信号与系统第三章:傅里叶变换ppt课件
《信号的傅里叶分析》课件
傅里叶分析的基本原理
学习傅里叶分析的基本原理, 包括信号的频率分解和重构。
数字信号处理的背景和 应用
了解数字信号处理的发展背 景及其在各个领域的应用。
傅里叶级数
1 傅里叶级数的定义
详细介绍傅里叶级数的定义,包括周期信号的频域表示。
2 傅里叶级数展开式
学习如何将周期信号展开为一系列正弦和余弦函数的组合。
3 正弦级数和余弦级数
深入探讨正弦级数和余弦级数的特性和应用。
傅里叶变换
1 傅里叶变换的定义
2 傅里叶变换的性质
详细介绍傅里叶变换的定 义和信号在频域中的表示。
探讨傅里叶变换的基本性 质,如平移、尺度变换和 线性性质。
3 傅里叶变换的逆变换
学习如何通过逆变换将频 域信号转换回时域。
傅里叶级数与傅里叶变换的关系
1 傅里叶级数与周期信 2 傅里叶变换与非周期 3 信号重构
号
信号
探讨如解傅里叶变换在非周期
和傅里叶变换进行信号的
号分析中的应用及其与傅
信号分析中的作用及其特
重构。
里叶变换的区别。
点。
数字信号处理中的傅里叶分析
1 离散傅里叶级数
介绍离散傅里叶级数的应用及其在数字信号 处理中的重要性。
2 发展趋势
展望傅里叶分析的未来发展趋势,包括新技术和应用领域。
3 实际应用中的注意事项
探讨在实际应用中使用傅里叶分析时需要注意的问题和解决方法。
2 离散傅里叶变换
深入了解离散傅里叶变换的原理和在信号处 理中的实际应用。
3 快速傅里叶变换
学习快速傅里叶变换算法及其在高效信号处 理中的作用。
4 应用案例
通过实际应用案例展示数字信号处理中傅里 叶分析的重要性和优势。
信号与系统PPT 第三章 傅利叶变换
bn an
)
2
(n 1,3,5)
f
(t)
2E
n1,3,5
1 n
sin
n1t
2E
(sin
1t
1 3
sin
31t
1 5
sin
51
)
或
2E
f (t)
n1,3,5
1 n
cos(n1t
2
)
Fn
1 2 (an
jbn
)
j
bn 2
jE
n
0
n 1,3,5 n 2,4,6
f (t) jE e j1t jE e j31t jE e j1t jE e j31t
5
51 31 1 1 31 51
0 1 31 51
n
n 1 31
0
51
51 31 1
2
1
31 51
2
2
3.1.4 波形的对称性与傅里叶级数的关系
已知信号f(t)展为傅里叶级数的时候,如果f(t)
是实函数而且它的波形满足某种对称性,则在傅里叶 级数中有些项将不出现,留下的各项系数的表示式也 将变得比较简单。波形的对称性有两类,一类是对整 周期对称;另一类是对半周期对称。
那么这个正交函数集也就不完备。
1,cos1t,cos 21t,cos n1t,, sin1t,sin21t,sinn1t,
包含正、 余弦函数的三角函数集是最重要的完
备正交函数集。 它具有以下优点:
(1) 三角函数是基本函数; (2) 用三角函数表示信号, 建立了时间与频率两个基本物理量之
间的联系; (3) 单频三角函数是简谐信号,简谐信号容易产生、传输、 处理; (4) 三角函数信号通过线性时不变系统后, 仍为同频三角函数信
信号与系统:第三章傅立叶变换2
当信号f (t)为实函数时
F(jw) =R(w)+jx(w) =|F(jw)|ejj (w) F(jw)为复函数 其中R(w)与 |F(jw)| 为w 的偶函数,x(w)与j (w)为
18
w 的奇函数。
三、一些典型信号的 频谱函数F(jw) (即傅里叶变换)
(1)门函数的傅里叶变换
w
10W
10W w
信号分解为指数形级数时用双边频谱表示
4
An
Fn
w
0 2 4 6 8 10
-10 -6 -4 -2 0 2
4
6
8
1 0
w
n
n
6
0 2 4 8 10 w
-10 -4 -2
6
-6
0 24
8 10
w
5
An
3
7
w
0
5
9
Fn
-7 -5
-3 -0
3
7
5
w
6
二、 周期信号频谱的特点 一)周期矩形脉冲的频谱
2
相位谱:以频率ω (或f )为横坐标,以各谐波的相位 为纵坐标。
0
5W 10W w
-10W -5W 0
5W
10W w
3
1) 单边 频谱
信号分解为三角形级数时用单边频谱表示
An
A1 A2
|Fn|
F- 2F- 1 F1F2
0
5W
w
10W
-10W -5W
0
5W
5W 10W w
0
5W
2) 双边频谱
-10W -5W 0
FnT
16
2) 傅里叶变换的表示方法
信号课件第三章傅里叶变换
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
数字信号处理第三章离散傅里叶变换DFTppt课件
2 N
kn
n
xN (n) IDFT[ X (k)]
x(n)与xN (n)的关系?
