运筹学通论实验课ppt对于一个标准形式的线性规划,利用单纯 形法把它共17页文档
合集下载
《单纯形方法》课件
结论:单纯形方法在资源分配问题中具有广泛的应用前景,可以帮助企业实现资源的合理分配和优化利用,提 高生产效率和市场竞争力。
定义:通过选择一组资产,使得 在给定风险水平下,期望收益最 大化
方法:利用单纯形方法求解投资 组合优化问题
添加标题
添加标题
目标:实现投资组合的收益最大 化
添加标题
添加标题
实际应用:在金融领域中,用于 管理资产组合,降低风险并提高 收益
● a. 求解线性规划问题的有效方法 ● b. 广泛应用于经济、管理、工程等领域 ● c. 快速、准确、稳定,受到广泛认可
单纯形方法的应用前景: a. 在大数据时代,单纯形方法将更加高效 b. 在人 工智能领域,单纯形方法将与机器学习结合 c. 在未来,单纯形方法将不断 优化,提高求解速度和精度
● a. 在大数据时代,单纯形方法将更加高效 ● b. 在人工智能领域,单纯形方法将与机器学习结合 ● c. 在未来,单纯形方法将不断优化,提高求解速度和精度
单纯形方法在算法改进方面 的潜力
单纯形方法在优化领域的应 用前景
单纯形方法在实际问题中的 应用挑战
未来研究方向和可能的突破 点
汇报人:PPT
计算复杂度:对于大 规模问题,单纯形方 法的计算复杂度较高 ,可能需要较长的计 算时间。
单纯形方法在解决复杂问 题时的局限性
未来发展方向:与其他优 化算法的结合与改进
面临的挑战:提高算法的 稳定性和效率
未来展望:拓展应用领域, 推动相关领域的发展
单纯形方法的重要性: a. 求解线性规划问题的有效方法 b. 广泛应用于经济、 管理、工程等领域 c. 快速、准确、稳定,受到广泛认可
单纯形方法在资源分配问题中的应用:单纯形方法是一种线性规划方法,可以用于解决资源分配问题。通过构建和 求解线性规划模型,单纯形方法可以找到最优的资源分配方案,使得资源利用效率最高或满足特定的目标函数。
定义:通过选择一组资产,使得 在给定风险水平下,期望收益最 大化
方法:利用单纯形方法求解投资 组合优化问题
添加标题
添加标题
目标:实现投资组合的收益最大 化
添加标题
添加标题
实际应用:在金融领域中,用于 管理资产组合,降低风险并提高 收益
● a. 求解线性规划问题的有效方法 ● b. 广泛应用于经济、管理、工程等领域 ● c. 快速、准确、稳定,受到广泛认可
单纯形方法的应用前景: a. 在大数据时代,单纯形方法将更加高效 b. 在人 工智能领域,单纯形方法将与机器学习结合 c. 在未来,单纯形方法将不断 优化,提高求解速度和精度
● a. 在大数据时代,单纯形方法将更加高效 ● b. 在人工智能领域,单纯形方法将与机器学习结合 ● c. 在未来,单纯形方法将不断优化,提高求解速度和精度
单纯形方法在算法改进方面 的潜力
单纯形方法在优化领域的应 用前景
单纯形方法在实际问题中的 应用挑战
未来研究方向和可能的突破 点
汇报人:PPT
计算复杂度:对于大 规模问题,单纯形方 法的计算复杂度较高 ,可能需要较长的计 算时间。
单纯形方法在解决复杂问 题时的局限性
未来发展方向:与其他优 化算法的结合与改进
面临的挑战:提高算法的 稳定性和效率
未来展望:拓展应用领域, 推动相关领域的发展
单纯形方法的重要性: a. 求解线性规划问题的有效方法 b. 广泛应用于经济、 管理、工程等领域 c. 快速、准确、稳定,受到广泛认可
单纯形方法在资源分配问题中的应用:单纯形方法是一种线性规划方法,可以用于解决资源分配问题。通过构建和 求解线性规划模型,单纯形方法可以找到最优的资源分配方案,使得资源利用效率最高或满足特定的目标函数。
管理运筹学 第5章 单纯形法-PPT精品文档
**对于求目标函数最小值的情况,只需把 j ≤0改为 ≥j0
管理运筹学
9
§1 单纯形法的基本思路和原理
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
σ 1=50,σ 2=100,σ 3=0,σ 4=0,σ 5=0。
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量 表示的目标函数为如下形式
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0 B2 0 1 0
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
管理运筹学
7
§1 单纯形法的基本思路和原理
二、 最优性检验
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
管理运筹学
9
§1 单纯形法的基本思路和原理
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
σ 1=50,σ 2=100,σ 3=0,σ 4=0,σ 5=0。
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量 表示的目标函数为如下形式
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0 B2 0 1 0
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
管理运筹学
7
§1 单纯形法的基本思路和原理
二、 最优性检验
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
运筹学之单纯形法.ppt
x1 ,x2 ,… ,xn ≥ 0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
运筹学PPT 第二章 线性规划
2.9 2 1 1 1 0 0 0 0
2.1 0 2 1
1.5 1 0 1 余料 0.1 0.3 0.9
03 2 1 0 30 2 3 4 0 1.1 0.2 0.8 1.4
10 50
30
设 x1,x2,x3,x4,x5,x6,x7,x8 分别为上述8种方案下料的原材料根数, 建立如下的LP模型:
min Z =x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
X*
经求解交出 X * 的
二约束直线联立的方程
可解得 X* (2,02)4T 0
2020/5/4
a
40 50
x 100 1 26
由图解法的结果得到例1的最优解 X* (2,02)4T, 还可将其代入目标函数求得相应的最优目标值 z* 42。8说明当甲产量安排 20 个单位,乙产量 安排 24 个单位时,可获得最大的收入 428。
x x
1 1
5x2 10 x
200 2 300
40 30
x 1, x 2 0
各约束的公共部分即
模型的约束,称可行域。 0
2020/5/4
a
40 50
x 100 1 24
对于目标函数
zcxcx
11
nn
任给 z二不同的值,
便可做出相应的二
直线,用虚线表示。
(2)做目标的图形
x2
以例1为例,其目标为
2020/5/4
a
27
x2
练习:用图解法求解
下面的线性规划。
1.5
Minz 6 x 4 x
1
2
2 x1
运筹学教学课件线性规划学习课件
降低潜在损失
通过全面、有效的风险管理策略,降低潜 在损失。
06线性规划在ຫໍສະໝຸດ 通运输中的应用线性规划在货物运输中的应用
优化运输路径
通过线性规划方法,可以优化货物的运输 路径,从而降低运输成本和时间。
车辆装载优化
线性规划可以优化车辆的装载方案,使得 车辆的装载量达到最大,减少车辆使用数 量和运输成本。
04
线性规划问题的求解方法
图解法
总结词
直观、简单、易懂
详细描述
图解法是一种用几何图形来求解线性规划问题的简单直观的方法,它通过将不等式约束条件转换为图形的限制 条件,将线性规划问题转化为在图中寻找最优解的问题。该方法适用于小规模问题,方便理解,是求解线性规 划问题的基本方法之一。
单纯形法
总结词
03
线性规划问题的数学模型
线性规划问题的标准形式
确定线性规划问题的标准形式
标准形式是由一个线性目标函数和一个线性约束条件组成的数学模型。
将非标准形式转化为标准形式
在求解线性规划问题时,通常需要将非标准形式转化为标准形式,这可以通过引入变量、转换约束条件等方式 实现。
线性规划问题的扩展形式
多目标线性规划
05
线性规划在管理决策中的应用
线性规划在生产计划中的应用
总结词
高效、低成本
确定生产计划目标
通过线性规划方法确定最优质、低 成本的生产计划。
优化生产资源配置
将有限的资源,如人力、物料、设 备等,根据不同产品或部门的需要 ,进行合理分配和优化。
提高生产效率
通过优化生产流程和布局,减少生 产过程中的浪费和等待时间,提高 生产效率。
特点
运筹学注重定量分析、优化思想和系统方法,强调理论与实践相结合,具有广泛应用性和多学科交叉 性。
运筹学线性规划与单纯形法.pptx
x1
L2
x1
x1
32 2020-5-31
def3:满足LP中所有约束条件(不等式或等式 约束)的点必在这些约束条件所对应区域所围 成的公共区域D内,则称此公共区域D为LP的 可行域。
例1
400 2x1+x2=400
300
B(50,250)
x2=250
C(100,200)
200
D
100
x1+x2=300
a11 a12
A
a21
谢谢阅读am1
a22 am 2
a1n a2n
amn
n
max z
cjxj
j 1
s.t
n
aij x j bi
x
j
j 1
0,
j 1~ n
bi 0, i 1 ~ m
max z CX
s.t AX b
X
0
n:决策变量个数 m:约束方程个数 25
2020-5-31
Hale Waihona Puke 产品 产品Ⅰ资源设备(台时)
1
产品Ⅱ 1
资源限制 300台时
原材料A(千克)
2
1
400千克
原材料B(千克)
0
单位产品利润(元) 50
谢谢阅读
1 100
250千克
16 2020-5-31
可以用x1和x2的线性函数形式来表示工 厂所要求的最大利润的目标:
max z=50x1+100x2 其中max为最大化的符号(最小化符号为
0
100
200
300
谢谢阅读
33 2020-5-31
当目标函数z取z1,z2,z3……时,
运筹学课件 单纯形法分析
初始基本可行解
X [0,0,1600 ,2500 ,400 ]
T
目标函数与最优性检验
z 4x1 3x2 0x3 0x4 0x5
第一次迭代
确定入基变量,应当是 x1 ,它的系数是4。 确定出基变量,方法如下,得
x1
x2
x3
x4 0 1 0
x5
b
x5
2 2 1 5 2.5 0 1 0 0
j c j z j 1600
x2 x3 x4 x5
2 1 2.5 0 0 0
3 0
0 -2 400 1 -5 200 0 1
0 -4
0
第二次迭代
cj
4 3
0 1 0
0
0
0
0
cB xB b x1 0 x3 400 0 3 x2 200 0 4 x1 400 1
j c j z j 2200
确定新基和求解新的基本可行解
新基
0 B4 0 1
2 2 .5 0
2 5 1
x5 , x2 , x1 新的基变量: 新的基本可行解 x1 x2 x3 x4 x5
bຫໍສະໝຸດ 0 0 0.5 0.4 1 200 0 1 1.0 0.4 0 600 1 0 0.5 0.4 0 200
第三节 线性规划问题的单纯形解法
线性规划问题解的基本概念 单纯形解法 解的最优性检验 表解形式的单纯形法 单纯形解法的一些问题及其处理方法
一、线性规划问题解的基本概念
可行解 最优解 基及基本解 可行基及基本可行解 代数解与几何解的关系 单纯形法的要点
运筹学单纯形法ppt课件
• 当第一阶段中目标函数的最优值=0,即人工变量=0, 则转入第二阶段;若第一阶段中目标函数的最优值不等于 0,即人工变量不等于0,则判断原问题为无解。
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
线性规划图解法和单纯形法PPT课件
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
常量 bi<0 的变换:约束方程两边乘以(-1)
线性规划问题的数学模型
例1.6 将下列线性规划问题化为标准形式
min Z 2 x1 x2 3 x3
5 x1 x2 x3 7
x1 x2 4 x3 2 3 x1 x2 2 x3 5
36 36 72 27
货运量 (千吨)
25 20 40 20
船只种类 拖轮 A型驳船 B型驳船
船只数 30 34 52
航线号 1 2
合同货运量 200 400
问:应如何编队,才能既完成合同任务,又使总货运成本为最小?
线性规划问题的数学模型
解: 设:xj为第j号类型船队的队数(j = 1,2,3,4),
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法
单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
AX ( ) B
X
0
其中: C (c1 c2 cn )
a11 a1n
A
am1 amn
x1
X
xn
b1
B
bm
线性规划问题的数学模型
6. 线性规划问题的标准形式
n
max Z cj xj j 1
s.t
n
aij x j
j 1
bi
i 1, 2, , m
即 max z z c j x j
运筹学-单纯形法ppt课件
基本解中最多有m个非零分量。
基本解的数目不超过
C个nm。
n!
m!n
m!
定义 在线性规划问题的一个基本可行解中,如果所有的基变量都取正值,则 称它为非退化解,如果所有的基本可行解都是非退化解。称该问题为非退化的 线性规划问题;若基本可行解中,有基变量为零,则称为退化解,该问题称为 退化的线性规划问题。
Cnm
上述结论说明: 线性规划的最优解可通过有限次运算在基可行解中获得.
;.
8
2 单纯形法
(1)单纯形法的引入 例1
Max Z=40X1 +50X2
X1 +2X2 +X3
=30
3X1 +2X2 +X4 =60
2X2 X1 … X5 0
+X5 =24
;.
9
解:(1)、确定初始可行解
B = ( P3 P4 P5 ) = I
表
示
0 10 I C N B C -1 B N B -1 N-C B B -B 1-1 -C B B -B 1b -b 1
BN I b
CB CN 0
0
I
B-1N
B-1
B-1b
0
CN -CB B-1N
-CB B-1
CBB-1b
;.
27
对应I 式的单纯形表—— I 表(初始单纯形表)
价值系数cj
a2m1
amm1
a1m2 a2m2
amm2
a1n a2n amn
非 基 向 量
X B x1 x2 xm T
X N xm1 xm2 xn T
基变量
非基变量
;.
3
AX b
第3章 线性规划的单纯形法《管理运筹学》PPT课件
当第一阶段求解结果表明问题有可行解时,第二阶段 是在原问题中去除人工变量,并从此可行解(第一阶段的 最优解)出发,继续寻找问题的最优解。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。
线性规划及单纯形法PPT课件
图
1.建立平面直角坐标系,标出坐标原点,
解
坐标轴的指向和单位长度。
法
2.对约束条件加以图解,找出可行域。 3.画出目标函数等值线。
4.结合目标函数的要求求出最优解。
图
max z 2 x1 x 2
5 x 2 15
s
.t
.
6 x
x
1
1
x
2
2
x2
5
24
x1 , x 2 0
(1.1a) (1.1b)
xj(j1,2, ,n) 称为决策变量
非负约束
cj(j1,2, ,n) 称为价值系数或目标函数系数
bi(i1,2, ,m) 称为资源常数或约束右端常数
aij0 (i=1 ,..,m ;j=1 ,..,n ) 称为技术系数或约束系数
概 念 和 模 型
紧缩形式:
n
max(或min)Z c j x j j 1 n
若线性规划问题的可行域存在, 则可行域是一个凸集。
若线性规划问题的最优解存在, 则最优解或者最优解之一(如果 有无穷多的话)一定是可行域的 凸集的某个顶点。
解题思路是,先找出凸集的任一 顶点,计算在顶点处的目标函数 值。
线性 规划 及单 纯形
法
❖ 线性规划问题及数学模型 ❖ 图解法 ❖ 单纯形法原理 ❖ 单纯形法计算步骤 ❖ 单纯形法进一步讨论 ❖ 数据包络分析 ❖ 其他应用例子
§3单 纯 形 法 原 理
线性规划问题的解的概念 凸集及其顶点 几个基本定理
线性规划问题
n
max z c j x j j 1
s.t.
n j 1
a ij x j
bi
(i 1,.., m )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学通论实验课ppt对于一个标准形 式的线性规划,利用单纯 形法把它
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!