最新傅里叶光学实验
傅里叶光学实验教案
傅里叶光学实验教案实验简介傅里叶光学是光学的一个重要分支,它利用傅里叶分析的数学方法来解决光学问题。
傅里叶分析之所以能应用于光学,主要是因为光学系统在一定条件下的线性和空间不变性。
傅里叶变换可以从光谱的角度分析图像信息。
在光学系统中,与通信理论相对应的时间谱称为空间谱。
为了提高图像信息的质量或提取图像信息的某些特征,可以使用空间滤波。
实验原理示意图和简要说明用平行光照射放置在傅里叶透镜物焦平面上的像(如光栅),在其像焦平面上获得像的傅里叶谱。
由于透镜孔径的限制,图像的高频分量(如光束1和2)无法到达像焦平面和像平面,因此成像的清晰度(即分辨率)降低。
教学xx傅里叶变换的定义和基本性质。
n透镜的傅里叶变换特性。
阿贝成像和空间滤波的基本概念。
教学困难n空间滤波和现象观察的实现自测为什么实验中使用的傅里叶透镜一般孔径更大,焦距更长?答:因为像谱的大小为:x'/lf,同一幅像的焦距越长,其衍射谱的大小就越大,这样就更容易对光谱进行处理,比如滤除某个光谱成分。
镜头光圈越大,透射的高频成分越多,图像越清晰。
一般的透镜系统可以看作是高通滤波器或低通滤波器。
为什么呢?答:一般的镜头系统可以看作是低通滤波器。
由于透镜的孔径有限,一般只有与光轴倾角小的光束,即低频成分才能通过。
如示意图所示,与光轴倾角较大的光束无法进入光学系统成像。
N显微镜物镜的成像分辨率依赖于什么指标?答:数值孔径,根据瑞利准则,显微镜物镜能够分辨的物体细节是:显微镜物镜的数值孔径与放大率相匹配,显微镜物镜的放大率越大,数值孔径越大。
n实验装置见示意图,图为d周期。
傅里叶实验报告
一、实验目的1. 了解傅里叶变换的基本原理和方法。
2. 掌握傅里叶变换在信号处理中的应用。
3. 通过实验验证傅里叶变换在信号处理中的效果。
二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。
三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。
2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。
3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。
4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。
5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。
五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。
图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。
图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。
3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。
图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。
六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。
2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。
3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。
傅立叶光学实验报告
傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
傅里叶光学实验·
实验结果分析与讨论:一.测量小透镜的焦距1f (傅里叶透镜的焦距245.0f cm =)1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→望远镜(倒置)→小透镜→屏2. 测量焦距的方法:首先布置光路,使从望远镜射出的是平行光。
该平行光通过小透镜射到屏上。
我们知道,在透镜的焦点处,应该有光源的像点。
那么便可以通过移动接收屏找这个像点,以此位置作为焦点。
所以在实验中,我缓慢地移动屏,发现到某一个位置时屏上的像是明亮的一点。
在该位置附近左右移动屏,该点是被略微发散的圆形光斑。
选取那个像为亮点的位置为焦点的位置。
(也可以说,是选取屏上圆形光斑半径最小的位置。
)焦点与小透镜间的距离即为焦距。
所测数据如下:表一 小透镜的焦距得到12.413f cm =二.夫琅和费衍射1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→光栅→墙屏(此光路满足远场近似)2. 利用夫琅和费衍射测一维光栅常数光栅方程:()dsin =k k=0,1, 2, 3...θλ±±±(2)可以看到0级、1±级、2±级、3±级、4±级。
(3)0级、1±级、级光斑的位置:光斑都是等间距的。
如图三所示,间距为。
(4)计算光栅常数:934163310 1.96103.2210d m ---⨯⨯==⨯⨯三.观察并记录傅立叶频谱面上不同滤波条件的图样或特征1.实验光路:He-Ne激光器→反射镜→直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙屏2. 观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征(1)一维光栅:①滤波模板只让0级通过:无条纹图像,墙屏上一片红光。