26
离散傅里叶变换(DFT)
xN (n)
~
x(n)
~
X (k)
X (k)
~
x(n)
~
IDFS[ X (k)]
1 N
N 1 ~
X (k )WNkn
k 0
1 0
1 N
N 1
[
如果序列x(n)的长度为M ,则只有当频域采样点数 N M时,才有xN (n) IDFT[ X (k)] x(n)
28
离散傅里叶变换(DFT)
[例] 已知 x(n) R8 (n) ,X (e j ) FT[x(n)] 对 X (e j )
采样得
X (k)
X (e j )
, k
2 6
k
1 N
N 1
X1(l) X 2 ((k
k 0
l))N
RN (k)
1 N
X1(k)
NX 2 (k)
1 N
N 1
X 2 (l) X1((k
k 0
l))N RN (k)
1 N
X 2 (k )
NX 1 (k )
22
离散傅里叶变换(DFT) 4.复共轭序列的DFT
X (k) DFT[x(n)]
证明: DFT[x(n)] X (N k)且X (N ) X 0
第三章 离散傅里叶变换(DFT)
离散傅里叶变换(DFT)
离散傅里叶变换的定义
主
离散傅里叶变换的基本性质
要
内
容
频率域采样
DFT的应用举例
2
信号与系统三大变换PPT课件
拉普拉斯变换
拉普拉斯变换可以将时域信 号转换为复频域,能够分析 系统的动态特性,是分析线 性时不变系统的重要工具。
Z变换
Z变换可以将离散时间信号 转换为复频域,广泛应用于 数字信号处理、数字滤波器 设计等领域。
信号与系统分析的一般流程
信号建模
1
根据实际问题,建立合适的数学模型
系统分析 2
对系统的输入输出关系进行分析
信号与系统分析实例
频域分析
运用傅里叶变换将时域信号转换到频域,分析信号的频谱特性,如频带、主频、谐波等。
时域分析
利用时域函数描述信号的波形、幅值、时间特性,如上升时间、延迟时间、衰减特性等。
系统建模
建立信号传输系统的数学模型,运用拉普拉斯变换或Z变换分析系统的响应特性。
滤波设计
利用频域分析结果设计合适的滤波器,如低通、高通、带通滤波器,优化系统性能。
系统
系统指由相互关联的元素组成的 整体,对输入信号进行处理并产 生输出信号的装置或过程。
输入输出
系统接受外界信号作为输入,经 过一系列的处理过程后产生输出 信号。输入输出是系统的基本特 性。
为什么要学习信号与系统
理解现代技术的 基础
信号与系统是现代技 术的基础之一,涉及 电子、通信、控制、 信息处理等诸多领域 。学习这门课程可以 帮助我们深入理解这 些技术的工作原理变换F(s)的收敛性 由实部大于某个门限值的s 决定。即当Re(s) > σ₀时, 拉普拉斯变换收敛。
拉普拉斯变换的性质
线性性
拉普拉斯变换满足线 性性质,即对任意常 数a和b以及信号x(t) 和y(t),有 L{ax(t)+by(t)}=aL{ x(t)}+bL{y(t)}。这 使得拉普拉斯变换在 信号分析中有很强的 适用性。
信号与系统第3章 傅里叶变换
P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
傅里叶变换课件
快速傅里叶变换的算法原理
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其基本思想是将DFT运算分解为一系列简单 的复数乘法和加法运算。
FFT算法可以分为基于分治策略的递归算法和基于蝶形运算的迭代算法。其中,递归算法将DFT运算 分解为两个子序列的DFT运算,迭代算法则通过一系列蝶形运算逐步逼近DFT的结果。
,实现图像的压缩。
解压缩
通过插值或重构算法,可以恢复 压缩后的图像,使其具有原始的
质量和细节。
压缩与解压缩算法
常见的压缩与解压缩算法包括 JPEG、PNG等。这些算法在压 缩和解压缩过程中都利用了傅里
叶变换。
06
傅里叶变换在通信系统中的应用
