原子物理学第四章题解
原子物理学课后习题答案
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学 原子的量子态:玻尔模型 (2.2.2)--施特恩-盖拉赫实验
第四章习题解答4-l 一束电子进入1.2 T 的均匀磁场时,试问电子自旋平行于和反平行于磁场的电子的能量差为多大?解:已知电子自旋磁矩在磁场方向的投影(注意做题时,它是磁场方向的投影,不要取真实值) 依磁矩与磁场的作用能量BB μμμ±=±=s s z gm Bμ3自旋与磁场平行时 自旋与磁场反平行时则θμμcos B B E =⋅= B B B E B s s μμμ==⋅= 0cos 1B B B E B s s μμμ-==⋅= 180cos 1eV 101.389eV 105788.02.122Δ44B 12--⨯=⨯⨯⨯==-=B E E E μ4-2 试计算原子处于 状态的磁矩及投影的可能值.解法一:已知:j =3/2, 2s +1=2 s =1/2, l =2则依据磁矩计算公式:依据磁矩投影公式:∴ 232D μ z μ544156432123=⎪⎪⎪⎪⎫ ⎝⎛-+=j g ()B B 15521μμμ-=+-=j j g j j Bμμj j z g m -=56,52±±=j j g m B B 56,52μμμ±±=z解法二:因为电子具有自旋,则存在与自旋相联系的磁矩,他在磁场作用下的能量为电子自旋方向与磁场平行和反平行,则有μB Us ⋅-=μ(其中,)所以电子自旋平行于和反平行于磁场的电子的能量为则电子自旋平行于和反平行于磁场的电子的能量差为Bm g B B UB s s sz s μμμ=-=⋅-=2=s g 21±=s m BU B μ±=eV 104.1T 2.1T eV 105788.022Δ414---⨯=⨯⋅⨯⨯==B U B μ4-3 试证实:原子在状态的磁矩等于零,并根据原子矢量模型对这一事实作出解释.解:依题意有236G所以综上得出,多电子耦合系统中,相互作用产生的总效果为零,说明多电子作用有相抵消的情况。
原子物理学 课后答案
目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
原子物理学习题答案(褚圣麟)很详细
For personal use only in study and research; not for commercial use1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p ZeMv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
原子物理学课后答案(褚圣麟)第3章第4章第6章
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
原子物理学习题标准答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvzed (2)把(2)式代入(1)式,得:2sin)()41(422220θπεΩ=d Mv ze Nt n dn ……(3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
原子物理学 答案 高教第四版 杨福家
原子物理习题库及解答 第一章 原子的位形1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:⎪⎩⎪⎨⎧+'='+=e e v m v M v M v M mv Mv ρρρ222212121 ⎪⎪⎩⎪⎪⎨⎧='-='-⇒222e e v M m v v v Mm v v ρρρ e v m p ρρ=∆ e p=mv p=mv ∴∆∆,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ∆≈-≈22e m v v v M∴⋅∆=有 212e p p Mmv ⋅∆=亦即: (2) (1)2/(2)得22422210e e m v m p Mmv M-∆===p 亦即:()p tg rad pθθ∆≈=-4~101-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε⨯=== 当901θθ=︒=时,ctg 2122.752b a fm ∴== 亦即:1522.7510b m -=⨯② 解:金的原子量为197A =;密度:731.8910/g m ρ=⨯依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=⋅=即:A V n Aρ= (2)由(1)式得:在90º→180 º范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ︒︒=⋅=⎰将所有数据代入得)(θP 5()9.410ρθ-=⨯这就是α粒子被散射到大于90º范围的粒子数占全部粒子数得百分比。
原子物理学习题答案褚圣麟很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
原子物理学课后习题详解第4章(褚圣麟)
原子物理学课后习题详解第4章(褚圣麟)第四章碱金属原子4、1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ολA 3519=∞。
求锂原子第一激发电势与电离电势。
解:主线系最长波长就是电子从第一激发态向基态跃迁产生得。
辅线系系限波长就是电子从无穷处向第一激发态跃迁产生得。
设第一激发电势为1V ,电离电势为∞V ,则有:伏特。
伏特375.5)11(850.111=+=∴+===∴=∞∞∞∞λλλλλλe hc V c h c h eV ehc V c heV 4、2 Na 原子得基态3S 。
已知其共振线波长为5893οA ,漫线系第一条得波长为8193οA ,基线系第一条得波长为18459οA ,主线系得系限波长为2413οA 。
试求3S 、3P 、3D 、4F 各谱项得项值。