如下图所示(下面两个图均为实验过程中当场拍摄):②滤波模板只让级、级通过:有竖条纹,明亮,清晰。
如下图所示:③滤波模板只让级、级通过:竖条纹,类似于上图,但是条纹间隔变密,宽度变细,光强变暗。
傅里叶光学的实验报告(3篇)
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
大学物理仿真实验傅里叶光学
⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
傅里叶光学实验(中国科学技术大学大物实验)
傅里叶光学实验实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率空间频谱和空间滤波和卷积等.通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理实质.通过阿贝成像原理,进一步了解透镜孔径对分辨率的影响实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y), ⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2) 在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。
逆傅里叶变换公式(2)说明一个空间函数f(x,y)可以表示成无穷多个基元函数exp[i 2π(ux +vy )]的线性叠加,dudv v u F ),(是相应于空间频率u ,v 的权重,F (u ,v )称为f (x ,y )的空间频谱。
.最典型的空间滤波系统—两个透镜(光学信息处理系统或傅立叶光学变换系统)叫作4f 系统,如图1所示,激光经过扩束准直形成平行光照明物平面(其坐标为x 1,y 1),透过物平面的光的复振幅为物函数f(x 1,y 1),这一光波透镜1到达后焦平面(频谱面)就得到物函数的频谱,其坐标为(u ,v ),再经透镜2 在透镜2的象平面上可以得到与物相物平面 透镜1 频谱面 透镜2 像平面图2.4-1 4f 系统等大小完全相似但坐标完全反转的象,设其坐标为(x 2,y 2)。
此时我们将坐标完全反转后可以认为得到原物的完全相同的象。
光学傅立叶变换实验报告
一、实验目的1. 理解光学傅立叶变换的基本原理和过程。
2. 掌握光学傅立叶变换的实验方法及步骤。
3. 分析实验结果,验证光学傅立叶变换的基本规律。
二、实验原理光学傅立叶变换是利用光学系统对光场进行傅立叶变换的一种方法。
当一束光通过一个具有傅立叶变换功能的系统时,其光场分布将发生相应的傅立叶变换。
本实验采用4f系统进行光学傅立叶变换,其中f为透镜的焦距。
实验原理如下:1. 光场分布:设物平面上的光场分布为f(x, y),则其在傅立叶变换透镜L1的后焦面(频谱面)上的光场分布为F(u, v)。
2. 傅立叶变换:根据傅立叶变换公式,有F(u, v) = ∬f(x, y)e^(-j2πux/v)e^(-j2πuy/v)dxdy。
3. 反傅立叶变换:当光场分布F(u, v)通过另一个焦距为f的傅立叶变换透镜L2时,其在像平面上的光场分布为f'(x', y'),满足f'(x', y') = F(u, v)。
三、实验仪器与材料1. 光源:He-Ne激光器2. 物镜:焦距为f的傅立叶变换透镜3. 成像系统:焦距为f的傅立叶变换透镜4. 物平面:光栅或透明薄膜5. 频谱面:光栅或透明薄膜6. 像平面:光栅或透明薄膜7. 照相机:用于记录实验结果8. 实验台:用于固定实验装置四、实验步骤1. 将光源发出的光束经过扩束镜和半透半反镜后,分成两束光,一束作为参考光,另一束作为实验光。
2. 将实验光束经过物镜L1,投射到物平面上,物平面上的光栅或透明薄膜作为待处理的图像。
3. 实验光束经过物镜L1后,在频谱面上形成待处理图像的傅立叶变换频谱。
4. 将参考光束经过成像系统,成像在频谱面上,与实验光束的傅立叶变换频谱进行叠加。
5. 将叠加后的光束经过物镜L2,投射到像平面上,像平面上的光栅或透明薄膜作为处理后的图像。
6. 使用照相机记录实验结果,比较处理前后的图像差异。
五、实验结果与分析1. 实验结果:通过实验,观察并记录了处理前后的图像差异。
实验4-2 傅里叶变换光谱实验
二、实验装置
实验所使用的主要仪器装置图
6 9 5
Байду номын сангаас
10
13
7
4
3 2
12
单 片 机
8 1
3
11
高精度ADC 高精度ADC 电机反馈控制
四、实验方案
(一)迈克尔逊干涉仪的调整 1.首先调整的到干涉条纹,找到光程差减小的方向,利用白光条纹找到
光程差为零的位置 2.在透镜前面放一个白屏,打开激光,调整干涉仪的两面镜子,使屏 上两个光点重合。此时有光亮度变化。 3.激光器与反射镜间加入扩束镜,屏上可以看到干涉条纹。 4.转动细调手轮和镜子M1下面的细调螺旋,调出圆环形或弧形的等倾 干涉条纹。找到条纹向中心收缩的方向即为光程差减小的方向。 5.再次调整M1下面的细调螺旋,使条纹变成竖直方向的等厚干涉条纹, 将白屏换到光电倍增管前面。 6.被测光源1位置放上白光光源,沿刚才找到的光程差减小的方向,小 心转动细调滑轮,注意观察屏上光斑,等产生彩色干涉条纹时,撤掉 白屏。调整微螺旋使干涉条纹与探测器狭缝平行。每个条纹2-3mm宽。 7.细心逆时针调节细调手轮,使白光条纹全部位于视野外。再顺时针 旋转手轮,使白光条纹恰能在光斑边缘出现。