调制与解调技术
调制技术
利用傅里叶变换对信号进行调制,将 低频信号转换为高频信号,以便在信 道中传输。
在频域中,可以使用各种滤波器 对图像进行滤波操作,以减少噪 声、平滑图像或突出特定频率的
细节。
边缘增强
通过在频域中增强高频成分,可以 突出图像的边缘信息,使图像更加 清晰。
对比度增强
通过调整频域中的频率系数,可以 改变图像的对比度,使图像更加鲜 明。
图像的压缩与解压缩
压缩
通过减少图像的频域表示中的频 率系数,可以减少图像的数据量
快速傅里叶变换的应用
• FFT在信号处理、图像处理、语音处理等领域有着广泛的应用。例如,在信号处理中,可以通过FFT将时域信号转换为频域 信号,从而对信号进行频谱分析、滤波等操作。在图像处理中,可以通过FFT将图像从空间域转换到频域,从而对图像进行 去噪、压缩等操作。在语音处理中,可以通过FFT对语音信号进行频谱分析,从而提取语音特征、进行语音合成等操作。
分析、系统优化等。
傅里叶变换课件
第三章付里叶级数和付里叶变换第三章主要包括以下几点内容:1、付里叶级数教学内容要点:(1)、三角函数的正交性(2)、周期信号的付里叶展开(3)、奇、偶函数的付里叶展开(4)、付里叶级数的指数形式2、付里叶变换教学内容要点:(1)付里叶变换式(2)奇异函数的付里叶变换3、付里叶变换的性质教学内容要点:(1)、线性(2)、奇、偶性(3)、对称性(4)、尺度变换(5)、时移特性(6)、频移特性(7)、卷积定理(8)、时域微分和积分(9)、频率微分和积分4、周期信号的付里叶变换教学内容要点:(1)正、余弦函数的付里叶变换(2)一般周期函数的付里叶变换第三章内容的学时分配:湖南文理学院12课时,芙蓉学院16课时。
分为4部分:一、傅里叶级数二、傅里叶变换三、傅里叶变换的性质四、周期信号的傅里叶变换一、傅里叶变换级数教学重点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学难点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学目的:1、掌握傅里叶变换式;2、掌握奇异函数的傅里叶变换教学方法:讲授法,演示法教学课时:文理学院3课时;芙蓉学院4课时教学过程:1.傅里叶变换二、 傅里叶变换教学重点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学难点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学目的:1、掌握傅里叶变换式;2、掌握奇异函数的傅里叶变换教学方法:讲授法,演示法教学课时:文理学院3课时;芙蓉学院4课时教学过程:2. 傅里叶变换对于非周期信号,重复周期T 趋于无限大,谱线间隔趋于无穷小量d ω,而离散频率n Ω变成连续频率ω。
在这种极限情况下,n F 趋于无穷小量,但Ω=⋅n n F T F π2可望趋于有限值,且为一个连续函数,通常记为F (j ω),即dt et f F j F tjn TT T nT ωωπω--∞→∞→⎰==22)(lim2lim)(得dt et f j F tj ωω-∞∞-⎰=)()(称)(ωj F 为非周期信号)(t f 的频谱密度函数。
离散傅里叶变换(DFT)PPT课件
x(n)与 ~x(n) x(n)
…
…
0
n
例: ~x(n)是周期为 N=4 的序列,求 n=6 和 n=-1 对 N的余数。
对于周期序列 ~x(n) ,定义其第一个周期 n=0~N-1,为
~x(n) 的“主值区间”,主值区间上的序列为主值序列 x(n)。
x(n)与 ~x(n) 的关系可描述为:
~x(n)是x(n)的周期延拓 x(n)是~x(n)的"主值序"列
数学表示:
~ x(n)x(n ()N ) x(n)~ x(n)RN(n)x(n ()N )RN(n)
