章 原子的基本状况
2
所以有:
d n n
'
N t d
2
N0 1 t ( A Au 4
0
cos 2 2 Z e 80 2 d )2 ( ) 2 1 90 Mu2 3 s in 2
等式右边的积分: I
180 90

d sin 2 d 2 180 2 1 90 sin 3 sin 3 2 2
由上式看出: rmin 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代 替质子时,其与靶核的作用的最小距离仍为 1.14 10

原子物理学杨福家1-6章-课后习题标准答案

原子物理学杨福家1-6章-课后习题标准答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学课后答案

原子物理学课后答案

原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mvα=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
对这一事实作出解释.
解: 因为 2S+1=6 S=5/2
J = 3/2 l = 4
mj=3/2,1/2,-1/2,-3/2
m gj
3 2
1 2
(

2 Jˆ 2
Lˆ2
)
3 2
1 2
5 2
5 2
1 44 1
3 2
3 2
1
0
o gJmJ=0 这是一个多电子耦合系统,相互作用产生的总效果为零.说明多
原子(基态为2P3/2),其它实验条件不变,那么,在屏上可以接受到几
条氯束线?其相邻两束的间距为多少?
3
解 : 已 知 Z2=0.30cm
T=400K 3kT=3 × 8.617 × 10-5 ×
400eV=0.103eV
J=1/2 gj=2 mjgj=±1

Z2
mJ g J B
B z
dD 3kT
B
B z
dD 3kT
0.3
当换为氯原子时,因其基态为2P3/2 ,j=3/2,
om gj
3 2
பைடு நூலகம்
1 2
(
s
2
j2
l
2
)
3 2
1 2
(
3 4
2
15
)
4 3
4
c m j
3 2
;
1 2
;
1 2
;
3 2
w. z
3 2
4 3
0.3
0.6cm
a z
1 2
4 3
0.3
0.2cm
l=1 s =1/2
课 后 答 案 网
dD 3kT
.k =
1 2
2 5
5.0
10 30 50
0.1736cm
即:
Z =2Z = ±3/2
2(±3/2)
2×0.52092=1.42cm
wZ =2Z = ±1/2
2(±1/2)
2×0.1736=0.347cm
ww4-6. 在史特恩-盖拉赫实验中,原子态的氢从温度为 400 K的炉中射
出,在屏上接受到两条氢束线,间距为 0.60cm.若把氢原子换成氯
a /2,质量为 107.87u.
解:原子束在屏上偏离中心的距离可用下式表示:
hd z MgB
BZ z
dD 2EK
对原子态 2S1/2 L=0 S=1/2
J=1/2 故
M=
1 2
朗德g因子为:g=2
k 对于上屏边缘的线束取 M=-J, 对于下屏边缘的线束取 M=J
. 所以z
2 Jg B
BZ z
dD 2EK
又因为其为类氢离子 所以为 Li
w4-8
试估计作用在氢原子 2P 态电子上的磁场强度.
w解:
B
hc 22 B
2 B
又由(21-13)式,Δμ=4.53×10-5eV
4
B
2B
4.53 10 5 2 5.788105
0.4T
4-9
试用经典物理方法导出正常塞曼效应.
4-10 Z=30 锌原子光谱中的一条谱线(3S1→3p0)在B为 1.00T的磁场
h 则
gj
3 2
1 2
(
s
2
j2
l
2
)
3 2
1 2
(
3 4
15
6
)
4 5
k4
依据磁矩计算公式
. j
j( j 1)g j B
25 15
B
w依据磁矩投影公式 z m j g jB
ww∴
z
2 5
B
,
6 5
B
mjg j
2 5
,
6 5
4-3 试证实:原子在6G3/2状态的磁矩等于零,并根据原子矢量模型
)
2 5

4
co m j
3 2
;
1 2
;
1 2
;
3 2
课 后 答 案 网
. 依公式
Z2
mJ
gJB
B z
dD 3kT
w 又
1 2
mV
2
50MeV
3kT=mV2=0.1eV
a Z2
mJ g J B
B z
dD 3kT
d =
3 2
2 5
5.0
10 30 50
0.52092cm
h 和
Z2
mJ g J B
B z
m 中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为几条?
相邻两谱线的波数差等于多少?是否属于正常塞曼效应?并请画出相
o 应的能级跃迁图.
c 解: 已知:对于激发态 L=0,J=1, S=1. m1=0,±1,在外磁场作用
. 下,g可1 以 分32 裂为21 三( S条2J。2
L2
)
3 2
(2
c 电子作用有互相抵消的情况.
课 后 答 案 网
4-4 在史特恩-盖拉赫实验中,处于基态的窄的银原子束通过极不均
. 匀的横向磁场,并射到屏上,磁极的纵向范围d=10cm,磁极中心到屏
w 的距离D=25 cm.如果银原子的速率为 400m/s,线束在屏上的分裂
间距为 2.0mm,试问磁场强度的梯度值应为多大?银原子的基态为2S1
z
,磁极的纵向范围d=10cm,磁极中心到屏的距离
D=30cm

使










F4 3/2










Ek=50MeV.试求屏上线束边缘成分之间的距离.
解: 对于多个电子 2S+1=4 S=3/2 L=3, J=3/2
m gj
3 2
1 2
(
s
2
j2l
2
)
3 2
1 2
(
15 4
12
15
共有 2j+1=4 条,相邻两条间距为|Z''-Z'|=0.4cm。
hd 4-7 试问波数差为 29.6cm-1的赖曼系主线双重线,属于何种类氢离
子?
k 解:~
n
3
z (l
4
1)
5.84cn
1
z
4
~n3l(l 1) 5.84cm 1
.~ 29.6cm1
w以为是赖曼系主线 n=2 L=1 代入上式 得,z=3 所以是 Li 原子
4-l 一束电子进入 1.2T 的均匀磁场时,试问电子自旋平行于和反
平行于磁场的电子的能量差为多大?
分析要点: ms=1/2,gs=2; z ms gsB B
解:已知:电子自旋磁矩在磁场方向的投影
z ms gsB B
m 依磁矩与磁场的作用能量
E
B
B
cos
o 自旋与E磁1场平行s 时 B sB cos 0 BB
.c 自旋与E磁2 场反平s 行B时 sB cos180 BB

w E E2 E1 2BB 21.2 0.5788104 eV 1.389104 eV
课 后 答 案 网
a 4-2 试计算原子处于 2 D3/2 状态的磁矩μ及投影μz的可能值.
d 解:已知:j=3/2, 2s+1=2 s=1/2, l =2
BZ z
ZEK JGB Dd
………….(1)
wZ 2103m
J
1 2
g=2
B 0.5788104 eV T1
wD 25102 m d 10 102
w代入上式得:
BZ z
1.24 102 T/m
4-5 在史特恩-盖拉赫实验中(图 19.1),不均匀横向磁场梯度为
2
B 5.0T / cm
2
0)
2
课 后 答 案 网
w 对于基态
a g2
3 2
12L(=S12,JJ2 =L02,)S=123
m2=0,在外磁场作用下,并不分裂。
(2
2
0)
3 2
d E2
E1
(E2
E1 ) (m2 g 2
m1g1 ) B B
= E2
相关文档
最新文档