单色光的干涉图函数包含一个直流分量和一个余弦函数分
量。经过仔细分析不难看出,余弦函数分量的周期就是单 色光的波长。
一、实验原理
若光源发出的不是单色光,而是含有多种光谱成分的混合
光,光强随波长的分布是I(σ),在光谱间隔d σ内光强是I(σ) d σ 。将此光源发出的光分成强度相同的两束,相互干涉 后光强是 在整个光谱范围内的干涉总光强为
目录
一、实验原理
傅里叶光学实验报告[整理]
实验原理:(略)实验仪器:光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜实验内容与数据分析1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM )光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
1231/x cm 87.4189.2186.502/x cm 75.2276.0174.831/f cm112()f x x =-12.1913.2011.67112.1913.2011.6712.3533f cm++==0.7780cm σ==1.320.5929p A pt t cm μ===0.68P =0.0210.00673B p B pt k cm C μ∆==⨯=0.68P =0.59cm μ==0.68P =1(12.350.59)f cm=±0.68P =2.利用弗朗和费衍射测光栅的的光栅常数光路:激光器→光栅→屏(此光路满足远场近似)在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据测出光栅常数sin d k θλ=d (1)利用夫琅和费衍射测一维光栅常数;衍射图样见原始数据;数据列表:各级坐标/x cm光具位置-2级-1级0级1级2级1/b cm2/b cm/L cm1-13.0-6.90 6.814.1126.1483.0543.092-12.5-5.50 6.613.1110.1571.6538.53-10.6-5.26.011.0114.4580.8033.65sin ||i k Lk d x λλθ=≈取第一组数据进行分析:21051343.0910******* 4.00106.810d m ----⨯⨯⨯⨯==⨯⨯21052343.0910******* 3.871014.110d m ----⨯⨯⨯⨯==⨯⨯21053343.09101632810 3.95106.910d m ----⨯⨯⨯⨯==⨯⨯21054343.0910******* 4.191013.010d m ----⨯⨯⨯⨯==⨯⨯554.00 3.87 3.95 4.1910 4.0025104d m m--+++=⨯=⨯61.3610d mσ-=⨯忽略b 类不确定度:671.20 1.3610/9.410p A pt t mμμ--===⨯⨯=⨯则7(400.29.4)10d m-=±⨯(2)记录二维光栅的衍射图样并测量其光栅常数.二维衍射图样如原始数据中所示取一组数据分析:114.0086.8027.2L cm=-=1(4.6 4.6)/2 4.6x mm±=+=故2105327.210632810 3.74104.610d m ----⨯⨯⨯==⨯⨯3.利用空间频谱测量一维、二维光栅常数光路:激光器→光栅→透镜→屏(位于空间频谱面上)(1)利用空间频谱的方法测量一维光栅常数取k=111 6.8 6.96.8522x x x mm mm -+++===1025363281045.010 4.16106.8510fd m xλ----⨯⨯⨯===⨯⨯(2)利用空间频谱的方法测量二维光栅常数取k=11025363281045.010 6.18104.610fd m xλ----⨯⨯⨯===⨯⨯比较两种方法计算的结果后发现,二维光栅常数的计算结果相差较大,分析误差产生的原因可能为:1.衍射光斑是用笔描点记录的,需要依靠试验者的判断,会出现较大误差;2.光斑的间距是由钢尺测纸上的点而得,由于测量时会产生误差;3.利用公式计算式用了近似,也会带来一定的误差;4.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:激光器→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏空间频谱面经过小透镜的焦点,此时图样为清晰的一排点列(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让 0级通过;现象:屏上只出现一个0级光斑的轮廓,无条纹b.滤波模板只让0、±1级通过;现象:屏上出现平行且竖直的条纹c.滤波模板只让0、、±2级通过;1 现象:屏上出现更为清晰并分布面较大的平行且竖直的条纹(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;现象:屏上只出现竖直条纹b.滤波模板只让含0级的竖直方向一排点阵通过;现象:屏上只出现水平条纹c.滤波模板只让含0级的与水平方向成45O 一排点阵通过;现象:屏上只出现与水平方向成135°方向的条纹d.