x(n) 1
0.5
0 0 10 20 30 40
IDFS|X(k)| 1 0.8 0.6 0.4 0.2
0 10 20 30 40
|X(k)|
arg|X(k)|
12
2
10
8
1
6
0
4
2
-1
-
14
0 10 20 30 40
0 10 20 30 40
序列周期重复次数对序列频谱的影响:
理论上,周期序列不满足绝对可积条件,因此不能用傅立叶级 数来表示。要对周期序列进行分析,可以先取K个周期处理, 然后再让K趋于无穷大,研究其极限情况。基于该思想,可以 观察到序列信号由非周期到周期变化时,频谱由连续谱逐渐向 离散谱过渡的过程。
101510510151015105101563物理频率分辨率越高就越能真实刻划信号的频率构成成分或者说越能体现细节即在频域中描述得比较精确对离散时间信号x比如你的信号中有个5hz10hz102hz20hz25hz等正弦成分他们相邻的最小频率间隔是1021002hz也就是说你需要把10和102hz这两个成分分开即可如果分辨率太高则数据量太长浪费计算时间如果分辨率太低则无法把这两个频率分开所以你可以选择截取的最小时长为t1102105秒
信号与系统第三章:傅里叶变换ppt课件
n 可见,A n 是 的偶函数,即有 An An
n 而 n 是 的奇函数,即有 n n 19
可见,任何满足狄里赫利条件的周期信号均可分解为
直 流分量
A0 2
,一次谐波或基波
A1cos(1t1)(它
的角 频率与原周期信号相同),二次谐波 A2cos(21t2),
以此类推,三次,四次等谐波。
n 一般而言 Ancos(n1tn) 称为 次谐波 ,A n
i1,2,....n...,
,则称该函数集为完备正交函数集。
三角函数集:
1 , c o s 1 t , c o s 2 1 t ,c o s n 1 t ,, s i n 1 t , s i n 2 1 t ,s i n n 1 t ,
在区间 (t0,t0 T) 内组成完备正交函数集。 T 2 /1
8
正交函数集
(1)正交函数 在 [t1, t2 ] 区间上定义的非零实函数
1(t)和 2(t) 若满足条件 tt121(t)2(t)dt0
则函数 1(t)与 2(t)为在区间 [t1, t2 ] 的正交函数。
(2)正交函数集 在区间 [t1, t2上] 的n个函数(非
零)1(t) …… n(t) ,其中任意两个均满足
任意周期信号可分解为许多不同频率的虚指数信号之和其各分量的复数幅度或相量为44444545三角形式傅里叶级数4646指数形式傅里叶级数任意周期信号可以表示为一系列不同频率的正弦函数或虚指数函数之和
LOGO
傅里叶变换
上海大学机自学院
完整版课件
1
上一章(线性时不变系统的时域分析)回顾
❖ 上一章其实质是在时域中进行系统分析的任务,也就是说解决在给定的时域输入信号 激励作用下,系统在时域中将产生什么样响应的问题。之所以称为时域分析,是由于 在系统分析的过程中,所涉及的函数变量均为时间t,故这一方法称之为“时域分析 法”。该方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。主要内容, 可概括为如下几个方面:
信号与系统离散时间傅立叶变换(PPT62页)
4. x(n) (n)
X (e j ) x(n)e jn 1 n
(n)
1 n
0
三. DTFT的收敛问题
如图所示:
X (e j )
1
0
当x(n是) 无限长序列时,由于 X(的e j表 ) 达式是无
穷项级数,当然会存在收敛问题。
收敛条件有两组:
2
1. x(n)则级数, 以均方误差最小的准则
当N 时,x(n) x(n), k0 , 0 d, ,
当 k在一个周期范围内变化时, k在0 范2围变化,
所以积分区间是 。 2
x(n) 1 X (e j )e jnd
