拉曼光谱技术综述
拉曼光谱介绍资料讲解
![拉曼光谱介绍资料讲解](https://img.taocdn.com/s3/m/809a1c9e5122aaea998fcc22bcd126fff7055d3d.png)
拉曼光谱介绍资料讲解拉曼光谱是一种非常重要的光谱分析技术,它能够提供有关物质的结构和化学成分的丰富信息。
在这篇文章中,我将对拉曼光谱的基本原理、仪器和应用进行介绍,并解释为什么它在科学研究和工业中如此重要。
首先,让我们来了解一下拉曼光谱的基本原理。
拉曼光谱是一种散射光谱,它通过测量物质散射光中的频率位移来揭示物质的结构和化学组成。
当一束单色激光照射到样品上时,其中一部分光子与样品中的分子发生相互作用。
在这个过程中,光子几乎立即被散射,并且其中一部分光子在散射过程中发生拉曼散射。
拉曼散射是由于分子的振动和旋转引起的,这些振动和旋转会改变散射光的频率。
拉曼光谱的仪器主要包括一个激光源、一个样品夹持器、一个光谱仪和一个探测器。
激光源通常是一束单色激光,比如氦氖激光或二极管激光。
样品夹持器用于将样品固定在适当的位置,并确保光线正好照射到样品上。
光谱仪用于收集拉曼散射的光子,并将其转换为拉曼光谱图。
探测器用于测量光子的强度,从而确定拉曼光谱的强度和频率。
拉曼光谱在许多领域中都有广泛的应用。
首先,它在化学领域中被用来确定物质的分子结构和化学成分。
拉曼光谱提供了有关化学键的信息,因此可以用于确定分子的结构。
此外,拉曼光谱还可以鉴定有机和无机化合物,并用于分析化学反应的动力学。
此外,拉曼光谱在生物医学领域也有许多应用。
它可以用于鉴定和诊断疾病,比如癌症和心脑血管疾病。
拉曼光谱还可以检测和监测生物分子和药物在细胞和组织中的分布。
这些信息对于了解疾病的发展和治疗策略的制定非常重要。
此外,拉曼光谱还在材料科学、地质学和环境科学等领域中得到广泛应用。
它可以用于表征材料的晶体结构和微观结构,并揭示材料中的欠饱和和晶格扭曲。
在地质学中,拉曼光谱可以用来研究岩石和矿物的组成和演化历史。
在环境科学中,拉曼光谱可以检测土壤和水体中的有机和无机物质,并评估环境质量。
总结来说,拉曼光谱是一种强大的光谱分析技术,它能够提供关于物质结构和化学成分的丰富信息。
拉曼光谱分析技术
![拉曼光谱分析技术](https://img.taocdn.com/s3/m/a11c39506fdb6f1aff00bed5b9f3f90f76c64d21.png)
拉曼光谱分析技术一、原理拉曼光谱是一种光散射过程,它与样品分子的振动、转动、晶格等能级转变有关。
当激光通过样品时,部分激光光子会与样品中的分子相互作用,光子能量的改变即为拉曼散射光,其频率差等于与样品分子能级差的振动频率。
通过收集和分析拉曼散射光的强度和频率,就可以得到样品的拉曼光谱,从而得到样品的分子结构信息。
二、仪器拉曼光谱仪主要由三部分组成:光源、光学系统和光谱仪系统。
1.光源:常用的光源有连续性或脉冲激光器,如气体激光器、液体激光器、固体激光器等。
激光器发出的单色、高亮度光源是拉曼光谱分析的关键。
2.光学系统:光学系统主要由透镜、滤光片、光纤耦合器等组成,主要用于对激光进行准直、聚焦和收集样品的反散射光。
3.光谱仪系统:光谱仪系统由光栅、光电倍增管(PMT)、光谱仪等组成。
它用于分离和检测样品散射光的强度和频率。
三、应用1.材料科学领域:拉曼光谱分析技术可以用来研究材料的结构、组成、相变、晶格缺陷等。
例如,可以通过拉曼光谱分析研究材料中不同相的相对含量、晶格缺陷的种类和分布情况,从而为材料的合成和改性提供参考。
2.生命科学领域:拉曼光谱分析技术也可以用来研究生物分子的结构和功能。
例如,可以通过拉曼光谱分析研究蛋白质、核酸、多肽等生物分子的二级结构、药物与生物分子的相互作用等。
3.环境监测领域:拉曼光谱分析技术可以用于环境样品的分析和监测。
例如,可以通过拉曼光谱分析来快速检测土壤、水体、空气中的有机物、无机物等,同时还可以用于检测环境中的微量毒害物质。
4.法医学应用:拉曼光谱分析技术在法医学中也有广泛的应用。
例如,可以通过对酒精、毒品、爆炸物等样品的拉曼光谱分析来鉴定和识别这些毒性物质。
5.药物分析领域:拉曼光谱分析技术可用于药物的结构鉴定、质量控制等。
例如,可以通过拉曼光谱分析来鉴定药物中存在的杂质和假药,也可用于药物的溶解度研究和纯度检测。
综上所述,拉曼光谱分析技术具有无损、快速、无需或少需样品处理等优点,广泛应用于科学研究、材料分析、工业生产和环境监测等领域。
简述拉曼光谱在PPT资料(正式版)
![简述拉曼光谱在PPT资料(正式版)](https://img.taocdn.com/s3/m/68a18dc1453610661fd9f476.png)
一束光
相干仪
两束相同的光
( 一束滞后,光程差为d)
正相干:d=n倍波长
负相干: d=(2n+1)/2倍波长
一种理想的单色光通过相干仪,由于滞后 现象不断的有规律地变化,检测到的信号将是 一个余弦波,这些余弦的总和,就是相干图象。 相干图象实际上是光强度的函数,已知在相干 仪中可移动的镜面,是一个合适的时间范围内 的移动,所以相干图象也是一个时间的函数. 对于光强和时间函数关系所表示的频率分析 过程,是一个纯数学分析过程,也就是” 傅立 叶变换”,它将时间域中的相干图象转化为频 率域中的光谱图象(见图1)。
I
FT
共振拉曼光谱定量分析技术 拉曼光谱定量分析据为:
(a)由一个单色光产生的相干图象 胡继明 胡军(武汉大学分析测试科学系)
拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,与红外光谱相同,其信号来源与分子的振动和转动.