滤波模板只让含0级的与水平方向成135O 一排点阵通过.现象:屏上只出现与水平方向成45°方向的条纹5.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是“光”,写出操作过程.操作过程:在大透镜的后焦面上加一个只让0级中间点通过的滤波模板b.如何操作在像面上仅能看到像面上是横条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的竖直方向一排点阵通过的滤波模板c.如何操作在像面上仅能看到像面上是竖条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的水平方向一排点阵通过的滤波模板由实验4.5可得,对像的垂直结构起作用的是沿水平方向的频谱分量,反之亦然。
傅里叶变换光学
中山大学光信息专业实验报告:傅里叶光学变换系统实验人:何杰勇(11343022) 合作人:徐艺灵 组号B13一、实验目的和内容1、了解透镜对入射波前的相位调制原理。
2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。
4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验原理1、透镜的FT 性质及常用函数与图形的关学频谱分析图1 点的厚度。
设原复振幅分布为(,)L U x y 振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ变为(,)L U x y ':图1(,)(,)exp[(,)]L L U x y U x y j x y ϕ'=(1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+-(2)(2)中的k =2π/λ,为入射光波波数。
用位相延迟因子(,)t x y 来表示即为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =-(3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R =--(5) 代入(3)得: 220(,)exp()exp[()]2kt x y jknD jx y f=-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。
傅里叶变换光学实验
傅里叶变换光学系统一、实验目的和内容1、了解透镜对入射波前的相位调制原理。
2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。
4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验原理1、透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
图1 为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ后变为(,)L U x y ':(,)(,)e x p [(,L L U x y U x y j x y ϕ'= (1) 图1若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+- (2)(2)中的k =2π/λ,为入射光波波数。
用位相延迟因子(,)t x y 来表示即为:0(,)e x p ()e x p[(1)(,)]t x y j k D j k n D x y =- (3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:22012111(,)()()2D x y D x y R R =-+- (4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
傅里叶光学实验报告[整理]
傅里叶光学实验报告[整理]傅里叶光学实验报告一、实验目的1. 掌握傅里叶光学的基本原理和方法;2. 实验验证平面波和球面波通过透镜之后的傅里叶变换关系;3. 了解频谱成像的基本原理和方法。
二、实验原理傅里叶光学是一种将光场分解为一组微小的平面波或球面波的方法,然后利用傅里叶变换将这些平面波或球面波的振幅和相位信息转换为相应的频谱图像。
1. 平面波通过透镜的傅里叶变换关系当平面波通过透镜时,透镜将平面波折射成球面波。
根据惠更斯原理,球面波前可以看作由无限多的次波分布组成。
如果透镜的曲率半径为R,球面波前中心距离透镜为s,则透镜折射后的球面波前半径为r=R+s。
当球面波面向透镜的时候,透镜将其中心处的波捕获并将其折射到焦平面上。
由于透镜的几何关系,球面波的频谱可以通过傅里叶变换转换为另一个球面波,其频率等于初始球面波频率的两倍,且与原始平面波的振幅和相位有关。
2. 球面波通过透镜的傅里叶变换关系当球面波通过透镜时,透镜将其变为以透镜为中心的球面波。
根据惠更斯原理,透镜表面的每个点都在向球面波前广播无限多的次波。
在透镜上选择一个点作为坐标原点,并定义该点上的波面为 z=0。
当球面波辐射到该点上的时候,透镜所发出的微光波会在该点上聚焦。
此时,球面波的频谱可以通过傅里叶变换转换为平面波,其频率等于初始球面波频率的两倍,且与原始球面波的振幅和相位有关。
3. 频谱成像将频谱图像转换为空间图像的方法称为频谱成像。
在傅里叶光学中,频谱成像允许我们在不影响图像分辨率的情况下调整像场大小和形状。
简单地说,对于一张图像,我们可以选择不同的频率空间滤波器进行滤波,然后通过傅里叶反变换将滤波后的频谱图像转换为空间图像。
滤波后的频谱图像通常会显示出图像的高频信息,使我们可以对图像分辨率和清晰度进行调整。
三、实验仪器1. He-Ne激光器2. 分束器3. 透镜4. 母线5. 干涉条纹增强滤波器6. 透镜支架7. CCD相机8. 分光仪9. 激光干涉仪四、实验步骤1. 准备实验仪器并清洁透镜表面。
傅里叶光学
实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。
实验原理:见预实验报告。
实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。
然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。
2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。
3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。
取下白纸,观察墙上光幕中有何现象。
取下一维光栅,安上二维光栅,观察墙上光幕有何现象。
4、观察一维光栅条纹取下二维光栅,换上一维光栅。
把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。
在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。
在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。
5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。
扎透含零级衍射的一列水平方向的衍射点,观察现象。
扎透含零级衍射的一列竖直方向的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。
6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。
观察墙上光幕中光字中的条纹。
设法将光字中的横条纹去掉。
设法将光字中的纵条纹去掉。
设法将光字中的条纹都去掉。
傅里叶光学实验报告
傅里叶光学实验报告摘要:本实验通过光学元件的调整,利用干涉仪实现了傅里叶光学实验。
实验结果表明,在合适的条件下,可以实现光场的物理变换,为光学信号的处理和传输提供了新的思路。
引言:傅里叶光学是基于傅里叶变换的原理,研究光场在透镜、衍射及干涉等传输过程中的变换规律。
傅里叶光学理论的应用,不仅可以为光学领域提供新的方法和实现技术,而且对于信息科学、通信技术等领域也具有重要的意义。
本次实验旨在掌握傅里叶光学实验的原理和方法,以及掌握干涉仪的基本操作技术。
实验原理:在光学传输过程中,各种光学元件会对光场进行各种变换,如缩放、旋转、平移等。
傅里叶光学理论认为,任何复杂的光学变换都可以分解为一系列基本变换的乘积,这些基本变换因形式各异而具有不同的物理意义。
例如,平移变换对应了频率空间中的相移,旋转变换对应了频率空间中的相位,缩放变换对应了频率空间中的尺度变换等。
傅里叶光学实验利用了干涉仪的干涉效应,实现了光场的物理变换,并通过干涉图案的记录和分析,得到了相关的光学信息。
在干涉仪中,可以通过调整反射镜、透镜等光学元件的位置和角度,实现不同的光学变换效果。
例如,在Fourier变换的情况下,通过调整透镜的位置或反射镜的角度,可以实现平移变换、缩放变换等操作。
实验结果:本次实验中,我们通过调整干涉仪的各个光学元件,实现了物理变换效果,并得到了相应的干涉图案。
通过对干涉图案的分析,实验结果表明,在适当的条件下,我们可以通过傅里叶光学实验,实现光学信号的物理变换、建模、分析和传输。
结论:傅里叶光学是一种重要的光学变换技术和分析手段,利用其可以实现光学信号的稳定传输和处理。
本次实验通过干涉仪实现了傅里叶光学实验,对傅里叶光学基本原理和实现方法有了更深入的了解,对后续的光学研究和应用具有良好的指导意义。
傅立叶光学实验报告
实验报告陈杨PB05210097物理二班实验题目:傅里叶光学实验实验目的:加深对傅里叶光学中的一些基本概念和理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。
实验原理:1•傅里叶光学变换F (u, v) =、{f (x, y)} = f (x, y)exp[-i2二(UX Vy)]dxdy 二维傅里叶变换为:(I ) g(x)*[a(f x,f y)]复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。
2.阿贝成像原理由于物面与透镜的前焦平面不重合,根据傅立叶光学的理论可以知换(频谱),不过只有一个位相因子的差别,对于一般情况的滤波处理可以不考虑。
这个光路的优道在透镜的后焦平面上得到的不是物函数的严格的傅立叶变点是光路简单,是显微镜物镜成像的情况一可以得到很大的象以便于观察,这正是阿贝当时要改进显微镜的分辨本领时所用的光路。
3.空间滤波根据以上讨论:透镜的成像过程可看作是两次傅里叶变换,即从空间函数g(χ,y)变为频谱函数a(fχ,f y),再变回到空间函数g(χ,y),如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。
实验内容:1. 测小透镜的焦距f1 (付里叶透镜f2=45.0CM).光路:直角三棱镜→望远镜(倒置)(出射应是平行光)→小透镜→ 屏。
(思考:如何测焦距?)夫琅和费衍射:光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似)(1)利用夫琅和费衍射测一维光栅常数;光栅方程:ds in θ =kλ 其中,k=0, ± 1, ± 2, ± 3,…请自己选择待测量的量和求光栅常数的方法。
(卷尺可向老师索要)记录一维光栅的衍射图样、可看到哪些级?记录0级、士1级、士2 级光斑的位置;(2)记录二维光栅的衍射图样.3.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏思考:空间频谱面在距小透镜多远处?图样应是何样?(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a. 滤波模板只让0级通过;b. 滤波模板只让0、± 1级通过;c. 滤波模板只让0、± 2级通过;(2)二维光栅:a. 滤波模板只让含O级的水平方向一排点阵通过;b. 滤波模板只让含O级的竖直方向一排点阵通过;c.滤波模板只让含O级的与水平方向成450—排点阵通过;d.滤波模板只让含0级的与水平方向成1350—排点阵通过.4•“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a. 如何操作在像面上仅能看到像面上是横条纹或竖条纹,写出操作过程;b. 如何操作在像面上仅能看到像面上是空心“光”,写出操作过程.实验数据处理:(详细见原始数据)1. 小透镜的焦距按照实验内容中的光路图排好光路,在透镜后调节屏的位置。
傅里叶光学实验报告
傅里叶光学实验报告摘要:本实验主要是通过傅里叶光学的实验,研究光的干涉和衍射现象以及傅里叶变换的原理与应用。
在实验中,我们用干涉仪观察了两个光源的干涉现象,并利用光栅观察了光的衍射现象。
实验结果表明,光的干涉和衍射具有波动性和干涉性,傅里叶变换能够将信号从时域转换到频域。
1.引言2.实验装置实验主要用到了干涉仪和光栅。
干涉仪是由两个光源和一系列光学元件组成的装置,用于观察光的干涉现象。
光栅则是一种特殊的光学元件,能够通过衍射产生多个光斑。
3.实验步骤3.1干涉实验首先我们调整干涉仪的各个光路元件,使得两个光源的光线通过干涉仪后能够叠加在一起。
接着,我们调整干涉仪的反射镜,使得两束光叠加后的干涉条纹清晰可见。
在实验中,我们发现当两个光源相位差恰好为0时,干涉条纹最为明显;而当相位差为180度时,干涉条纹相消。
这说明光的干涉现象与光源的相位差有关。
3.2衍射实验接下来,我们使用光栅进行衍射实验。
将光栅置于光源前方,然后调整光栅的位置和角度,使得衍射光斑能够清晰可见。
实验中,我们观察到了光栅产生的多个光斑,这是由于光经过光栅后发生了衍射现象。
3.3傅里叶变换实验最后,我们进行了傅里叶变换实验。
在实验中,我们使用傅里叶变换将信号从时域转换到频域。
通过调整输入信号的频率,我们观察到傅里叶变换的输出结果呈现出不同的频谱。
4.结果与讨论实验结果表明,光的干涉和衍射现象能够用波动光学的理论进行解释。
干涉实验显示了光的相位差对干涉条纹的影响,而衍射实验则是光波通过光栅后发生了弯曲现象。
傅里叶变换实验则展示了将信号从时域转换到频域的能力。
在实际应用中,傅里叶光学在光学成像、信号处理等领域具有重要作用。
例如,利用傅里叶变换可以对图像进行去噪、增强等处理,同时也可以通过干涉和衍射现象实现光学传感器、光学显微镜等设备。
5.结论通过本次实验,我们深入了解了光的干涉和衍射现象以及傅里叶变换的原理与应用。
实验结果验证了光的波动性和干涉性,同时也为我们在光学领域的研究与应用提供了基础知识和实验基础。
付立叶光学实验(263)
实验题目:付里叶光学的空间频谱与空间滤波实验实验目的:本实验从液晶光阀的基本原理出发,测量其相关曲线,理解并解释相关现象。
实验原理:1. 偏振分光棱镜的工作原理对于折射率不同的两种材料的交界面,可以找到一个入射角,使之满足布儒斯特角条件,激光由棱镜左侧入射后,在右侧透射的光为P 分量光,在侧面反射的光为S 分量光。
偏光分束镜的膜设计要求:必须选择折射率满足一定的关系的膜料和基底材料,是P 光全透过,而S 光全部反射,在实验中偏光分束镜即起到起偏器作用又起到检偏器作用。
2. 液晶光阀1)液晶定义2)取向膜3)方向矢数据处理:a. 测透镜的焦距原始数据1(82.0968.87)(78.2064.90)(83.8070.50)3f -+-+-==13.27cm则其焦距为2f =44.56cmb. 测量光栅常数由x x f f λ'=以及11d f =,经测量知1x '=0.67cm,则有 1维光栅常数11f d x λ='66044.56(130.7085.80)nm cm cm⨯=-=76.5510-⨯2维光栅常数22f d x λ='66044.56(125.787.2)nm cm cm⨯=-=77.6410-⨯ c .观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征1) 一维光栅:若滤波模板只让0级通过,则无光点;若滤波模板只让1级通过,则有光点2)二维光栅:若滤波模板只让含0级的水平方向一排点阵通过,则有竖条纹; 若滤波模板只让含0级的竖直方向一排点阵通过,则有横条纹; 若滤波模板只让含0级的与水平方向成45O 一排点阵通过,则条纹与水平呈135 O ;若滤波模板只让含0级的与水平方向成135O 一排点阵通过,则条纹与水平呈45 O 。
3)“光”字屏滤波若滤波模板只让含0级的水平方向一排点阵通过,则仅可见竖条纹;若滤波模板只让含0级的竖直方向一排点阵通过,则仅可见横条纹;若入射光从一小空通过,则可见空心的光字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶光学的空间频谱与空间滤波实验11系09级姓名张世杰日期2011年3月30日学号PB09210044实验目的:1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积2.理解透镜成像的物理过程3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响实验原理:一、基本概念频谱面:透镜的后焦面空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数空间频谱:一个复变函数f(x,y)的傅立叶变换为⎰⎰+)exp[,F)](((π,u){,()}v=dxdyvyℑ=fux-yx2ifxyF(u,v)叫作f(x,y)的变换函数或频谱函数空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程滤波器:频谱面上的光阑二、阿贝尔成像原理本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。
需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱),不过只有一个位相因子的差别,对于一般情况的滤波处理可以不考虑。
这个光路的优点是光路简单,而且可以得到很大的像以便于观察。
三、空间滤波器在频谱面上放置特殊的光阑,以滤去特定的光信号(1)单透镜系统(2)双透镜系统(3)三透镜系统物面 透镜 频谱面像面四、空间滤波器的种类a .低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。
b .高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。
c . 带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。
d .方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允许特定方向上的频谱分量通过,可以突出图像的方向特征。
以上滤波光阑因透光部分是完全透光,不透光部分是将光全部挡掉,所以称作“二元振幅滤波器”。
还有各种其它形式的滤波器,如:“振幅滤波器”、“相位滤波器”和“复数滤波器”等。
e .相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。
如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。
所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。
图3图2.4-3 各种形式的空间滤波器五、显现位相的技术(1)纹影法(2)相衬法:实验仪器:6328A氦氖激光仪,焦距为45cm的大透镜,一级光阑,二级光阑,光字屏(在二级光阑的基础上再有一个光字),小透镜(焦平面更段短,所成像的大小更小),各种自制的空间滤波器,真空滤波器实验内容:(注意事项:不要动He-Ne激光器→反射镜→直角三棱镜的光路!(因此部分光路已经调好,若有变动,可用直角尺进行校准一、测小透镜的焦距f1 (大透镜f2=45.0CM).光路:直角三棱镜→望远镜(倒置)(出射应是平行光)→小透镜→屏本组成员共思考出两种方法,由于实验条件的限制,采用第二种1 公式法利用光具座做凸透镜成实像的实验,测量并记录成像时的物距u和像距v,根据透镜成像公式,计算出透镜焦距f,多次测量后取平均值。
2 平行光聚焦法根据凸透镜特性,让平行光(如太阳光)沿主轴方向入射到凸透镜上,在另一侧与透镜平行放置一光屏,调节光屏位置使光屏上的光斑最小且最明亮,此时透镜与光屏的间距为凸透镜焦距。
这是一种简便的粗测凸透镜焦距的方法。
数据处理透镜的焦距为f=(f1+f2+f3)/3=(12.20+12.27+12.32)/3=12.26cm二、夫琅和费衍射:光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅和费衍射测一维光栅常数;光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,…请自己选择待测量的量和求光栅常数的方法。
(卷尺可向老师索要) 记录一维光栅的衍射图样、可看到哪些级?记录 0级、±1级、±2级光斑的位置;图样如下:式中i x 为k 级与0级光斑之间的距离,f 为大透镜的焦距,632.8λ=nm 。
设0级条纹位置为0.00cm ,有f d fk x k fx k f Lx L i i i1,/sin ,tan sin ======∴λλλθθθθ很小的情况下)(,远大于光斑之间的距离m n U m d dm dd m f d m f m f d m f m f d m f m f d m f m f d m f m f d m f dA i id i ix x x x x x x x x x x x 55561255-615661410365551410355441410345331410335221*********4103110033.061008.0,1008.05)(,108.9310698.399.395.395.300.401.461098.31,1051.2106328345.010*44.211099.31,1051.2106328345.010*40.211095.31,1053.2106328245.010*42.141095.31,1053.2106328245.010*42.141000.41,1050.2106328145.010*12.71001.41,1049.2106328145.010*11.7---=-=------------------------⨯=⨯==⨯=-=⨯=⨯+++++==∴⨯==⨯=⨯⨯⨯=⨯==⨯=⨯⨯⨯==⨯==⨯=⨯⨯⨯=⨯==⨯=⨯⨯⨯==⨯==⨯=⨯⨯⨯=⨯==⨯=⨯⨯⨯=∴∑∑σσ光栅常数68.0,1005.010045.011.168.0,1.11,55=⨯=⨯⨯==∴=--P m m U t U P t U U A p d A B 因子查表知相比很小与68.0,10)05.098.3(5=⨯±=∴-P m d 光栅常数(2)记录二维光栅的衍射图样. 图样如下:三、观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏起初只在实验台上利用白纸来回移动,看到的图像很不清晰,基本上只是光栅上的杂质,如手印等,后来在老师的点拨下,将实验室的灯关掉,看到了投射在墙上的微细条纹(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让0级通过;无条纹,但可以看见滤波片上的正方形边际解释:零频分量为一直流分量,它只代表像的本底b.滤波模板只让0、±1级通过;在墙上两侧靠中间处形成对称的极细的条纹,边缘比较模糊解释:c.滤波模板只让0、±2级通过;在墙上两侧离中间较远处对称地形成较细的条纹,中心比较模糊解释:仅允许低频分量通过时,像的边缘锐度降低;仅允许高频分量通过时,像的边缘效应增强(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;可以看到竖直方向的平行细条纹b.滤波模板只让含0级的竖直方向一排点阵通过;可以看到水平方向的平行细条纹c.滤波模板只让含0级的与水平方向成45度一排点阵通过;可以看到与水平方向成135度的平行细条纹d.滤波模板只让含0级的与水平方向成135度一排点阵通过.可以看到与水平方向成45度的平行细条纹解释:频谱面上的横向分布是物的纵向结构的信息(图B);频谱面上的纵向分布是物的横向结构的信息物的线状结构与其功率谱扩展方向正交,物图像中线状结构越密集,则其功率谱延伸越远.(3).“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是横条纹或竖条纹,写出操作过程;当狭缝为水平细缝时,仅能看到平行竖直条纹当狭缝为竖直细缝时,仅能看到平行水平条纹当既有水平狭缝又有竖直狭缝,即狭缝成一十字形时,可看到平行的水平条纹以及竖直的条纹均显现在光字上b.如何操作在像面上仅能看到像面上是空心“光”,写出操作过程.当滤波器仅不允许二级光栅中心光斑通过时,能看到光字空心解释:光字屏即为二级光栅上再写有一个光字,欲看到空字光心,则光字发生反衬,即让中心光斑无法通过,而周围光斑可以通过(4). 自己的额外思考在光字屏的条件下,制作空间滤波器,a.使频谱面上的中心光斑的四个光斑通过,挡掉所有其他光斑此时应该看到像相较光字并非整个亮度相同,而是呈现中间较亮,周围稍暗的情况,有比较圆滑的过度b.使频谱面上的零级信号不通过,而使其他及信号通过(即中间无孔,旁边有孔)此时应该看到光字屏上的光字出现反衬现象,即光字的亮度较暗,而周围边际的亮度较强误差分析:(1).各光学元件的底座损坏,无指示相应读数的指针,只能从光学元件的一端近似读书,导致对于小透镜的焦距测量存在问题(2).安排光路,放置光学元件时不能保证光栅在透镜的前焦面上,光屏在透镜的后焦面上实验反思光栅是利用多缝衍射原理使光发生色散的光学元件,是一块刻有大量平行等距离狭缝的平面玻璃或金属片,单色平行光通过光栅每个缝的衍射和缝间的干涉,形成暗条纹很宽,明条纹很细的图样,这些锐细而明亮的条纹叫做谱线。
思考题1、在实验内容(1)中如果挡掉零级光斑,让所有高级衍射光斑透过,在象平面得到的像是什么样的?分析以下情况a.光栅透光缝a<光栅周期d/2,b. 光栅透光缝a>光栅周期d/2,c. 光栅透光缝a=光栅周期d/2。
(1).当a=d/2时,即栅状物的缝宽等于缝间隙时像的振幅分布具有周期性,其周期与物周期相同,但强度是均匀的(2).d<2a强度分布出现衬度反转,原来的亮区变为暗区,原来的暗区变为亮区(3).d>2a, 原来的亮区变得更亮,原来的暗区也变得更加明亮监理工作交底书__________________________________________________交底单位(章):接收单位(章):交底人(签字):接收人(签字):交底时间:收集于网络,如有侵权请联系管理员删除。