2 2
表明:离散时间序列可以分解为频率在2π区间上
分布的、幅度为 合。
1 X 的(e j复 )d指数分量的线性组 2
DFS ( The Discrete-Time Fourier Series ): 离散时间傅立叶级数
CTFT ( The Continuous-Time Fourier Transform ): 连续时间傅立叶变换
DTFT ( The Discrete-Time Fourier Transform ): 离散时间傅立叶变换
两点比较:
1.与对应的周期信号比较
X
(e
j
)
sin(2N1
1)
2
sin
2
ak
1 N
sin
N
k (2 N1
sin k
1) ,
N
ak
1 N
X (e j ) 2 k N
显然有 关系成立
2.与对应的连续时间信号比较
x(t)
1, 0,
如图所示:
t T1 t T1
《傅里叶变换》课件
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
3章-经典傅里叶变换讲解ppt课件
n=1
n>1
直流分量 基波分量 n次谐波分量
整理ppt
7
式中,n
arctan
bn an
cn
an2bn2
Opposite Hypotenuse
为n次谐波初始相位。 为n次谐波振幅。
! 并非任意周期信号都能进行傅里叶级数展开!
f ( t ) 可展开为傅里叶级数的条件:
(1)f ( t 绝) 对可积,即:t2 f (t) dt t1
f(t)a0 (ancosn1tbnsinn1t) n1
称为傅里叶级数
系
an
t2 t1
f(t)cos(n1t)dt
t1 t2cos2(n1t)dt
2 t21 t1
t2t1
t2 t1
f(t)cos(n1t)dt,
t2 f(t)dt, n0
t1
n0
数
bn
t2 t1
f(t)sin(n1t)dt
t1 t2sin2(n1t)dt
2 t2t1
t2 t1
f(t)sin(n1t)dt
整理ppt
6
或 f(t)a 2 0n 1(a nc o sn1 t b nsinn1 t)
傅里叶级数的 三角展开式
2
ant2t1
t2 t1
f(t)cos(n1t)dt
同上式
另一种形式
f(t)a 20n 1cncos(n1tn) t
nn002T
Sa(n1)
2
整理ppt
21
(2)双边频谱:
1
FnT
/2ejn1tdt1ejn1t /2 2sinn21
/2
Tjn1/2 T n1
b b24ac 2a
《傅里叶变换详解》课件
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
第三章傅里叶变换90页PPT
• 例题:已知信号f(t)=cos100t,求其频谱Fn。
Fn
0.5
解:
f(t)1(ej10t0ej10t0)
所以
2 F1
F1
1 2
,
其F余 n0, n1
-w1
w1
nw1
• 例题:已知信号f(t)的频谱Fn如图所示,求信号f(t)。
解: F 0 2 ,F 1 F 1 2 ,F 2 F 2 1
三角形式的傅里叶级数也可表示成:
f(t)c0 cncos(n1tn)
其中 c n 2 a n 2 b n 2
n1n a rc ta n ( a b n n)
(2)
c 0 a 0
an为 n 1 的偶函数, b n 为 n 1 的奇函数
cn为 n 1 的偶函数, n为 n 1 的奇函数
例题 求题图所示的周期矩形信号的三角形式傅里叶级数。
其中
aan0 n 1T21T11tt00tt0T 01Tf1(tf)c(t)odnst1tdt•角级f(函数t)分数。解线为性不组同合频的率无三穷
推导
2
bn
T1
t0T1 t0
f(t)s
in1tdt
基波,二次谐波….n次谐波
傅里叶级数表明信号中各次谐波的分布。