解:将上述波长依次记为οοοολλλλλλλλAA A A p f d p p f d p 2413,18459,8193,5893,,,,max max max max max max ====∞∞即容易瞧出: 16max3416max 3316max316310685.0110227.1110447.21110144.41~---∞-∞∞=-=?=-=?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ4、3 K 原子共振线波长7665οA ,主线系得系限波长为2858οA 。
已知K 原子得基态4S 。
试求4S 、4P 谱项得量子数修正项p s ??,值各为多少?解:由题意知:P P s p p v T A A λλλοο/1~,2858,76654max ====∞∞由24)4(s R T S ?-=,得:S k T R s 4/4=?- 设R R K ≈,则有max411,229.2P P P T s λλ-==?∞ 与上类似 764.1/44=-≈?∞P T R p4、4 Li 原子得基态项2S 。
原子物理学第四,五,六,七章课后习题答案
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
原子物理学第四,五,六,七章课后习题答案-推荐下载
原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~
R (4 S )2
1 p
~
p n
~
1 2.858 107
~
T4S 3.4990 106 m 1
而
T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1
R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F
1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1
5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0
原子物理学习题标准答案(褚圣麟)很详细
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求
、
、
、
4F
各
3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013
米
106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t
原子物理学 课后答案 全
原子物理学课后答案全原子物理学课后答案全原子物理学习题解答刘富义第一章原子的基本状况1.1若卢瑟福散射用的?粒子是放射性物质镭c放射的,其动能为'求解:将1.1题中各量代入rm的表达式,得:rmin7.68?106电子伏特。
000散射物质是原子序数z?79的金箔。
试问散射角??150所对应的对准距离b多小?解:根据卢瑟福散射公式:2ze21()(1)240mvsin219479(1.601019)21910(1)6197.68?10?1.60?10sin75ctg获得:240kmv2b40b1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子222zeze与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个?e电荷而质量就是质子的两倍,就是氢的一种同位素的原子核)替代质子,其与金箔原子核的最小距离多大?3.02?10?14米ze2ctg?79?(1.60?1019)2ctg150180?。
当入射粒子的动解:当入射粒子与靶核对心碰撞时,散射角为?1522b3.97?10?126?194??0k?(4??8.85?10)?(7.68?10?10)能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
米2式中k??12mv是?粒子的功能。
根据上面的分析可以得:1.2已知散射角为?的?粒子与散射核的最短距离为1ze22mv?kp?,故存有:24??0rminrm2ze21?()(1?),何况上题?粒子与2?4??0mvsin21rminze2?4??0kp9散射的金原子核之间的最短距离rm多大?79?(1.60?10?19)2?13?9?10??1.14?10米6?1910?1.60?101原子物理学习题解答刘富义由上式窥见:rmin与入射光粒子的质量毫无关系,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14?10?13米。
1.4钋放射治疗的一种?粒子的速度为1.597?107米/秒,负面横向入射光于厚度为10?7米、密度为1.932?104公斤/米3的金箔。
原子物理学习题答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
原子物理学习题解答
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+ 之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au Nm N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Mu ρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
原子物理学杨福家1_6章_课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sinθ±(3)×cos θ, (4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)可将(6)式改写为θϕμϕθμ222s i n s i n )(s i n +=+(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0若sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ222)(90si nsi nsi n+=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值..解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依: θa 2sin注意到即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学习题答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mv ze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
原子物理学杨福家1-6章-课后习题标准答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
新教材高中物理第四章原子结构和波粒二象性2光电效应课后习题(含解析)新人教版选择性
光电效应课后篇巩固提升基础巩固1.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么(),选项A错误。
入射光的强度减弱,说明单位时间内的入射光子数目减少;频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B错误。
入射光子的数目减少,逸出的光电子数目也减少,故选项C正确。
入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的极限频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D错误。
2.(2020上海崇明区二模)如图,弧光灯发出的光,经过下列实验后产生了两个重要的实验现象。
①经过一狭缝后,在后面的锌板上形成明暗相间的条纹;②与锌板相连的验电器的铝箔张开了一定的角度。
则这两个实验现象分别说明()A.①和②都说明光有波动性B.①和②都说明光有粒子性C.①说明光有粒子性,②说明光有波动性D.①说明光有波动性,②说明光有粒子性①是光的干涉现象,衍射是波所特有的现象,该现象说明了光具有波动性;现象②是光照射到锌板上,从锌板上有电子逸出,发生了光电效应,该现象说明了光具有粒子性,故A、B、C错误,D正确。
3.(多选)用频率为ν的光照射在某金属表面时产生了光电子,当光电子垂直射入磁感应强度为B 的匀强磁场中做匀速圆周运动时,其最大半径为R ,若以W 表示逸出功,m 、e 表示电子的质量和电荷量,h 表示普朗克常量,则电子的最大初动能是( )A.hν+WB.BBBB C.hν-WD.B 2B 2B 22B,E km =hν-W ,A 错误,C 正确;根据洛伦兹力提供向心力,有:evB=m B 2B,则v=BBBB,最大初动能E km =12mv 2=B 2B 2B 22B,故D 正确,B 错误。
4.(2020山东泰安模拟)如图所示为研究光电效应现象的实验原理图。
已知光电管阴极材料的极限频率为ν0,现用频率为ν(ν>ν0)的单色光照射光电管,发现滑动变阻器的滑片P 处于图示位置时,灵敏电流计的示数为零,下列说法正确的是( ) A.灵敏电流计的示数为零,是因为没有发生光电效应P ,则灵敏电流计一定会有示数 P ,则灵敏电流计一定会有示数D.仅不断增大入射光的光照强度,灵敏电流计一定会有示数,入射光的频率大于阴极材料的极限频率,一定能发生光电效应,故A 错误;若不断向左移动滑片P ,反向电压增大且大于遏止电压,则灵敏电流计一定不会有示数,故B 错误;若不断向右移动滑片P ,方向电压减小且小于遏止电压,则灵敏电流计一定会有示数,故C 正确;增大入射光的强度,根据光电效应方程式E km =hν-W 0=eU c 可知,光电子的最大初动能为零,电流计中无电流,也没有示数,故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ww
8
w.
kh da
课 后
答 案
w.
网
线, 其波长分别为 766.4nm 和 769.9nm , 现将该原子置于磁场 B 中(设 769.9nm,
co m
线。
:钾原子的价电子从第一激发态向基态的跃迁类似于钠的精 要点分析 要点分析: 解:
(1) 先计算朗德因子和 mjgj
ww
2P 2P
w.
1/2 对应有 3/2 对应有
w.
网
co m
当换为氯原子时,因其基态为 2P 3/2
又由(21-13) 式,Δμ=4.53×10-5eV
∆µ 4. 53× 10−5 B≈ = = 0. 4T −5 2µ B 2 × 5.788 × 10
4-9 试用经典物理方法导出正常塞曼效应.
场中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为 几 场中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为几 条?相邻两谱线的波数差等于多少 ?是否属于正常塞曼效应 ?并请画出 相邻两谱线的波数差等于多少? 是否属于正常塞曼效应? 相应的能级跃迁图. 下,可以分裂为三条。 解: 已知:对于激发态 L=0,J=1, S =1. m1=0, ±1,在外磁场作 用 =0,± 在外磁场作用
⎛− 2⎞ ⎜ ⎟ − E1 + ⎜ 0 ⎟ µ B B ⎜ 2 ⎟ ⎝ ⎠
所以原谱线在外加磁场中分裂为三条,垂直磁场可以看到三条谱线。 Δm=0,+1,-1,分别对应于π ,σ+,σ-三条谱线。 虽然谱线一分为三, 但彼此间间隔值为 2μ BB,并不是μ BB,并非激 发 ,并非激发 态和基态的 S=0,因 S≠0 所以它不是正常的塞曼效应。 对应的能级跃迁图
3 2 10 × 30 ± × × 5 . 0 × = ±0.52092 cm = 2 5 50
和
ww
1 2 10 × 30 ± × × 5.0 × = ±0.1736 cm = 2 5 50
即: Z ±3/2 =2Z2(±3/2)= 2×0.52092=1.42cm Z ±1/2 =2Z2(±1/2)= 2×0.1736=0.347cm
4-6. 在史特恩-盖拉赫实验中, 原子态的氢从温度为 400 K 的炉中射 出,在屏上接受到两条氢束线,间距为 0.60cm.若把氢原子换成氯 原子(基态为 2P3/ 2),其它实验条件不变,那么,在屏上可以接受到
w.
Z 2 = −m J g J µ B
kh da
课 后
∂B dD ⋅ ∂z 3kT
2 5 µB 15
∆E = E2 − E1 = 2µ B B = 2 ×1.2 × 0.5788× 10 eV = 1.389× 10 eV
依据磁矩投影公式 ∴
µ z = −m j g j µ B
2 6 µ z = ± µ B ,± µ B 5 5
4-3
试证实: 原子在 6G3/ 2 状态的磁矩等于零,并根据原子矢量模型
3
1 mV 2 = 50MeV 又 2 ∂B dD Z 2 = −m J g J µ B ⋅ ∂z 3kT
答 案
依公式
Z 2 = −mJ g J µ B
w.
∂B dD ⋅ ∂z 3kT
网
co m
3 kT= mV2=0.1eV
15 ⌢2 ⌢2 − 12 3 1 s −l 3 1 4 2 g j = + ( ⌢2 ) = + ( )= 2 2 j 2 2 15 5 4
分裂为四
网
co m
条线。
⎛ 5⎞ ⎜± ⎟ ⎛ 2⎞ ⎜ 3⎟ ± ⎟ ⎜ ~ ~ ⎜ 1⎟~ 3 ⎟ − ±1) L ′ ′ ⎜ ν′ − ν = ( m g − m g ) L = ( = ± L 2 2 2 1 1 6 ⎜ 3 ⎟ 分裂为六条 ⎜± ⎟ ⎜ ⎟ ⎜ ±1 ⎟ ⎝ 3⎠ ⎜ ⎟ ⎝ ⎠
细结构。其能级图同上题。
kh da
课 后
gj =
3 1⎛ s ˆ 2 − lˆ 2 ⎞ ⎟ + ⎜ 2 ⎟ ˆ 2 2⎜ j ⎝ ⎠
7
答 案
w.
,将 s=1/2, l=0;j =1/2 代入 , 依
~ ′ ν − ν = (m2 g 2 − m1 g1 ) µ B B / h = ( m2 g 2 − m1 g1 ) L
⎛ ± 1 ~ ~ ⎜ ν 1′ − ν = (m2 g 2 − m1 g1 ) L = (± − ±1) L = ⎜ 3 ⎜± ⎜ ⎝ 2⎞ ⎟~ 3 ⎟L 4⎟ ⎟ 3⎠
~ = 29.6cm −1 ∆ν
所以为 Li + +
试估计作用在氢原子 2P 态电子上的磁场强度. hc∆λ ∆µ B= 2 = 2λ µ B 2 µ B
4
kh da
课 后
3 4 z′ = ± × × 0.3 = ±0.6cm 2 3
答 案
3 1 1 3 m j = + ;+ ;− ;− 2 2 2 2
原子态 2P1/2 ,2P3/2。分别对应于 g1/2 =2/3, m1g1 =±1/3 g3/2 =4/3, m2g2= ±2/3 , ±6/3
ww
w.
对于 P 态,相应的 l=1 ,因而 j= l±s, s =1/2,j=1/2 ,3/2 ,有两个 B. B.对于 =1,因而 =1/2, 3/2,有两个
4-l 一束电子进入 1.2T 的均匀磁场时,试问电子自旋平行于和反 平行于磁场的电子的能量差为多大 ? 平行于磁场的电子的能量差为多大? : ms=1/2,gs=2; 分析要点 分析要点:
µ z = ±ms g s µ B = ± µ B
� � E = µ ⋅ B = µ B cos θ
解:已知:电子自旋磁矩在磁场方向的投影
4-11 试计算在 B 为 2.5T 的磁场中, 钠原子的 D 双线所引起的塞 曼 双线所引起的塞曼 分裂.
ww
6
w.
kh da
课 后
答 案
w.
网
co m
A.对于 2S1/2 态,用 解: 解:A
1 ;由于 j=1/2, 因而 mj= 2 ,于是 mj gj= ±1 。 即可算出 gj=2 =2;由于 =1/2,因而 ±
答 案
w.
网
′ − E1 ′ = ( E 2 − E1 ) + ( m2 g 2 − m1 g 1 ) µ B B = E E2
µB =
ww
⎛ − 2⎞ ⎜ ⎟ e ν ′ =ν + ⎜ 0 ⎟ B ⎜ 2 ⎟ 4πme ⎝ ⎠
⎛ − 2⎞ ⎛− 2⎞ ⎜ ⎟ eB ⎜ ⎟ ν ′ −ν = ⎜ 0 ⎟ = ⎜ 0 ⎟ × 14B(T) GH z ⎜ 2 ⎟ 4πme ⎜ 2 ⎟ ⎝ ⎠ ⎝ ⎠
⌢ ⌢ 3 1 S 2 − L2 3 2−0 3 g2 = + ( ⌢2 ) = + ( )= 2 2 2 2 2 J
课
对于基态 L=1,J=0, S =1 m2=0,在外磁场作用下,并不分裂。
kh da
后
5
⌢ 2 ⌢2 3 1 S −L 3 2−0 g1 = + ( ⌢ 2 ) = + ( )=2 2 2 2 2 J
D = 25 ×10 m
d = 10 × 10 −2
∂BZ = 1.24 × 10 2 T/m 代入上式得: ∂z
4-5 在史特恩 -盖拉赫实验中 (图 19.1) ,不均匀横向 磁场梯度为
2
w.
2
网
J=1/2 故 M= ± 1 朗德 g 因子为: g=2
co m
m j=3/2,1/2,-1/2,-3/2 ⎛ 5⎛ 5 ⎞ ⎞ + 1 − 4 4 + 1 ( ) 2 2 ⎜ ⎟ ⎜ ⎟ ˆ −L ˆ 3 1 S 3 1 2⎝ 2 ⎠ ⎟=0 gj = + ( )= + ⎜ ˆ2 3⎛ 3 ⎞ 2 2 J 2 2⎜ ⎟ ⎜ + 1⎟ ⎜ ⎟ 2⎝ 2 ⎠ ⎝ ⎠
子?
ww
4-8 解:
~ 解: ∆ν =
以为是赖曼系主线 n=2 又因为其为类氢离子
w.
试问波数差为 29.6cm-1 的赖曼系主线双重线,属于何种类氢离
~n 3 l(l + 1) z4 ∆ν −1 4 × 5.84cn ⇒ z = n 3 (l + 1) 5.84cm −1
L=1
代入上式 得 ,z =3 所以是 Li 原子
l =1 s =1/2
3 ⌢2 ⌢2 3 1 s −l 3 1 4−2 4 g j = + ( ⌢2 ) = + ( )= 2 2 j 2 2 15 3 4
1 4 z ′′ = ± × × 0.3 = ±0.2cm 2 3
共有 2j +1=4 条,相邻两条间距为|Z '' -Z '|=0.4cm。 4-7
µ z = ±ms g s µ B = ± µ B
依磁矩与磁场的作用能量 自旋与磁场平行时
� � E1 = µ s ⋅ B = µ s B cos 0° = µ B B
自旋与磁场反平行时
答 案
w.
−4 1
� � E2 = µs ⋅ B = µs B cos180 ° = − µB B
网
2 4-2 试计算原子处于 D3/ 2 状态的磁矩μ及投影μ z 的可能值.
4-12 注:此题 (2) 有两种理解 (不同习题集不同做法 ,建议用第二种 此题(2) (2)有两种理解 有两种理解( 不同习题集不同做法, 方法 ). 方法). 钾原子的价电子从第一激发态向基态跃迁时,产生两条精细结构谱 为弱场 ) ,使与此两精细结构谱线有关的能级进一步分裂. 为弱场) (1) 试计算能级分裂大小,并绘出分裂后的能级图. (1)试计算能级分裂大小,并绘出分裂后的能级图. 差ΔE 1 的 1.5 倍,所加磁场 B 应为多大 ? 应为多大? (2) 如欲使分裂后的最高能级 与最低能级间的差距 ΔE2 等于原能级 (2)如欲使分裂后的最高能级 与最低能级间的差距Δ