I 图1 相干图象的产生
(b)由两个单色光产生的相干图象 还应注意的是任何一物质的引入都会对被测体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生产生一 定的影响。
(四)几种重要的拉曼光谱分析技术
1.单道检测的拉曼光谱分析技术 2.以CCD为代表的多通道探测器用于拉曼光谱
的检测仪的分析技术 3.采用傅立叶变换技术的FT-Raman光谱分析
技术 4.共振拉曼光谱定量分析技术 5.表面增强拉曼效应分析技术 6.近红外激发傅立叶变换拉曼光谱技术
二.傅立叶变换拉曼光谱和近红外激发 傅立叶变换拉曼光谱新技术的简述
简述拉曼光谱在
一. 拉曼光谱分析的依据和特点
拉曼光谱分析技术是以拉曼效应为基础建 立起来的分子结构表征技术,与红外光谱相同, 其信号来源与分子的振动和转动.
拉曼光谱技术
![拉曼光谱技术](https://img.taocdn.com/s3/m/e8d96cfa27fff705cc1755270722192e44365877.png)
拉曼光谱技术拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。
在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。
靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。
瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。
小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。
拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子释放频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。
分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。
与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。
激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。
拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。
拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
表面增强拉曼光谱综述
![表面增强拉曼光谱综述](https://img.taocdn.com/s3/m/6867069181eb6294dd88d0d233d4b14e85243ee6.png)
表面增强拉曼光谱综述表面增强拉曼光谱(Surface-Enhanced Raman Spectroscopy, SERS)是一种强大的分析技术,用于提高拉曼散射的灵敏度。
这种技术自1974年被发现以来,已经成为化学、物理、生物学和材料科学领域的重要工具。
以下是对SERS的一个综述:1. 基本原理●拉曼散射:基于分子振动能级变化的非弹性散射过程,可提供分子结构信息。
●表面增强机制:将样品放置在特殊的金属表面(通常是纳米结构的银或金)上,可以显著增强拉曼信号。
2. 增强机制●电磁机制:最主要的机制,涉及金属纳米结构上的局域表面等离子体共振(LSPR),导致拉曼散射信号的强烈增强。
●化学机制:与样品和金属表面间的化学作用有关,可能导致电子转移,影响拉曼散射的强度。
3. 材料和方法●金属纳米结构:银和金是最常用的材料,但也有使用铜、铂等其他金属。
●制备方法:包括化学还原法、电化学沉积、纳米刻蚀技术等。
4. 应用●化学分析:用于检测极低浓度的化学物质,包括环境污染物、食品添加剂、药物成分等。
●生物医学:在细胞成像、疾病诊断、生物标记物检测等方面的应用。
●材料科学:用于研究纳米材料、催化剂、能源材料等。
5. 发展趋势和挑战●灵敏度和选择性的提高:研究人员致力于提高SERS的灵敏度,以检测更低浓度的样品。
●标准化和可重复性:由于SERS受到许多因素的影响,实验结果的可重复性是一个挑战。
●新材料和新技术:包括二维材料、异质结构的探索等。
6. 未来展望SERS作为一种高度灵敏的分析技术,有望在环境监测、疾病早期诊断、新材料开发等领域发挥更大作用。
随着纳米技术和光谱学的不断发展,SERS技术的应用范围和效率都有望进一步提升。
拉曼光谱介绍范文
![拉曼光谱介绍范文](https://img.taocdn.com/s3/m/5579df467dd184254b35eefdc8d376eeaeaa17e7.png)
拉曼光谱介绍范文拉曼光谱是一种非常重要的分析技术,它利用了分子振动引起的光散射现象来提供关于分子结构和化学键的信息。
拉曼光谱的应用广泛,可以用于分析固体、液体和气体样品,以及生物分子和纳米材料等。
拉曼散射效应最早由印度物理学家C.V.拉曼于1928年发现,并因此获得1930年的诺贝尔物理学奖。
拉曼散射是一种物质与激发光发生相互作用后,散射光中产生的频移与激发光频率之间的差异。
这种散射光中频移的差异称为拉曼频移,它是由于分子振动引起的光的频率和波长的微小变化所产生的。
拉曼光谱通常由强入射激光和散射光组成。
入射激光一般使用可见光或近红外光,具有高单色性和窄带宽,以增强拉曼信号的检测。
散射光分为两个主要部分:一个是各向同性的爱曼散射,具有与入射光相同的波长和频率,而另一个是拉曼散射,具有频移的特性。
这些散射光经过光谱仪的分析,可以得到拉曼光谱图。
拉曼光谱图的横轴表示拉曼频移,纵轴表示散射光的强度。
拉曼光谱图中的峰对应于特定的分子振动模式,这些模式与分子中的化学键和键角有关。
通过对各峰的位置、强度和形状进行分析,可以推断出分子的结构和化学性质。
例如,在红外光谱中,通常只能检测到非极性的结构,而拉曼光谱可以提供关于极性结构的更多信息。
拉曼光谱的应用非常广泛。
在石油和化工行业,拉曼光谱可以用于燃料和原油的质量控制,以及对催化剂和聚合物材料的分析。
在药物领域,拉曼光谱可以用于药物的质量控制和结构表征。
在环境科学中,拉曼光谱可以用于水体和土壤中的有机污染物的检测和监测。
此外,拉曼光谱还常用于生物领域的研究,例如细胞和蛋白质的表征。
近年来,随着技术的发展,拉曼光谱已经得到了很大的改进。
例如,表面增强拉曼光谱(SERS)可以大大提高拉曼信号的灵敏度,使其可以检测到更低浓度的物质。
此外,激光共振拉曼光谱(LRS)可以通过共振增强效应提高拉曼信号的灵敏度。
这些改进使得拉曼光谱在更多领域中有了更广泛的应用。
总之,拉曼光谱是一种重要的分析技术,可以提供关于分子结构和化学键的信息。
拉曼光谱的原理及拉曼光谱的特征与优势
![拉曼光谱的原理及拉曼光谱的特征与优势](https://img.taocdn.com/s3/m/0995af66bdd126fff705cc1755270722192e590f.png)
拉曼光谱的原理及拉曼光谱的特征与优势
拉曼光谱是一种用于分析化学物质结构和成分的非破坏性分析技术。
其基本原理是利用激光与样品相互作用时散射光的频率变化来分析样品的分子结构和成分。
当激光照射到样品上时,样品分子会发生振动,从而发生散射;其中一部分散射光的频率会与入射光的频率有所不同,这种散射光称为拉曼散射光。
由于拉曼散射光的频率和原始光源的频率的差异与样品分子的结构和化学键的类型有关,所以通过检测拉曼散射光的频率变化,可以确定样品分子的化学成分和结构。
拉曼光谱的特征和优势包括:
1. 非破坏性分析:拉曼光谱分析过程中,样品不需要经过任何处理或者破坏,因此可以保持样品的完整性和不可逆性。
2. 无需样品制备:相比其他分析技术,如IR、UV-Vis等,拉曼光谱不需要对样品进行任何制备,例如压片、涂层等,因此可以大大节省实验时间和成本。
3. 分析范围广泛:拉曼光谱可以用于分析各种样品,包括固体、液体、气体甚至是生物样品等。
4. 高分辨率:拉曼光谱技术可以提供高分辨率的信息,使得人们可以更加精确地识别小分子或者复杂结构化合物。
5. 可定量分析:拉曼光谱技术可以通过建立标准曲线等方法进行定量分析,从而得到样品中特定成分的含量和浓度信息。
总之,拉曼光谱技术具有高效、精确、非破坏性等优点,因此在化学、材料、生命科学等领域被广泛应用。
拉曼光谱技术应用的综述
![拉曼光谱技术应用的综述](https://img.taocdn.com/s3/m/e0c1a96df5335a8102d220fc.png)
拉曼光谱技术应用的综述摘要:介绍了拉曼光谱的原理,拉曼光谱技术以及近年来拉曼光谱分析技术在考古、医学、文物、宝石鉴定、林业和法庭科学等领域的最新进展。
并对其未来的应用前景进行了展望。
关键词:拉曼光谱技术;应用;原理中图分类号043 文献标识码a 文章编号1674-6708(20lo)29-0115-02o、引言1928年,印度科学家raman发现了拉曼散射效应,拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯,由于它强度不太高和单色性差,限制了拉曼光谱的发展,直到使用激光作为激发光源的激光拉曼光谱仪问世以及傅立叶变换技术的出现,拉曼光谱检测灵敏度才大大增加,其应用范围也在不断地扩大。
目前,拉曼光谱已广泛应用于考古、医学、文物、宝石鉴定、石油化工、林业和法庭科学等领域。
1.拉曼光谱原理拉曼散射是光照射到物质上发生的非弹性散射所产生的。
单色光束的入射光光子与分子相互作用时可发生弹性碰撞和非弹性碰撞,在弹性碰撞过程中,光子与分子间没有能量交换,光子只改变运动方向而不改变频率,这种散射过程称为瑞利散射。
而在非弹性碰撞过程中,光子与分子之间发生能量交换,光子不仅仅改变运动方向,同时光子的一部分能量传递给分子,或者分子的振动和转动能量传递给光子,从而改变了光子的频率,这种散射过程称为拉曼散射。
拉曼散射分为斯托克斯散射和反斯托克斯散射。
2、常用的拉曼光谱技术常用的拉曼光谱技术主要有:显微共焦拉曼光谱技术、傅里叶变换拉曼光谱技术、共振增强拉曼光谱技术和表面增强拉曼光谱技术。
3、拉曼光谱技术的应用3.1 拉曼光谱在考古研究中应用对古代青铜器的腐蚀产物进行分析研究,有利于我们认识古代各国的合金技术及处理工艺,研究其腐蚀机理,从而探讨古青铜器的保护方案。
与传统的鉴别方法如电镜、x光衍射等分析方法相比较,拉曼光谱被证实是对金属器物做无损检测的一种非常有效的方法。
文物中颜料鉴定的目的是为了获得历史、艺术和技术信息。
大多颜料由于受环境和气候的影响而发生了退化脱落,甚至有些新出土文物的颜料非常潮湿,同时有些颜料是混合颜料或多个颜料层叠加,这给颜料的分析带来了困难。
拉曼光谱repo-概述说明以及解释
![拉曼光谱repo-概述说明以及解释](https://img.taocdn.com/s3/m/1a4bd9532379168884868762caaedd3383c4b58c.png)
拉曼光谱repo-概述说明以及解释1.引言1.1 概述概述拉曼光谱是一种非常重要的分析技术,它能够提供有关物质的结构、组成和性质的详细信息。
由于其非侵入性、快速、无需样品处理等优点,拉曼光谱在化学、材料科学、生物医学等领域广泛应用。
拉曼光谱基于拉曼散射现象,当物质受到激光或其他光源的照射时,其中一部分光被散射出来,散射光中所携带的信息与样品分子的振动行为有关。
通过测量散射光的强度和频率变化,可以确定样品分子的化学成分、结构和相互作用等信息。
拉曼光谱在许多领域有着广泛的应用。
在化学领域,它可用于研究分子结构、化学键的强度和振动频率等。
在材料科学领域,拉曼光谱可以用于表征材料的晶体结构、晶格振动和缺陷等信息。
在生物医学领域,拉曼光谱可用于研究蛋白质、DNA和细胞等生物分子的结构和相互作用。
为了实现高质量的拉曼光谱测量和数据分析,仪器和技术的发展非常重要。
常用的拉曼光谱仪包括激光器、光学元件、样品处理装置和光谱仪等。
此外,还有一些高级技术,如共焦拉曼光谱、拉曼显微成像和拉曼光谱与扫描隧道显微镜等的结合。
总之,拉曼光谱具有极高的应用价值,对于研究物质的结构、组成和性质具有重要意义。
随着仪器和技术的不断进步,拉曼光谱在科学研究和工业应用中的地位将不断提升。
本文将详细介绍拉曼光谱的基本原理、应用领域以及仪器和技术等内容,并对未来的研究展望进行探讨。
1.2 文章结构文章结构本文按照以下三个部分展开讨论拉曼光谱的相关内容。
首先,在第一部分引言中,我们将对拉曼光谱进行概述,介绍其基本原理和应用领域。
其次,在第二部分正文中,我们将详细探讨拉曼光谱的基本原理,包括拉曼散射现象和拉曼光谱的测量原理。
我们还将介绍拉曼光谱在不同领域中的应用,包括材料科学、生物医学和环境监测等。
此外,我们还将介绍与拉曼光谱相关的仪器和技术,以及常用的数据分析方法。
最后,在第三部分结论中,我们将对拉曼光谱进行总结和评价,讨论其优缺点,并展望未来拉曼光谱研究的发展方向。
拉曼光谱及其应用
![拉曼光谱及其应用](https://img.taocdn.com/s3/m/4755e53cb42acfc789eb172ded630b1c59ee9b9e.png)
拉曼光谱及其应用拉曼光谱是一种分析物质结构和化学组成的非侵入性技术,并广泛应用于许多领域,包括材料科学、生命科学和环境科学。
本文将介绍拉曼光谱的原理、仪器和一些常见的应用。
一、拉曼光谱的原理拉曼光谱是一种基于拉曼散射现象的光谱技术。
当激光等能量较高的光与物质相互作用时,光子会与物质中的分子相互作用,产生散射现象。
拉曼散射分为斯托克斯散射和反斯托克斯散射两种类型,它们分别与物质的低频和高频振动模式相对应。
根据拉曼散射现象,我们可以获得物质的拉曼光谱。
拉曼光谱是由于分子振动引起的光散射频移所产生的谱线,可以提供关于物质结构、键合性质和化学组成的信息。
每个物质都有独特的拉曼光谱,因此拉曼光谱可以用于研究和识别不同的物质。
二、拉曼光谱的仪器为了获取物质的拉曼光谱,我们需要使用拉曼光谱仪。
一般的拉曼光谱仪包括激光光源、样品台、光学系统和光谱仪。
首先,激光光源是产生高能量光束的关键组件。
常见的激光光源包括氩离子激光器、二极管激光器和红外激光器。
不同的激光光源可以提供不同的波长范围和功率输出,以适应不同样品的测量需求。
其次,样品台是用于支撑和定位样品的平台。
样品台需要具备良好的稳定性和精确度,以确保样品在测量期间的位置和姿态不变。
然后,光学系统包括镜头、滤光片和光纤等组件,用于操控和导引激光光束。
光学系统的设计和优化可以提高信号强度和降低背景噪音,从而提高拉曼信号的检测灵敏度。
最后,光谱仪用于测量和分析样品散射的光谱。
它通常包括光栅、光电二极管和数据采集系统等部分。
光谱仪的性能决定了拉曼光谱的分辨率和信噪比,因此选择合适的光谱仪非常重要。
三、拉曼光谱的应用1. 材料科学领域拉曼光谱在材料科学中具有广泛的应用。
通过测量材料的拉曼光谱,我们可以了解材料的晶格结构、键合状态和纳米尺度的相变等信息。
拉曼光谱还可以用于研究材料缺陷、应力分布和化学反应等过程。
因此,在材料设计、合成和评估中,拉曼光谱起到了重要的作用。
2. 生命科学领域在生命科学中,拉曼光谱被广泛应用于细胞学、生物医药等领域。
光学中的拉曼光谱技术及应用
![光学中的拉曼光谱技术及应用](https://img.taocdn.com/s3/m/ba771721640e52ea551810a6f524ccbff121ca26.png)
光学中的拉曼光谱技术及应用近年来,光学中的拉曼光谱技术得到了广泛关注和应用。
该技术以其高灵敏度、快速检测和非破坏性等特点,在化学、生物、材料等领域中得到了广泛的应用。
一、拉曼光谱技术的基本原理拉曼光谱是一种光谱分析方法,它利用激光束和样品之间的相互作用,检测样品内部的分子振动。
当激光束与分子相互作用时,有一部分光子被分子吸收,分子进入一个激发的振动状态。
在分子完成振动后,它们会以剩下的光子的形式发射出光子。
这种发射光是一种散射光,也就是被称为拉曼光谱。
与样品的振动频率相关的光子部分具有电子能量,导致一种不同于入射光的散射光的出现。
二、拉曼光谱技术在化学领域中的应用拉曼光谱技术在化学领域中广泛应用,从表征有机和无机物质、纳米材料、高分子、生物分子到传统的分析领域等。
利用拉曼光谱技术可以得到有机物质、无机物质的分子结构信息和光谱数据标识(谱图),同时可以从谱图中检测出物质中的组分或未知物质的成分。
此外,拉曼光谱技术还可应用于材料检测、化学反应动力学研究等领域。
三、拉曼光谱技术在生物领域中的应用生物领域中,拉曼光谱也是一种很有前景的研究手段。
使用拉曼光谱技术,可以研究蛋白质和核酸的二级结构、细胞、组织及器官等的形态结构、疾病的分子机制等。
而且,由于非破坏性和非接触性的特点,拉曼光谱技术使得在已知浓度范围内检测蛋白质和核酸成为可能,同时还能够在单位时间内完成大量的分析工作。
四、拉曼光谱技术在材料领域中的应用拉曼光谱技术在材料科学中的应用同样广泛,可用于表征材料的化学构成,分析晶体相和材料中的缺陷等。
根据拉曼光谱技术的发射光的特征,可以分析材料的晶体结构、表面形貌和化学成分等,为新材料的研究提供了重要的支持和帮助。
五、拉曼光谱技术在实际应用中的例子在实际应用中,拉曼光谱技术也有很多优秀的例子。
例如,在化学品安全方面,拉曼光谱技术可进行现场快速安检,准确地识别化学品和危险品;在药物领域,可用于高通量药物筛选和跟踪蛋白中的结构变化等;在光电子领域,可用于制造更优质的电子材料与元件等。
拉曼光谱技术的原理及应用
![拉曼光谱技术的原理及应用](https://img.taocdn.com/s3/m/6386d0e0185f312b3169a45177232f60ddcce781.png)
拉曼光谱技术的原理及应用拉曼光谱技术是一种分析样品中分子的非常有效的方法。
在该技术中,利用拉曼效应同样也可以识别特定的纳米颗粒和其他不透明的物质。
本文将详细阐述拉曼光谱技术的原理及应用。
1. 拉曼光谱技术的原理拉曼光谱技术是一种激光光谱技术,它利用样品的分子振动模式(横振动、伸缩和扭曲等模式),使分子发生光散射,并将散射的光收集起来进行分析。
在拉曼光谱技术中,将激光照射到样品上,样品分子中的大部分仍然是以核的振动模式存在。
但当激光的频率与分子的振动频率相同时,由于拉曼效应的作用,部分光子将分离并产生红移或蓝移。
这个现象就是拉曼散射现象。
拉曼效应的原理是,当光子入射到分子上时,分子表现出类似摆动的运动,这种运动随着时间的推移而释放出特定频率的光子,这样就形成了拉曼散射光谱特征峰。
拉曼光谱学中的光谱特征包括波数(公式1)和相对强度(公式2),如下所示:公式1:wavenumber(cm^-1)=1/wavelength(cm)公式2:Relative intensity(I/I0)在拉曼光谱图中,相对强度是指各个峰的高度比较,波数则表示各个峰所对应到的分子振动能量。
实验室中常用的拉曼光谱仪的波数精度一般在1 cm^-1左右。
2. 拉曼光谱技术的应用2.1 分子结构和化学成分的分析拉曼光谱技术可以为分子结构和化学成分的分析提供非常重要的信息。
如在红外光谱技术中,只有具有矢量性的分子振动模式才能产生吸收峰,因此该技术对于分析非常规的分子结构并不适用。
而拉曼光谱技术可以用于任何分子结构的振动分析,可以检测出如异构体、杂质或药物的不同形式等信息。
由于拉曼光谱可以通过常压、接触以及非接触的方法进行采集,因此这使得样品的限制条件相对较少。
2.2 生物检测和药品品质检测拉曼光谱技术在生物医学分析领域中也得到广泛应用。
在这个领域中,拉曼光谱技术可以用于检测血液中的各种生物分子,如细胞、蛋白质、DNA、荷尔蒙、抗生素和维生素等。
拉曼光谱技术概述及应用
![拉曼光谱技术概述及应用](https://img.taocdn.com/s3/m/21cc5607b207e87101f69e3143323968001cf461.png)
拉曼光谱技术概述及应用拉曼光谱技术是一种非常重要的光谱技术,它能够提供物质的结构和化学信息。
拉曼光谱也被广泛应用于许多领域,如生物医学、能源、食品安全和环境监测等。
在本文中,我们将对拉曼光谱技术进行概述,并讨论其主要应用。
拉曼光谱技术是一种分析方法,它基于拉曼散射现象。
当激光通过样品时,一小部分光会与分子或晶格之间的振动模式相互作用,从而改变其能量。
这种散射光的能量将发生红移或蓝移,与样品分子的振动频率和能级差有关。
这些散射光的能量差与分子的结构和组成直接相关,因此通过测量散射光的能谱,我们可以了解样品的结构和成分。
拉曼光谱可以分为常规拉曼和共振拉曼两种。
常规拉曼指的是使用普通激光源进行测量,适用于多种样品并能提供结构和化学信息。
共振拉曼则在特定共振条件下进行测量,可以通过增强散射信号来检测低浓度的样品。
拉曼光谱具有许多优点。
首先,它是一种非侵入性技术,不需要对样品进行处理或破坏。
其次,它可以在液体、气体和固体等不同状态下进行分析。
此外,拉曼光谱对样品的形态和含量变化不敏感,因此不受样品大小和浓度的限制。
最后,拉曼光谱的实验装置相对简单,易于操作和维护。
拉曼光谱技术在许多领域得到了广泛应用。
在生物医学领域,拉曼光谱可用于监测细胞和组织的变化,例如癌症的早期诊断和药物疗效评估。
在能源领域,拉曼光谱可以用来研究新型材料的光催化活性和电化学性质,从而提高太阳能电池和储能设备的效率。
在食品安全方面,拉曼光谱可以用于鉴别和检测食品中的有害物质和污染物。
在环境监测领域,拉曼光谱可用于检测水体和空气中的污染物,以及土壤和废物中的有毒物质。
除了以上应用外,拉曼光谱技术还可以用于药物控制、催化剂研究、纳米材料分析等领域。
随着技术的不断发展,拉曼光谱也在不断创新和改进。
例如,近年来出现了表面增强拉曼光谱(SERS)和拉曼显微镜等新技术,提高了测量的敏感性和分辨率。
总结起来,拉曼光谱技术是一种重要的分析手段,具有许多优点和广泛的应用。
第四章拉曼光谱分析
![第四章拉曼光谱分析](https://img.taocdn.com/s3/m/04a84b3300f69e3143323968011ca300a6c3f6a3.png)
第四章拉曼光谱分析引言:拉曼光谱分析是一项重要的光谱技术,它可以通过测量物质与激光光源相互作用后的散射光谱,获取有关物质结构、化学成分和分子振动等信息。
拉曼光谱分析具有非破坏性、无需样品处理、高灵敏度和非常详细的结构信息等特点,广泛应用于化学、生物、材料和环境等领域。
一、拉曼光谱原理拉曼散射现象是由物质分子受激光激发后的非弹性散射引起的。
当激光光子与物质分子发生相互作用时,发生傅里叶散射和拉曼散射两个过程。
其中,傅里叶散射是由于分子的自由旋转和振动引起的,而拉曼散射则是由于分子振动模式和其它非颤振转模式引起的,具有更加丰富的结构信息。
拉曼散射谱分为拉曼位移和强度两个方面。
拉曼位移是指拉曼散射光子相对于激发光子的频率偏移,由于分子处于不同振动模式时能量差异不同而引起。
拉曼强度则依赖于分子的极化率改变程度,因此可以提供有关分子的结构和振动信息。
二、拉曼光谱分析仪器与实验方法拉曼光谱仪由激光光源、光谱系统和探测器等组成。
常用的激光光源有氦氖激光和固体激光等,光谱系统则包括单色器、样品室和一系列的滤光器和光栅等。
探测器一般采用光电二极管或光电倍增管等,用于测量拉曼散射光的强度。
拉曼光谱实验方法主要有常规拉曼光谱、共振拉曼光谱和表面增强拉曼光谱等。
常规拉曼光谱是最常用的方法,通过对物质直接进行激光照射和拉曼散射测量来获取光谱信息。
而共振拉曼光谱则需要根据所研究物质的能级结构设计合适的激光波长,以增强拉曼信号。
表面增强拉曼光谱则是通过在样品表面引入纳米级的增强剂,如金属纳米颗粒,以提高散射强度。
三、拉曼光谱在化学分析中的应用拉曼光谱在化学分析中具有广泛的应用。
它可以用于物质的鉴别和定性分析,通过对拉曼光谱的特征峰进行比较和匹配,可以确定物质的组成和结构。
此外,拉曼光谱还可用于定量分析,通过建立标定曲线,利用拉曼强度与浓度之间的线性关系,可以测定样品中的目标成分的含量。
同时,拉曼光谱也可以用于反应动力学和过程分析,通过观察拉曼峰的强度变化,可以研究物质的反应过程和动力学参数。
拉曼光谱技术综述
![拉曼光谱技术综述](https://img.taocdn.com/s3/m/9d92f556312b3169a451a44b.png)
拉曼光谱技术综述摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。
综述了近年来了曼技术的主要的分析技术。
涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。
关键字:光谱分析、拉曼散射、激光、光子1、拉曼光谱的发展简史印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。
与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。
然而到1940年,拉曼光谱的地位一落千丈。
主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。
并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。
所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。
1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。
由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。
成为拉曼光谱的理想光源。
随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。
70年代中期,激光拉曼探针的出现,给微区分析注人活力。
80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。
Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。
2、拉曼光谱简介:拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱技术的原理与应用
![拉曼光谱技术的原理与应用](https://img.taocdn.com/s3/m/6661b758a66e58fafab069dc5022aaea998f418e.png)
拉曼光谱技术的原理与应用近年来,随着科技的发展,各种仪器与技术被广泛应用于各行各业。
在工业、化学、生物、医学等领域中,拉曼光谱技术成为一种重要的分析手段。
本文将介绍拉曼光谱技术的原理以及在不同领域的应用。
拉曼光谱技术是通过测量样品表面散射光的频率和强度来获取样品的化学信息。
这种光谱技术基于拉曼散射效应,即当物质受到激发光源照射时,样品分子发生振动或转动,导致光的能量发生微弱的散射。
拉曼光谱通过测量这种散射光的频移和强度变化,来分析样品中分子的组成、结构和状态。
拉曼光谱技术的原理基于散射光的拉曼散射效应,包括斯托克斯拉曼散射和反斯托克斯拉曼散射。
斯托克斯拉曼散射是指散射光的频率低于入射光,而反斯托克斯拉曼散射则是指散射光的频率高于入射光。
这种散射光的频率差距与样品中的分子振动频率相关,通过测量频移可以得到样品的化学信息。
在化学领域,拉曼光谱技术被广泛用于分析物质的结构和组成。
比如,通过拉曼光谱可以快速确定化合物的成分,并判断其纯度和品质。
此外,拉曼光谱还能用于检测样品中的杂质或污染物,并实现定量分析。
拉曼光谱技术的非接触性和非破坏性特点,使其在化学合成、药物研发和质量控制等方面有着广泛的应用潜力。
在生物科学中,拉曼光谱技术可用于研究生物大分子的结构和功能。
通过拉曼光谱可以非侵入地探测细胞和组织中的分子信息,从而实现对细胞活性、代谢状态和疾病变化等的研究。
例如,通过拉曼光谱可以鉴定肿瘤细胞与正常细胞的差异,实现早期癌症的诊断与治疗监测。
此外,在食品科学和农业领域,拉曼光谱技术也可以用于食品成分的检测与分析,以及农作物的检测和品质评估。
在材料科学与工程中,拉曼光谱技术在材料表征和分析方面具有重要应用价值。
通过拉曼光谱可以了解材料的晶体结构、化学成分和相变等信息。
在材料制备过程中,拉曼光谱可用于监测材料的合成反应、晶体生长和物质转化等。
此外,拉曼光谱还可以用于材料质量控制和疲劳损伤分析等方面。
总之,拉曼光谱技术以其快速、非侵入性和非破坏性的特点,在各个领域具有广泛的应用潜力。
文献综述-拉曼光谱
![文献综述-拉曼光谱](https://img.taocdn.com/s3/m/4afec93c3069a45177232f60ddccda38376be1e8.png)
变压器绝缘状态的介质响应无损评估系统的研究——SRTP 文献综述报告前言变压器是电力系统的重要组成部分,它能否正常运行直接关系到整个电网的安全性和可靠性。
近年来,对变压器绝缘系统的研究已经越来越深入,从国内外的研究动态中来看,以介电响应为基础的回复电压(RVM)、极化去极化电流(PDC)和频域介电谱(FDS)绝缘诊断技术由于具备受环境干扰小、携带绝缘信息丰富以及实施起来简便易行等优点,已经成为了研究的主要方向。
而这三种方法各自有优缺点,且侧重点也有所不同,如何将这三种方法结合起来,互相转换,使之可以更加准确地反应变压器绝缘系统的老化状态,还有待进一步的研究。
正文一、影响电力变压器老化的因素及危害变压器内的绝缘系统主要由矿物油和绝缘纸(纸板)构成的复合绝缘组成,在长期运行过程中由于受到各种因素的影响逐渐发生老化,导致绝缘的电气和机械性能下降,从而降低绝缘物质的绝缘性能。
实际运行经验表明,绝缘油即使在长期使用之后,其绝缘击穿电压也不过下降 10%左右,一般无碍运行。
即使油的体积电阻系数和总酸值等虽然会发生较大的变化,但也可以通过油的净化或再生处理甚至换新油来解决,因此油不是影响变压器寿命的主要因素。
而构成固体绝缘的纤维纸,其劣化后引起的性能下降则是不可逆转的,因此绝缘纸的老化是决定变压器寿命的主要因素[1]以下将从四个方面分析:1.热老化由纤维素为主要成分的绝缘纸作为一种有机绝缘材料会在热的作用下发生热降解,包括使主链断裂的解聚反应和使侧基从主链上脱去的消去反应,产生大量低分子挥发物,并引起一系列更为复杂的反应。
热老化通常在热和氧的协同长期作用下发生,初期会出现过氧化物,进而分解产生自由基,然后引发一系列氧化和断链化学反应,使分子量下降,含氧集团浓度增加,并不断挥发出低分子产物,结晶度也随之改变。
随着绝缘物质结构的变化,其电气性能和机械性能都逐渐劣化。
对于不同类型的绝缘,温度每升高 8~12℃将会导致绝缘寿命缩短一半。
拉曼光谱法简介
![拉曼光谱法简介](https://img.taocdn.com/s3/m/8cc7a385185f312b3169a45177232f60dccce77e.png)
(5)υc-c在拉曼中强。
(6)醇和烷烃的拉曼光谱相似。因为OH的拉曼谱带弱,而 C-O和C-C键力常数及键强度无很大差别,羟基与甲基质 量仅仅相差2个质量单位。
3.10.4. 拉曼光谱的应用 (1)拉曼光谱的特点 (a)拉曼光谱的常规扫描范围为40-4000cm-1。
2.相互允许规则:一般来说,没有对称中心的分子,其 红外和拉曼光谱可以都是活性的。例如水的三个振动υas、 υs和δ皆是红外和拉曼活性的。
3.相互禁阻规则:有少数分子的振动在红外和拉曼中都
是非活性的。
如乙稀的扭曲振动既无偶极矩变化, 也无极化度变化,故在红外及拉曼 中皆为非活性。
H
H
CC
H
H
4.拉曼光谱的一些基本特征:
(1)对称取代的S-S 、C=C 、N=N 、C≡C振动产生强拉曼 谱带,由单键、双键到三键,因可变形的电子逐渐增加, 故谱带也增强。
(2)在红外光谱中C≡N、C=S、SH的伸缩振动谱带强度 可变或较弱,而在拉曼光谱中为强谱带。C-O-O-C的对 称伸缩在880cm-1也是强谱带。
(3)环状化合物骨架的对称呼吸振动常是最强的拉曼谱带。
处于振动基态的分子在光子作用下,激发到较高的不 稳定的能态(虚态)后又回到较低能级的振动激发态。 此时激发光能量大于散射光能量,产生拉曼散射的斯托 克斯线,散射光频率小于入射光。
若光子与处于振动激发态(V1)的分子相互作用,使 分子激发到更高的不稳定能态后又回到振动基态(V0), 散射光的能量大于激发光,产生反斯托克斯散射,散射 光频率大于入射光。
同一振动方式产生的拉曼位移频率和红外吸收频率是 相等的。
拉曼光谱技术及其应用
![拉曼光谱技术及其应用](https://img.taocdn.com/s3/m/56f6c4d84bfe04a1b0717fd5360cba1aa8118cbe.png)
拉曼光谱技术及其应用在物质科学领域,光谱学是一种重要的研究方法,而拉曼光谱技术是其中的一个重要分支。
在纳米材料研究、生命科学、医药等领域,拉曼光谱技术都有着广泛的应用。
本文将介绍拉曼光谱技术及其应用。
一、拉曼光谱技术原理拉曼光谱技术是通过激光照射样品,测量由样品散射的光谱,分析物质分子的振动和转动受到光激发后的响应。
样品散射光的光谱与样品分子内部结构密切相关,因此拉曼光谱可以提供物质的化学成分、分子结构、功能等信息。
拉曼光谱技术的优点是非常明显的。
首先,它是非接触式的光谱技术,可以在不破坏样品的情况下进行。
其次,由于拉曼散射光谱是由样品散射而成,无需喷涂、染色等处理,因此可以避免样品污染、破坏等问题。
此外,由于拉曼光谱受到样品分子的振动或转动响应,可以对样品分子的构象进行分析,对于生物分子研究有着特别重要的意义。
二、拉曼光谱技术应用1. 纳米材料研究一些新型的纳米材料具有许多特殊的物理和化学性质,因其在生物医学领域、电子学、能源应用等方面具有广泛的应用前景。
而利用拉曼光谱技术可以对这些材料的基本性质进行研究。
例如,在碳纳米管的研究中,利用拉曼光谱技术可以精确地测量其直径、带宽等参数,进而研究其物理性质和表面化学反应;在纳米金属颗粒的研究中,拉曼光谱可以用于研究金属颗粒的表面修饰和形状改变对其催化活性的影响等。
2. 生命科学在生命科学领域,拉曼光谱技术可以用于蛋白质、DNA等生物大分子研究。
例如,通过拉曼光谱技术可以研究DNA分子的结构、碱基配对(包括单链和双链DNA)、DNA螺旋结构、其含有关键功能的催化、膜蛋白、反应中间体以及各种生物大分子等。
此外,拉曼光谱也可以用于生物医学研究。
通过拉曼光谱技术可以快速地检测和诊断在疾病发展中的生物标志物,也可以帮助开发新型药物,具有很高的成本效益和高度可靠的数据。
3. 化学反应过程利用拉曼光谱技术可以对各种化学反应过程进行研究。
例如,微观的组分变化可以通过应力引起的分子轻微震动被测定,能够通过研究拉曼光谱发现微观的化学平衡、反应机理、反应动力学等相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱技术综述摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。
综述了近年来了曼技术的主要的分析技术。
涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。
关键字:光谱分析、拉曼散射、激光、光子1、拉曼光谱的发展简史印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。
与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。
然而到1940年,拉曼光谱的地位一落千丈。
主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。
并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。
所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。
1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。
由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。
成为拉曼光谱的理想光源。
随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。
70年代中期,激光拉曼探针的出现,给微区分析注人活力。
80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。
Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。
2、拉曼光谱简介:拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
3、拉曼光谱原理:3.1、瑞利散射与拉曼散射当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。
但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。
其散射光的强度约占总散射光强度的10-6~10-10。
拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。
3.2、拉曼散射的产生光子和样品分子之间的作用可以从能级之间的跃迁来分析。
样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。
这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。
样品分子在准激发态时是不稳定的,它将回到电子能级的基态。
若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。
如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。
这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。
如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为antiStokes线。
Stokes线和anti-Stokes线位于瑞利谱线两侧,间距相等。
Stokes线和anti-Stokes线统称为拉曼谱线。
由于振动能级间距还是比较大的,因此,根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,所以Stokes线的强度远远强于anti-Stokes线。
拉曼光谱仪一般记录的都只是Stokes线。
3.3、拉曼散射光谱的特征1.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;2. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
3. 一般情况下,斯托克斯线比反斯托克斯线的强度大。
这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
实验做出的谱图(以波长为单位)标准的谱图(以波数为单位)3.4、通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。
当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。
CCI4有13个对称轴,有案可查4个对称操作。
我们知道,N个原子构成的分子有(3N—6)个内部振动自由度。
因此分子可以有9个(3×5—6)自由度,或称为9个独立的简正振动。
根据分子的对称性,这9种简正振动可归纳成下列四类:第一类,只有一种振动方式,4个氯原子沿与C原子的联线方向作伸缩振动,记作v1,表示非简并振动。
第二类,有两种振动方式,相邻两对CI原子在与C原子联线方向上,或在该联线垂直方向上同时作反向运动,记作v2,表示二重简并振动。
第三类,有三种振动方式,4个CI与C原子作反向运动,记作v3,表示三重简并振动。
第四类,有三种振动方式,相邻的一对CI原子作伸张运动,另一对作压缩运动,记作v4,表示另一种三重简并振动。
上面所说的“简并”,是指在同一类振动中,虽然包含不同的振动方式但具有相同的能量,它们在拉曼光谱中对应同一条谱线。
因此,分子振动拉曼光谱应有4个基本谱线,根据实验中测得各谱线的相对强度依次为v1>v2>v3>v4。
4、拉曼光谱技术的优越性拉曼光谱要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
此外: 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。
相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。
在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。
4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。
这是拉曼光谱相对常规红外光谱一个很大的优势。
而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。
5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。
5、拉曼技术的发展5.1拉曼光谱技术的发展得益于以下两种技术的高速发展:激光技术非线性拉曼光谱技术已经在生命科学领域研究中发挥它的独特和重要作用。
高质量的超快激光器还推动了另一个极具前途的表面光谱技术,就是合频(SFG)技术的发展,它作为具有独特的界面选择性的非线性光谱方法,已经在界面和表面科学、材料乃至生命领域研究中发挥着越来越重要的作用。
纳米科技第二个重要方面就是纳米科技的迅猛发展,它使得基于纳米结构的表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS)在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的、可达到单分子检测水平的技术。
现在不论是拉曼光谱刊物,还是拉曼光谱会议,SERS都是一个最受关注的内容。
在近几届的国际拉曼光谱会议上,SERS分会都是最大的分会。
近几年,有关SERS的论文数量也呈显著的上升趋势。
SERS和TERS不仅仅在表面科学研究领域,而且在生命科学领域将具有很大的发展潜力,由此可以为研究各类重要的生命科学体系和解决基本问题作出贡献。
拉曼光谱相对于红外光谱,其优势之一体现在用拉曼研究水溶液中比较方便,而生命科学的许多研究往往需要的水溶液环境。
共振拉曼、表面增强拉曼和非线性拉曼光谱以及它们的联用将成为生命科学前沿领域具有重要价值的研究方法,因为21世纪是生命科学的世纪,我以为也是纳米技术和激光技术的世纪。
5.2分析技术5.2.1几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术拉曼光谱2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术5.2.2拉曼光谱用于分析的优点和缺点优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点。
不足1、拉曼散射面积2、不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响3、荧光现象对傅立叶变换拉曼光谱分析的干扰4、在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题5、任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。
6、拉曼光谱技术的应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物:拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物:拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。
拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
表面和薄膜:拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多例作。