f(t)a0 (anco ns1tbnsinn 1t) n1
(2)谐波性 -------- 谱线出现在基波频率 1 的整数倍上。
(1)
n 1
f(t)c0 cncon s1(tn)
(2)
n1
f (t)
Fnejn1t
n
f(t) →Fn建立一一对应关系。
(3)
不同时域信号对应的Fn不同,因此可以通过研究Fn来研究 信号的特性。Fn是频率的函数,它反映了组成信号的各次谐波的幅 度和相位变化规律称为频谱函数。可直观地看出各频率分量的相对 大小和相位情况,这样的图就称为信号的幅度频谱和相位频谱。
信号与系统第三章傅里叶变换
a0
F f t F
f t
0
t
2
2
f
(at)
1 |a|
F
a
F
2
2
f t
0
t
4
4
F
4
4
时域中压缩
频域中扩展,时域中扩展
频域中压缩
(实例:录音:慢录快放,时间短、频带宽
t
f
t
1
t T1
0 t T1
F
2T1 sincT1
f t sinWt F
t
f t W sin cWt
W /
/W
/W
0
F
j
1
0
W W
F
t
1 F j
-W 0 W ω
1 X1 j
F j ea t e j tdt
0
eat e j t dt e at e j t dt
0
1 1
a j a j
F
j
2a
a2 2
ea t
a
0F
a
2
2a
2
f
t
1
0
2
2 f t F j e j td
交换 t ,
2 f
F
jt e j t dt
1F 2 2
f (t) 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时域分析
❖ 时域分析的要点是,以冲激信号或单位信号为基本信号, 任意输入信号可分解为一系列冲激函数或单位函数;且,
yf(t)h(t)f(t) yf(k)h(k)f(k)
对于连续时间系统 对于离散时间系统
❖ 在本章的分析中,所指的信号和系统均为连续时间信号和 连续时间系统。
4
变换域
❖ 变换域一般指:频域、S域和Z域;也就是通过各种数学变 换,将时域的信号与系统变换到频域、S域和Z域中进行分 析和观察,这样不仅能够简化信号与系统在时域分析中的 复杂计算,更主要的是:可以观察到信号与系统在时域分 析中所无法看到的一些奇妙的现象和特性,从而可以多角 度地对信号与系统有更深刻的认识和更全面的把握。
10
三角函数集
1 ,c o sn 1 t,sin n 1 t是一个完备的正交函数集
由积分可知
t在一个周期内,n=1,...
T
2Tcosn1tsinm1dt0 T 2T 22cosn1tcosm 1tdt T 2 0,,
T 2T 2sinn1tsinm1tdt T 2 0,,
11
mn mn mn mn
t2
t1 i
(t)j
(t)dt
0, ki 0,
i j i j
k i 为常数,则称函数集 1(t)....n.(t.)..为. 区间
[t1, t2 ]内的正交函数集。
9
完备正交函数集
如果在正交函数集 1(t)....n.(t.)..之.外不存在函数
Байду номын сангаас
(t)
满足等式
t2
t1 i
(t)(t)dt0
i1,2,....n...,
,则称该函数集为完备正交函数集。
三角函数集:
1 , c o s 1 t , c o s 2 1 t ,c o s n 1 t ,, s i n 1 t , s i n 2 1 t ,s i n n 1 t ,
在区间 (t0,t0 T) 内组成完备正交函数集。 T 2 /1
❖ 5、卷积和 卷积和的基本概念和意义;通过定义、性质以及图解法和不进位乘法熟练进行求解的 方法和步骤。
2
第三章主要内容
❖3.1 信号分解为正交函数 (一般了解) ❖3.2 傅里叶级数 ❖3.3 周期信号的频谱 ❖3.4 非周期信号的频谱(傅里叶变换) ❖3.5 傅里叶变换的性质 ❖3.6 卷积定理 ❖3.7 周期信号的傅里叶变换 ❖ 3.8.抽样信号的傅里叶变换与取样定理
如三维空间中,Vx (1,0,0) Vy (0,1,0) Vz (0,0,1)
所组成的集合就是矢量正交集,且完备。
矢量A(1,2.5,4)表示为 AVx2.5Vy4Vz
矢量正交分解的概念可以推广到信号空间,在信号空间 找到若干个相互正交的信号作为基本信号,使得信号空 间中的任意信号均可表示成它们的线性组合。
任意非周期信号可以表示为一系列不同频率的正弦或 虚指数函数积分。
由于这里用于系统分析的独立变量是频率,故称为频域分析。
6
3.1 信号分解为正交函数
信号分解为正交函数的原理与矢量分解为正交矢量的
y
概念相似。
AC1vxC2vy
C 2v y
A
v x , v y 为各相应方向的正交单位矢量。
C1v x
x
它们组成一个二维正交矢量集。
8
正交函数集
(1)正交函数 在 [t1, t2 ] 区间上定义的非零实函数
1(t)和 2(t) 若满足条件 tt121(t)2(t)dt0
则函数 1(t)与 2(t)为在区间 [t1, t2 ] 的正交函数。
(2)正交函数集 在区间 [t1, t2上] 的n个函数(非
零)1(t) …… n(t) ,其中任意两个均满足
复指数函数集
复 指 数 函 数 集 : e j n 1 t ( 其 中 n 0 , 1 , 2 )
e t1T jn1t t1
ejn1t
dt0
mn
e t1T jn1t t1
ejn1t
dtT
T2 1 为 指 数 函 数 的 公 共 周 期
当 n ,e j n 1 t为 一 完 备 的 正 交 函 数 集
❖ 1、时域分析的基本概念 系统时域响应的概念和四种主要响应形式。
❖ 2、离散系统的时域分析 差分和差分方程的含义和建立;差分方程的经典解法,以及各种响应的具体求解。
❖ 3、单位冲击响应与单位样值响应 单位冲击响应和单位样值响应的概念和实质;通过微分方程或差分方程的求解方法。
❖ 4、卷积积分 卷积积分的基本概念和意义;采用定义法和图解法进行求解的方法和步骤;卷积积分 的重要性质。
矢量正交分解的概念可以推广到信号空间,在信号空 间找到若干个相互正交的信号作为基本信号,使得信 号空间中的任意信号均可表示成它们的线性组合。
7
矢量正交集
❖ 矢量正交的定义
矢量 Vx (Vx1,Vx2,Vx3)和 Vy (Vy1,Vy2,Vy3)
内积为零,即
3
VxVyT VxiVyi 0
i1
❖ 矢量正交集:指由两两正交的矢量组成的矢量集合。
12
信号分解为正交函数
设有n个函数 1(t),2(t),.., .n.(t)在区间 (t1 , t2) 构成
一个正交函数空间。将任一函数 f (t)用这 n个正交函数的
线性组合来近似,可表示为:
n
f(t) C 11 (t) C 22 (t) .. .C .n.n (.t)C j j(t)
j 1
13
根据最小均方误差原则,可推出:
Ci
❖ 采用变换域分析的目的:主要是简化分析。这章傅里叶变 换主要从信号分量的组成情况去考察信号的特性。从而便 于研究信号的传输和处理问题。
5
本章以正弦函数或(虚指数函数)为基本信号 任意周期信号可以表示为一系列不同频率的正弦或虚
指数函数之和。 sin(n1t),cos(n1t),ejn1t
n0,1,2
LOGO
傅里叶变换
上海大学机自学院
完整版课件
1
上一章(线性时不变系统的时域分析)回顾
❖ 上一章其实质是在时域中进行系统分析的任务,也就是说解决在给定的时域输入信号 激励作用下,系统在时域中将产生什么样响应的问题。之所以称为时域分析,是由于 在系统分析的过程中,所涉及的函数变量均为时间t,故这一方法称之为“时域分析 法”。该方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。主要内容, 可概括为如下几个方面: