细菌素作为抗生素和益生菌的双重身份
抗生素与益生菌

抗生素与益生菌抗生素滥用的危害及益生菌与抗生素的关系抗生素以前被称为抗菌素,事实上它不仅能杀灭细菌而且对霉菌、支原体、衣原体等其它致病微生物也有良好的抑制和杀灭作用,近年来通常将抗菌素改称为抗生素。
抗生素可以是某些微生物生长繁殖过程中产生的一种物质,用于治病的抗生素除由此直接提取外,还有完全用人工合成或部分人工合成的。
通俗地讲,抗生素就是用于治疗各种细菌感染或抑制致病微生物感染的药物。
青霉素是最早被发现并大规模使用的抗生素,第二次世界大战促使青霉素大量生产。
1943年,已有足够青霉素治疗伤兵;1950年,产量可满足全世界需求。
青霉素的发现与研究成功,成为医学史的一项奇迹,拯救了千百万肺炎、脑膜炎、脓肿、败血症患者的生命,及时抢救了许多的伤病员。
从那以后,从各种各样的微生物中发现了具有抗菌作用的物质,现在即使不依赖微生物也能通过化学的手段合成抗生素。
抗生素研究进入了有目的、有计划、系统化的阶段,还建立了大规模的抗生素制药工业。
金霉素(1947年)、氯霉素(1948年)、土霉素(1950年)、制霉菌素(1950年)、红霉素(1952年)、卡那霉素(1958年)等陆续被发现。
重复使用一种抗生素可能会使致病菌产生抗药性。
20世纪60~80年代,随着越来越多抗生素的发现与使用,面对细菌,人类似乎一下子拥有了大批武器。
遇到很多葡萄球菌感染病例,医生们大都不假思索地注射青霉素,效果显著。
青霉素刚投入使用的时候,一天用100个、200个单位就很有效了,后来使用剂量明显上升,再后来,即使剂量上升药效也很差。
到了今天,即使是治疗普通的呼吸道炎症,一袋注射用生理盐水(250毫升)中需加入青霉素剂量为1 000万个单位;用量上升了几十万倍。
"不是青霉素不好了,是敌人变得越来越狡猾、强大了。
"曾经遥远的"超级细菌"现在已经与我们每一个人都极度接近。
如今"超级细菌"的名单越来越长,包括产超广谱酶大肠埃希菌、多重耐药铜绿假单胞菌、多重耐药结核杆菌。
成功替代抗生素的4种主要添加剂

成功替代抗生素的4种主要添加剂随着抗生素的过度使用和滥用,抗生素耐药性已经成为全球公共卫生问题之一。
因此,越来越多的研究集中在开发有效的抗菌替代品,在保证人体健康的前提下,并减少对环境的伤害。
下面,介绍一些成功替代抗生素的四种主要添加剂。
1、益生菌益生菌主要通过调节肠道菌群平衡,优化免疫力,抑制病原菌的繁殖来起到抗菌的作用。
现已有许多研究表明,益生菌可改变肠道环境受到抗生素影响时的细菌群落,促进激素的分泌和克服抗生素对免疫系统的影响。
此外,益生菌还可以释放抗菌肽,增加对某些病原体的免疫抵抗力。
抗生素代替品的益生菌,已广泛用于医疗、养殖以及人类健康领域。
2、天然植物抗菌素天然植物抗菌素指以植物为原材料制成的液体或粉剂,可在医疗以及食品安全中起到与抗生素同样的作用。
天然植物抗菌素常常被用作营养强化剂,在肉类、水果和蔬菜的保存和储存中起着重要的作用。
例如胡椒素、黄酮类化合物等都具有抗菌作用,既能保护食品周期和质量,又可达到防腐作用。
3、酵母菌酵母菌主要是因为其特殊的姿态和优异的活性才被认为是抗生素替代品之一。
酵母菌的抗菌作用一般体现在降低致病菌的数量上。
它可以通过竞争代谢物,消耗有害菌落生长的营养物质,压制致病菌的繁殖并最终减少它们的数量。
酵母菌常常被应用于发酵过程,如发酵乳制品中的乳酸菌和酵母菌等。
而酵母菌更加优异在于它们与某些动物组织良性结合并产生抗原性刺激物,从而在激活宿主的免疫反应,以达到抗菌的效果。
4、酶酶是一类能帮助其它化学过程进行的细胞蛋白质,它具有多种应用价值。
酶的应用领域特别广泛,既可以产生生物活性产品,又能作为催化剂。
最近的研究显示,一些水解酶能够分解一些抗生素成分,这使得酶作为替代抗生素的添加剂具有了很大的发展空间。
常见的酶如蛋白酶,酶促反应等,均可以在抗菌领域大显身手。
综上所述,对于替代抗生素的需求和研究不断在深入和扩大,以上所介绍的添加剂大部分都已经成功地应用于相关领域之中,前景不可估量。
细菌素的名词解释

细菌素的名词解释细菌素是一种广泛存在于自然界的活性物质,其具有重要的生物学功能和广泛的应用价值。
本文将对细菌素的定义、分类、生物合成、生物学功能和应用进行详细解释。
一、细菌素的定义细菌素是由微生物合成的一类具有杀菌活性或调控生物体代谢的化合物。
其普遍存在于细菌、真菌、原生动物等生物体中,被认为是它们抵抗外界环境压力的一种重要手段。
二、细菌素的分类根据细菌素的来源和作用机制,可以将其分为以下几类:1. 抗生素:抗生素是一类由细菌产生的,具有杀菌或抑制细菌生长的化合物,常用于临床治疗感染性疾病。
2. 产生物质:包括植物、动物和微生物产生的具有杀菌活性的物质,如植物类黄酮、甘草酸等。
3. 毒素:某些细菌产生的毒素具有杀伤作用,如白喉杆菌产生的白喉毒素、破伤风杆菌产生的破伤风毒素等。
4. 调节物质:某些细菌素可以通过调节宿主细胞的代谢和信号传导来影响生物体的生长和发育,如植物根际共生菌产生的植物生长素等。
三、细菌素的生物合成细菌素的生物合成是一个复杂的过程,涉及多个酶的催化和多个底物的参与。
一般而言,细菌素的合成可以分为下列几个步骤:1. 底物选择及供应:细菌通过内源性代谢途径或外源性底物来合成细菌素的前体物质。
2. 酶催化及转化:细菌体内的特定酶将前体物质转化为活性细菌素。
3. 合成调控:细菌体内存在多种机制来调控细菌素的合成,如底物浓度、环境因子、细胞信号等。
四、细菌素的生物学功能细菌素在生物体内具有多种生物学功能,如杀菌、抑制细胞生长、调控宿主免疫等。
具体的生物学功能包括:1. 抗菌作用:抗生素类细菌素通过破坏或抑制细菌的细胞壁合成、核酸复制、蛋白质合成等途径,对细菌产生杀菌或抑制生长的效果。
2. 调节代谢:某些细菌素可以通过调节宿主细胞的代谢途径和信号传导通路,影响生物体的生物合成、分化和发育过程。
3. 免疫调节:一些细菌素能够调节机体的免疫系统,促进免疫细胞的增殖、活化和细胞因子的释放,从而增强机体的抗菌和抗病毒能力。
益生菌联合三联疗法治疗幽门螺杆菌感染

益生菌联合三联疗法治疗幽门螺杆菌感染张秋瓒;杨倩【期刊名称】《临床荟萃》【年(卷),期】2012(027)022【总页数】2页(P1991-1992)【关键词】胃炎;消化性溃疡;螺杆菌,幽门;益生菌【作者】张秋瓒;杨倩【作者单位】天津市第四中心医院消化内科,天津300140;天津市第四中心医院消化内科,天津300140【正文语种】中文【中图分类】R573.3;R573.1幽门螺杆菌(Helicobacter pylori,Hp)感染是慢性胃炎、消化性溃疡和胃癌等多种上消化道疾病的重要致病因素。
质子泵抑制剂(proton pump inhibitors,PPI)联合两种抗生素的三联疗法是治疗Hp感染的经典治疗方案,但是近年来随着细菌耐药性的增加导致Hp根除率逐年降低,且长期不合理应用抗生素可引起抗生素相关不良反应。
近年随着微生态医学的兴起,微生态制剂或益生菌的应用为防治Hp感染提供了新思路。
美常安胶囊含两种益生菌,枯草杆菌及屎肠球菌,且对青霉素类、大环内酯类等多种抗生素存在耐药性,能与该类抗生素合用。
我们应用雷贝拉唑、克拉霉素、奥硝唑三联疗法,并联用美常安,对照观察其对Hp根除率及不良反应的影响,以探讨益生菌在根除Hp治疗中的临床应用价值。
1 资料与方法1.1 病例选择 2008年9月至2010年8月我院收治的门诊及住院患者126例,其中消化性溃疡54例,慢性胃炎72例。
入选标准:有上消化道症状,并经胃镜检查证实为消化性溃疡或慢性胃炎者;年龄18~70岁;1个月内14C尿素呼气试验阳性和胃镜快速尿素酶试验检测阳性病例。
排除标准:合并胃黏膜重度异性增生或病理诊断为恶性病变者;合并心脑肾、肝等严重原发疾病者;精神疾病者;妊娠或哺乳期妇女;治疗前2周内应用抗生素、铋剂、PPI或H2受体拮抗剂者;酗酒以及药物滥用者;消化性溃疡并发出血、穿孔者。
患者随机分为两组,治疗组60例,男33例,女27例,年龄18~69岁,平均(46.6±10.7)岁;对照组66例,男35例,女31例,年龄19~70岁,平均(49.7±12.3)岁,两组性别、年龄差异无统计学意义,具有可比性。
微生物世界小论文 浅谈乳酸菌的功能效用及相关应用

浅谈乳酸菌的功能效用及其相关应用摘要随着人们生活水平的提高和科学技术的发展,越来越多的益生菌种类被发现,它们的功能效用也在被不断发掘探索当中。
人们对高质量生活的渴求离不开益生菌群体的帮助,乳酸菌作为益生菌的一种,在人体健康和工业、农牧业、食品和医药方面具有重要作用。
本文通过对学习资料的搜集和课堂学习的知识的综合性理解运用,将乳酸菌的一些重要功能效用及其应用的学习成果呈现如下。
一、乳酸菌及其功能效用乳酸菌是一类能利用可发酵碳水化合物产生大量乳酸的细菌的统称。
其能够将碳水化合物发酵成乳酸,因而得名。
这类细菌在自然界分布极为广泛,具有丰富的物种多样性,至少包含18个属,共200多种。
除极少数外,其绝大部分都是人体内必不可少的、且具有重要生理功能的菌群,广泛存在于人体的肠道中。
乳酸菌分布广泛,通常存在于肉、乳和蔬菜等食品及其制品中。
此外,乳酸菌也广泛存在于畜、禽肠道及少数临床样品中,其中,在人类和其他哺乳动物的口腔、肠道等环境中的乳酸菌,是构成特定区域正常微生物菌群的重要成员[1]。
乳酸菌是发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌。
大多数乳酸菌不运动,少数以周毛运动,菌体常排列成链。
乳酸链球菌族,菌体球状,通常成对或成链。
乳酸杆菌族,菌体杆状,单个或成链,有时成丝状,产生假分枝。
普通的乳酸菌,活力极弱,它们只能在相对受限制的环境中存活,一但脱离这些环境,其自身就会遭到灭亡[1]。
从分类上而言,乳酸菌作为真细菌纲目中的乳酸细菌科,形态上可分成球菌、杆菌。
其中,球形乳酸菌包括链球菌、明串珠菌属、片球菌;杆状菌包括乳球菌、乳杆菌、双歧杆菌等;从生长温度上而言,可分成高温型、中温型;从发酵类型而言,可分成同型发酵、异型发酵;从来源上分,大体上可分为动物源乳酸菌和植物源乳酸菌[1]。
乳酸菌对于人类的重要性不可忽视,具有调节人体机能,延缓衰老,预防疾病等作用。
利用乳酸菌进行食品发酵的历史比较长,乳酸菌的用途也在不断的被人们所开发利用,人们将乳酸菌用于制造酸奶、奶酪、泡菜、酸菜、与其他发酵食品以及一些保健品。
细菌性阴道病益生菌治疗方案的研究进展

细菌性阴道病益生菌治疗方案的研究进展摘要细菌性阴道病(BV)是常见的阴道感染性疾病之一。
BV的主要特征是阴道微生态失调,乳杆菌减少的同时厌氧菌大量增多。
传统的BV治疗方法是使用甲硝唑等抗菌药物,抗菌药物的过多使用不仅副作用多,且治愈后易复发,而大量研究表明,通过益生菌的干预有助于恢复正常阴道菌群,缓解BV症状,减少复发。
本文荟萃了近年来益生菌制剂在针对BV治疗上的不同方案,为以后应用于临床提供一定的依据。
经过对文献的综合分析,益生菌可单独治疗BV,同时使用益生菌制剂和抗菌药物对BV的治疗效果更好,抗菌药物与益生菌联用比单独使用抗菌药物可显著降低BV的复发率,益生菌与其他物质如雌激素、乳铁蛋白或噬菌体联合也可治疗BV。
细菌性阴道病(bacterial vaginitis,BV)是育龄期妇女常见的阴道炎症之一,其特征是阴道微生物群组成发生显著变化,从乳杆菌属占优势变为以厌氧菌为主的多种微生物群落(如阴道加德纳菌、阴道阿托波菌及其他BV相关病原体等)[1-5]。
传统的BV治疗方法是使用甲硝唑等抗菌药物,主要作用是抑制厌氧菌的过度生长,但无促进乳杆菌重新定植的作用,而且全身使用抗菌药物有很大的副作用;另外,甲硝唑治疗后BV的复发率很高,在治疗开始后的6~12个月内,复发率超过50%;再有,频繁、长期使用抗菌药物会增加对抗菌药物的耐药性,并降低使用者的依从性和有效剂量给药[2,6,7]。
而大量的研究表明,益生菌可以通过抗菌、抗生物膜、抗定植或抗黏附、共聚集和调节宿主免疫等机制抑制BV相关病原体的生长,从而营造不利于BV病原体生存的微环境[8]。
我国2021年的BV指南指出,微生态制剂如阴道局部乳杆菌制剂、中成药对于帮助BV患者恢复阴道微生态平衡、巩固疗效及预防复发具有一定的作用[9]。
BV 的动物研究显示,益生菌制剂可通过减少上皮细胞的破坏和降低髓过氧化物酶活性,从而减少阴道加德纳菌诱导的BV[10]。
益生菌已被用作BV治疗中传统抗菌药物的辅助物,可提高治愈率和减少复发[3,8]。
微生物题库(含答案)

本科生物技术、生物科学专业《微生物学》分章节试题库(命题人:黄晓敏)绪论(3分)第一章原核生物的形态、构造和功能(15分)第三章病毒和亚病毒(7分)一、名词解释微生物:一切肉眼看不见或看不清的微小生物的总称。
微生物化:模式微生物:微生物多样性:细菌:一类细胞细短、结构简单、胞壁坚韧、多以二分裂方式繁殖和水生性较强的原核生物。
古生菌:在进化途径上很早就与真细菌和真核生物相互独立的生物类群。
L细菌:实验室或宿主体内通过自发突变而行成的遗传性稳定的细胞壁缺损菌株。
伴孢晶体:在形成芽孢的同时,会在芽孢旁行车形成一颗菱形、方形或不规则的碱溶性蛋白质晶体。
菌落:菌落(colony)由单个细菌(或其他微生物)细胞或一堆同种细胞在适宜固体培养基表面或内部生长繁殖到一定程度;形成肉眼可见有一定形态结构等特征的子细胞的群落。
放线菌:一类主要呈菌丝状生长和以孢子繁殖的陆生性较强的原核生物。
静息孢子:一种长在细胞链的中间或末端的形大、壁厚、色深的休眠细胞,富含贮藏物,能抵御干旱等不良环境的孢子。
病毒:是一类核酸合蛋白质等少数集中成分组成的超显微“非细胞生物”。
基本培养基:仅能满足微生物野生型菌株生长需要的培养基。
最适生长温度:某菌分裂代时最短或生长速率最高时的培养温度。
巴氏消毒法:一种利用较低的温度既可杀死病菌又能保持物品中营养物质风味不变的消毒法。
细菌质粒:游离于细菌核基因组以外具有独立复制能力的小型共价闭合环状的dsDNA分子。
温和噬菌体:能引起溶源性的噬菌体。
前噬菌体:凡能引起溶源性的噬菌体侵入的宿主细胞病毒包涵体:病毒在增殖的过程中,常使寄主细胞内形成一种蛋白质性质的病变结构,一般是由完整的病毒颗粒或尚未装配的病毒亚基聚集而成。
噬菌体:原核生物的病毒。
阮病毒:一种不含核酸的传染性蛋白质分子。
周质空间:界于外膜和细胞质膜之间的透明空间。
溶原性细菌:温和噬菌体侵入的宿主细胞。
噬菌斑生成单位(效价):每毫升试样中所含有的具侵染性的噬菌体粒子数。
细菌素

嗜盐菌素H6的作用机制
Halocin H4和H6对H. halobium 细胞膜上的Na+/H+通道的影响 (Meseguer et al., 1995)
还可以作为饲料添加剂,防止致病菌对动物肠道的侵害。
细菌素的作用机制及 产生菌自我保护机制研究进展
细菌素的分类
细菌素
革兰氏阴性菌 1、大肠杆菌素 2、小菌素
革兰氏阳性菌 1、Class I 2、Class II 3、Class III 4、Class IV
大肠杆菌素的分类
大肠杆菌素(Colicin)的分类 (Cascales et al., 2007)
细菌素的应用
细菌素由于无毒、无副作用、无残留、无抗药性 ,并具有一定的热稳定性,易被人体消化道的蛋白酶 降解,因此不会在体内积蓄引起不良反应, 在食品中易
扩散,使用较方便,因而常用做食品防腐。
细菌素大多抗菌谱窄,可以使动物免受某些肠道致 病菌的侵害,又不影响动物肠道内的有益微生物。所以
细菌素不仅可以防止饲料被沙门氏菌等致病菌污染,
Microcins
小菌素(Microcins)
I类小菌素(≤3 kD):MccJ25、MccB17 和 MccC7/C51 等 II类小菌素(≥4 kD):IIa类 和 IIb类
Microcin 的分类 (Duquesne et al., 2007)
Precursor/ Promicrocin Microcin Class Size (number of residues) Size (number of residues) Size (number residues) 43 7 21 88 90 73 84 84 77 60 62 of Molecular (Da) 3093 1177 2107 8733 8884 7457 8717 7886 7283 4865 6276 mass Leader peptide/ Propeptide Microcins
Mickey米奇益生菌人体的“国防兵”

Mickey米奇益生菌人体的“国防兵”孔子曰:丈夫者舟也,人者水也。
水可载舟,亦可覆舟。
君以此思危,则可知也。
地球上有十几亿人口,人最离不开的是水,而细菌离不开人体。
绝大多数细菌会运用一下人体,取得生计的空间,获取生计所需的资源。
细菌比如是水,其活动也给它们生计的家乡带来一些长处,例如分化一些人体不能消化的纤维,组成一些维生素,增强人体的免疫力等,即载舟。
而致病细菌则为细菌中的恐怖分子,即覆舟。
只需它们冲破了人体的防护抵挡系统,人体这个细菌的家乡就会患病,最坏的状况下乃至逝世。
益生菌能够看做细菌中的国防兵,首要的使命就是保护家乡。
不过在细菌的国际里,这些国防兵的作战才华往往不行,一般只能完结一些保护治安的使命。
关于穷凶极恶的致病菌,大体上是有心无力。
致病菌的克服,仍是要靠“领袖”(人体)来处置。
弥补益生菌,相当于空投了一些才华相当于治安联防队的“特种军队”。
WHAT PROBIOTICS ?是什么?益生菌,也称为原生物素或生菌素,是一种对被寄生的物体有利的活性微生物。
它能够有效且均衡的散布于被寄生的物体内的微环境。
人体、动物体内有利的细菌或真菌主要有:酪酸梭菌、乳酸菌、双歧杆菌、嗜酸乳杆菌、放线菌、酵母菌等。
就此刻来讲,国际上研讨的成效最强壮的产品大多是由上述几种微物质所组成的复合活性益生菌,且这些被遍及运用于人体健康等方向。
效果机理一、平衡肠道菌群:正常人体肠道内休息着500多种、数十亿个不同的细菌,益生菌能够按捺细菌的嚣张气焰,防范宝宝腹泻、过敏、湿疹等症状,还有用改良乳糖不耐的状况,然后增进宝宝对各类养分素的吸收。
二、生成维他命,组成蛋白质:乳酸杆菌和双歧杆菌既可产出有用物质以供给机体,如维生素B1、维生素B2等多种维生素及制作乳酸、醋酸,调理肠道pH值,有用按捺肠道不良微生物的增殖。
3、广谱抗菌效果:益生菌与肠黏膜紧密结合,构成肠道的生物屏障,并能通过占位效应、养分竞赛及其排泄的各种代谢产品及细菌素(如细菌素、亲脂分子)等来按捺致病菌的过度成长及外来致病菌的侵略,增强免疫力,防备或改进腹泻。
细菌素和抗生素的名词解释

细菌素和抗生素的名词解释细菌素和抗生素是我们日常生活中经常会遇到并且亦为常见的词汇。
然而,对于它们的具体含义和作用,很多人可能并不太清楚。
本文将介绍细菌素和抗生素的定义、分类、作用以及两者的区别。
一、细菌素的含义细菌素是指从微生物体内(如细菌、真菌等)分离、提纯并具有抗菌活性的物质。
它们可通过多种方式对细菌进行杀菌或抑制菌落生长。
细菌素广泛存在于自然界中,不仅在微生物体内,也可以从植物、动物等生物中提取。
常见的细菌素有链霉素、青霉素、四环素等。
二、抗生素的含义抗生素指的是一类天然的或由改造微生物制备的物质,它们具有抗菌作用,可以杀死或抑制寄生在人体内的细菌、病毒、真菌以及寄生虫。
一般来说,抗生素更多是指针对细菌的药物,其作用是通过抑制细菌的生长和复制来治疗感染疾病。
抗生素的有效性与其依赖的药物浓度、药物与病原微生物之间的相互作用以及药物进入细胞的能力有关。
三、细菌素与抗生素的分类1. 细菌素的分类细菌素可以根据来源进行分类,其包括天然细菌素和半合成细菌素。
天然细菌素是从微生物体中提取的纯天然物质,包括链霉素、青霉素等。
半合成细菌素则在保留原有分子结构的基础上,通过化学合成对分子进行改造,以增强其稳定性和抗菌活性。
2. 抗生素的分类抗生素可以根据杀菌作用的机制进行分类,包括细菌静态抗生素和细菌杀菌抗生素。
细菌静态抗生素主要是通过抑制细菌的生长和繁殖,使得免疫系统有足够的时间来消灭细菌,如四环素。
细菌杀菌抗生素可以杀死细菌,使得免疫系统无需介入,如青霉素。
四、细菌素与抗生素的作用1. 细菌素的作用细菌素主要通过影响细菌的生理代谢过程或结构,干扰其正常功能从而起到抗菌作用。
细菌素可以通过抑制细菌复制过程中DNA/RNA合成,干扰蛋白质合成,破坏细菌细胞壁结构等方式来杀菌或抑制菌落生长。
2. 抗生素的作用抗生素的作用主要是针对细菌的治疗或预防感染疾病。
抗生素可以通过多种机制发挥作用,包括抑制与细菌生长相关的代谢途径,如细菌细胞壁的合成,DNA/RNA的合成,蛋白质的合成等。
成功替代抗生素的4种主要添加剂

成功替代抗生素的4种主要添加剂随着抗生素使用的普及,人们对抗生素的滥用也越来越担忧,因为滥用抗生素不仅会导致细菌产生耐药性,还会对人体健康造成危害。
人们开始寻找替代抗生素的方法,其中添加剂是一种常见的选择。
据研究表明,成功替代抗生素的4种主要添加剂包括益生菌、植物提取物、草本添加剂和微生物发酵产物。
本文将就这4种添加剂进行介绍。
一、益生菌益生菌是一种对宿主有益的活菌,常见于人体的肠道和生活中的食物中。
益生菌具有调节肠道菌群平衡、增强免疫力、抑制有害菌生长等作用。
在畜禽饲料中添加适量的益生菌可以有效替代抗生素的作用。
研究表明,益生菌不仅可以降低家禽生长中使用抗生素的需求,还可以提高家禽的生长性能和饲料利用率。
益生菌有助于调节肠道菌群平衡,抑制有害菌的生长,从而降低了动物患病的可能性。
益生菌还可以减少饲料中脂肪的氧化,提高饲料的营养价值。
益生菌在替代抗生素方面具有巨大的潜力。
二、植物提取物植物提取物可以通过抗菌、抗炎作用来替代抗生素的作用,减少对抗生素的依赖。
植物提取物还可以改善肠道健康、提高动物的免疫力和抗逆性,从而提高动物的生长性能和生产性能。
三、草本添加剂草本添加剂是指从天然草本植物中提取的生物活性成分,如多酚类、黄酮类、皂苷类等。
这些生物活性成分具有抗菌、抗炎、抗氧化等作用,可以有效地替代抗生素的作用。
在畜禽饲料中添加适量的草本添加剂可以调节肠道微生物组成,维持肠道菌群平衡,从而减少对抗生素的依赖。
草本添加剂还可以改善动物的消化吸收功能,促进生长发育,提高免疫力和抗逆性。
四、微生物发酵产物成功替代抗生素的4种主要添加剂包括益生菌、植物提取物、草本添加剂和微生物发酵产物。
这些添加剂通过调节肠道菌群平衡、抑制有害菌的生长、提高动物的免疫力和抗逆性等方式,有效地替代了抗生素的作用,为畜禽养殖业健康可持续发展提供了新的途径。
加强对这些添加剂的研究和应用,将有助于减少对抗生素的依赖,保障动物产品的安全和质量,促进畜禽养殖业的健康发展。
细菌素简介

细菌素2l世纪旳人们越来越关注食品旳安全与卫生,特别是中国近年来加入WTO,由于食品中抗生素,药物残留及防腐剂添加超标而导致旳出口损失,引起了广泛旳关注。
人们迫切需要探寻一种能变化这种现状旳途径,于是细菌素便成为近年来研究旳热点。
细菌素(Bacteriocin)具有高效、无毒、耐酸、耐高温、无残留、无抗药性、大部分基因位于质粒上、相对分子质量小、含修饰氨基酸、构造复杂等特点,因而被觉得是分子遗传、基因工程、蛋白质工程和食品添加剂、化妆品、皮肤保健、克制病原菌和调节肠道菌群旳好材料(赖毅宁等,;Sylvie Gameau等,;Ross等,)。
1988年乳酸链球菌素(Nisin)初次作为食品添加剂得到FDA旳承认,已有52个国家和地区在使用Nisin作为食品防腐剂,从而增进了其他种类细菌素及在其他领域旳研究,目前细菌素作为一种“绿色防腐剂”正日益受到人们旳注重,随着饲料中益生菌旳广泛推广和人们对饲料卫生旳注重,细菌素在动物生产中也有着广阔旳应用前景。
1细菌素旳研究现状1.1细菌素旳定义早在1925年,Gratia就发现大肠杆菌旳v菌株能克制夺菌株旳生长,他觉得是V 菌株产生旳某种物质在起作用。
随后Gratia和Fredericq对v菌株产生了分离,发现是一种类似于噬菌体旳物质在起作用,但这种物质不进行自主复制,Fredrericq称这种物质为大肠杆菌素。
细菌素最早是由Jacob和合伙者于1953年提出旳,称其为某些细菌产生旳具有抗菌活性旳多肽、蛋白质或蛋白质复合物。
1982年,Konisly将细菌素定义为:细菌素是某些细菌在代谢过程中通过核糖体合成机制产生旳一类具有抑菌活性旳多肽或前体多肽,抑菌范畴不局限于同源旳细菌,产生菌对其细菌素有自身免疫性。
1.2细菌素旳分类细菌素根据化学构造、稳定性和相对分子质量大小可分为4类:第一类定义为羊毛硫抗生素,是一类小分子旳修饰肽,含超过19。
50个旳氨基酸分子,分子活性部位有羊毛硫氨酸(Lanthionine)、8一甲基羊毛硫氨酸(p—methyllanthionine)、脱氢酪氨酸(Dehydrobutyrine)和脱氢丙氨酸(Dehydroalanine)等非编码氨基酸。
功能性食品论文-益生菌调节肠道菌群的研究现状

天津科技大学《功能性食品学》研究生课程论文益生菌调节肠道菌群的研究现状学生姓名:······学号:······专业:营养与食品卫生学学院:食品学院摘要常见益生菌主要指两大类乳酸菌群:一类为双歧杆菌,常见的有婴儿双歧杆菌、长双歧杆菌、短双歧杆菌、青春双歧杆菌等;另一类为乳杆菌,如嗜酸乳杆菌、干酪乳杆菌、鼠李糖乳杆菌、植物乳杆菌和罗伊氏乳杆菌等。
应用于人体的益生菌有双歧杆菌、乳杆菌、肠球菌、大肠杆菌、枯草杆菌、蜡样芽孢杆菌、地衣芽孢杆菌、丁酸梭菌和酵母菌等。
从安全性角度考虑,目前工业用益生菌主要来源于健康人体、动物和传统食物(发酵乳制品、泡菜、纳豆等发酵食品)。
国内外学者对益生菌进行了很多研究和介绍,但多数只局限于它的使用效果上,对其作用机理缺少系统而深入的总结。
本文主要以乳酸菌、双歧杆菌和芽孢杆菌为对象,综述了其在调节肠道菌群和促进机体免疫的作用机理及相关研究进展。
关键词:肠道菌群;益生菌;研究现状1.肠道菌群概况1.1胃肠道正常菌群人的胃肠道栖息着大约30个属500多种细菌,主要由厌氧菌、兼性厌氧菌和需氧菌组成。
其中专性厌氧菌占99%以上[ 1 ],而仅类杆菌及双歧杆菌就占细菌总数的90%以上。
胃、十二指肠、空肠细菌的种类及数量极少,主要由于胃酸、胆汁作用及小肠液流量大,蠕动节奏快,细菌在繁殖前即被冲洗到远端回肠及结肠,细菌浓度<103 个/mL,主要为革兰氏阳性需氧菌,如链球菌、葡萄球菌和乳酸杆菌。
而回肠末端由于肠液流量少,蠕动减慢,细菌数逐渐增加到105 ~108 个/mL,主要含乳酸杆菌、大肠杆菌、类杆菌和梭状芽孢杆菌等[ 2 ]。
至结肠,细菌数明显增加,浓度为109~1012 个/mL,主要为厌氧菌,双歧杆菌、类杆菌和乳酸杆菌,而有潜在致病性的梭状芽孢杆菌和葡萄球菌仅有少量。
细菌素简介

细菌素2l世纪的人们越来越关注食品的安全与卫生,尤其是中国近年来加入WTO,由于食品中抗生素,药物残留及防腐剂添加超标而导致的出口损失,引起了广泛的关注。
人们迫切需要探寻一种能改变这种现状的途径,于是细菌素便成为近年来研究的热点。
细菌素(Bacteriocin)具有高效、无毒、耐酸、耐高温、无残留、无抗药性、大部分基因位于质粒上、相对分子质量小、含修饰氨基酸、结构复杂等特点,因而被认为是分子遗传、基因工程、蛋白质工程和食品添加剂、化妆品、皮肤保健、抑制病原菌和调节肠道菌群的好材料(赖毅宁等,2002;Sylvie Gameau 等,2002;Ross等,2002)。
1988年乳酸链球菌素(Nisin)首次作为食品添加剂得到FDA的认可,已有52个国家和地区在使用Nisin作为食品防腐剂,从而促进了其他种类细菌素及在其他领域的研究,目前细菌素作为一种“绿色防腐剂”正日益受到人们的重视,随着饲料中益生菌的广泛推广和人们对饲料卫生的重视,细菌素在动物生产中也有着广阔的应用前景。
1细菌素的研究现状1.1细菌素的定义早在1925年,Gratia就发现大肠杆菌的v菌株能抑制夺菌株的生长,他认为是V 菌株产生的某种物质在起作用。
随后Gratia和Fredericq对v菌株产生了分离,发现是一种类似于噬菌体的物质在起作用,但这种物质不进行自主复制,Fredrericq称这种物质为大肠杆菌素。
细菌素最早是由Jacob和合作者于1953年提出的,称其为某些细菌产生的具有抗菌活性的多肽、蛋白质或蛋白质复合物。
1982年,Konisly将细菌素定义为:细菌素是某些细菌在代谢过程中通过核糖体合成机制产生的一类具有抑菌活性的多肽或前体多肽,抑菌范围不局限于同源的细菌,产生菌对其细菌素有自身免疫性。
1.2细菌素的分类细菌素根据化学结构、稳定性和相对分子质量大小可分为4类:第一类定义为羊毛硫抗生素,是一类小分子的修饰肽,含超过19。
细菌素

核酸酶类大肠杆菌素作用机制示意图 (Kleanthous & Walker, 2001)
核 免 酸 疫 酶 蛋 类 白 大 复 肠 合 杆 物 菌 的 素 结 与 构 其
图1-6核酸酶类大肠杆菌素与其免疫蛋白复合物的结构(Cascales et al., 2007)
A DNase类大肠杆菌素E9与其免疫蛋白Im9结合复合物结构; B rRNase类大肠杆菌素E3与其免疫蛋白Im3结合复合物结构; C tRNase类大肠杆菌素E5与其免疫蛋白Im5结合复合物结构; D tRNase类大肠杆菌素D与其免疫蛋白ImD结合复合物结构 黄色的结构是大肠杆菌素的,绿色的是免疫蛋白的
细菌素的名词解释

细菌素的名词解释
嘿,你知道细菌素是什么吗?细菌素啊,就好比是细菌世界里的“秘密武器”!打个比方吧,就像咱们人类有各种各样的技能和工具来
保护自己、争夺资源一样,细菌也有它们独特的东西,那就是细菌素啦!
细菌素可不是随随便便的存在哦!它是由细菌产生的一类具有抗菌
活性的蛋白质或多肽物质。
比如说,有一种细菌素能够精准地攻击其
他细菌,就像一个神射手,百发百中,专门对付那些对它产生威胁的“敌人”。
想象一下,在那微小的细菌世界里,各种细菌为了生存和繁衍,展
开着一场场激烈的“战斗”。
而细菌素就是它们的有力“武器”之一呀!它可以抑制或杀灭同种或亲缘关系相近的其他细菌。
哇塞,是不是很神
奇呢?
再比如,有的细菌素能够在细菌群体中迅速传播,就像一阵风一样,迅速影响到周围的细菌。
“嘿,伙计们,小心啦,我来啦!”这感觉是
不是很有趣呢?
而且哦,不同的细菌素有着不同的作用方式和抗菌谱呢!有些可能
直接破坏细菌的细胞膜,让细菌无处可逃;有些则可能干扰细菌的代
谢过程,让它们没法正常工作。
“哈哈,看你们还怎么嚣张!”
细菌素的发现和研究,对于我们了解细菌的生态和相互关系有着重要的意义呀!它让我们更加清楚地看到细菌世界的复杂性和多样性。
“哇,原来细菌的世界这么丰富多彩!”
在我们的日常生活中,细菌素也有着潜在的应用价值呢!说不定未来的某一天,我们就能利用细菌素来开发新的抗菌药物,更好地对抗细菌感染呢!
总之,细菌素就是细菌世界里一个超级有趣、超级重要的存在!你说呢?。
罗伊氏菌素在畜禽养殖方面的应用[发明专利]
![罗伊氏菌素在畜禽养殖方面的应用[发明专利]](https://img.taocdn.com/s3/m/5c2f610242323968011ca300a6c30c225801f05c.png)
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202011538424.5(22)申请日 2020.12.23(71)申请人 广东省农业科学院动物科学研究所地址 510000 广东省广州市天河区五山(72)发明人 杨希 李家洲 张厂 吕晓慧 严定波 邓俊劲 (74)专利代理机构 深圳市创富知识产权代理有限公司 44367代理人 叶灿才(51)Int.Cl.A61K 31/11(2006.01)A61K 35/747(2015.01)A23K 20/105(2016.01)A61P 1/00(2006.01)A61P 37/04(2006.01)(54)发明名称罗伊氏菌素在畜禽养殖方面的应用(57)摘要本发明涉及畜禽养殖技术领域,具体涉及罗伊氏菌素在畜禽养殖方面的应用,本发明从罗伊氏乳杆菌中分离得到其代谢产物‑罗伊氏菌素,经过研究发现,其对家禽家畜肠道常见致病菌有良好的抑制,并具有很好的稳定性,同时可促进细胞先天免疫应答。
表明罗伊氏菌素可作为畜禽生产中的绿色替抗产品,或者制备成抗肠道疾病畜禽产品或畜禽用免疫增强产品的形式,保护畜禽肠道健康,提高畜禽免疫力,促进养殖产业发展。
权利要求书1页 说明书7页 附图7页CN 112603912 A 2021.04.06C N 112603912A1.罗伊氏菌素在畜禽养殖方面的应用。
2.罗伊氏菌素作为抗生素替代品在畜禽养殖方面的应用。
3.罗伊氏菌素在制备抗肠道疾病畜禽产品中的应用。
4.罗伊氏菌素在制备畜禽用免疫增强产品中的应用。
5.根据权利要求3或4所述的应用,其特征在于,所述产品包括但不限于饲料添加剂和畜禽药物。
6.一种抗肠道疾病畜禽饲料添加剂,其特征在于,以罗伊氏菌素为主要活性成分。
7.一种抗肠道疾病畜禽药物,其特征在于,以罗伊氏菌素为主要活性成分。
8.一种畜禽用免疫增强饲料添加剂,其特征在于,以罗伊氏菌素为主要活性成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
variety of ailments, including infections of mucosal surfaces such as the vagina and the gastrointestinal (GI) tract. However, with the discovery and development of antibiotics in the twentieth century, the perceived value of these traditional therapies diminished (Bengmark 2001; Meier and Steuerwald 2005). Today, with the efficacy of antibiotics waning and a dramatic resurgence of infectious disease, physicians, researchers, and the public are reconsidering the possible role of probiotics as an alternative to supplement existing antibiotic-dominated therapies (Saavedra 2001; Senok et al. 2005). Over the past 15 years, there has been an increase in research on probiotic bacteria and a rapidly growing commercial interest in the use of probiotic bacteria in food, medicine, and as supplements (Morelli 2002; Scarpellini et al. 2008).A variety of probiotic bacteria have been targeted as potential therapeutic agents. Examples include lactic acid bacteria (LAB; Carr et al. 2002), Bifidobacteria (Picard et al. 2005),Saccharomyces (Czerucka et al. 2007), enterics (Sartor 2003), and streptococci (Meurman and Stamatova 2007). Potential PB species differ in terms of their bioavailability, metabolic activity, and mode of action. However, to be used in host-associated activities, they all must be non-pathogenic and non-toxic. In addition, PB must survive the transition to the target niche and then persist, serving to protect the host against infection by pathogenic microorganisms (Klaenhammer and Kullen 1999).Antimicrobial activity is thought to be an important means for PB to competitively exclude or inhibit invading bacteria (Carr et al. 2002; Roos and Holm 2002). Some do so by secreting non-specific antimicrobial substances, such as short-chain fatty acids (Carr et al. 2002) or hydrogen peroxide (Eschenbach et al. 1989), while others produce toxins with very narrow killing ranges, such as bacteriocins, bacteriocin-like inhibitory substances (BLIS), and bacteriophages (Smith et al. 2007; Tagg and Dierksen 2003).Short-chain fatty acids such as formic, acetic, propionic, butyric, and lactic acids are produced during the anaerobic metabolism of carbohydrates and have an important role in decreasingpH. The microbial growth inhibition by organics may be due to the ability of these acids topass across the cell membranes, dissociate in the more alkaline environment of the cells interior,and acidify the cytoplasm (Kashket 1987). Alternatively, the fermentation acid anionaccumulation may cause osmotic stress (Diez-Gonzalez and Russell 1997). In microbialfermentor systems, a slight increase in the pH (5.5–6.5) resulted in a shift in the compositionof the microbiota community from Roseburia and Eubacterium rectale at the lower pH toBacteroides domination at the higher pH (Walker et al. 2005). These results indicate thatBacteroides species were able to outcompete other bacteria for the soluble carbohydrates,whereas at the lower pH, other bacterial groups were better able to compete for these substrates(Louis et al. 2007). The inhibition of another group, the enterobacteria, at acidic pH was alreadyrecognized as an important factor tending to limit the populations of certain gut pathogens(Diez-Gonzalez 2007). While production of short-chain fatty acids has been widely consideredto be the main factor allowing lactic acid bacteria to dominate mucosal ecosystems, such asthe vagina, more recent data suggest that hydrogen peroxide production by lactobacilli speciesmay be more relevant than acid production (Aslim and Kilic 2006; Kaewsrichan et al. 2006).Various in vitro and in vivo studies have shown that specific strains of lactobacilli inhibit thegrowth of bacterial species causing vaginal infection by producing hydrogen peroxide (Falagaset al. 2007).Bacteriophages are highly specific and can be active against a single strain of bacteria.Therefore, using bacteriophage against infecting strains was suggested as a means to controlundesirable bacterial species in mucosal systems (Joerger 2003). This approach was firstdeveloped early in the last century and showed much promise; however, it also aroused muchcontroversy and concern. Consequently, recent studies investigating the in vivo use ofNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptbacteriophages are directed against pathogenic species infecting cattle and poultry (AndreattiFilho et al. 2007; Callaway et al. 2004).Like bacteriophages, the bacteriocins can specifically target a particular subset of bacterial strains or species. However, unlike viruses, bacteriocins were found to be safe for human consumption by the Food and Drug Administration and have thus gained popularity in PB research. They are particularly attractive when the goal of PB application is to supplement,rather than dramatically alter, a host's natural bacterial flora. In this review, we explore what bacteriocins are and how one can co-opt the natural role bacteriocins serve in mediating strain and species interactions in the wild, to create highly effective PB strains.The biology of bacteriocins Bacteriocins were first identified almost 100 years ago as a heat-labile product present in cultures of Escherichia coli V and toxic to E. coli S and were given the name of colicin to identify the producing species (Gratia 1925). Fredericq demonstrated that colicins were proteins and that they had a limited range of activity due to the presence or absence of specific receptors on the surface of sensitive cells (Fredericq 1946). Since then, bacteriocins have been found in all major lineages of Bacteria and, more recently, have been described as universally produced by some members of the Archaea (Riley and Wertz 2002a; Riley and Wertz 2002b;Shand and Leyva 2008). According to Klaenhammer, 99% of all bacteria may make at least one bacteriocin, and the only reason we have not isolated more is that few researchers have looked for them (Klaenhammer 1988).Two main features distinguish the majority of bacteriocins from classical antibiotics:bacteriocins are ribosomally synthesized and have a relatively narrow killing spectrum (Riley and Wertz 2002b). The bacteriocin family includes a diversity of proteins in terms of size,microbial target, mode of action, release, and immunity mechanisms and can be divided into two main groups: those produced by Gram-negative and Gram-positive bacteria (Gordon et al.2007; Heng et al. 2007).Bacteriocins of Gram-negative bacteriaRecent surveys of E. coli , Salmonella enterica , Hafnia alvei , Citrobacter freundii , Klebsiellaoxytoca , Klebsiella pneumoniae , and Enterobacter cloacae reveal levels of bacteriocinproduction ranging from 3 to 26% of environmental isolates (Gordon et al. 2007; Riley et al.2003). Colicins, bacteriocins produced by E. coli , are found in 30–50% of the strains isolatedfrom human hosts and are often referred to as virulence factors (Riley and Gordon 1992). Muchhigher levels of bacteriocin production have been found in some Gram-negative bacteria, suchas Pseudomonas aeruginosa , in which >90% of both environmental and clinical isolatesproduce bacteriocins (Michel-Briand and Baysse 2002).Since their discovery, the colicins of E. coli have been the most extensively studied Gram-negative bacteriocins, and they now serve as a model system for investigating the mechanismsof bacteriocin structure/function, genetic organization, ecology, and evolution (Cascales et al.2007). Colicins are high molecular weight proteins that kill target cells through a variety ofmechanisms. Nomura showed that colicins E1 and K inhibit macromolecular synthesis withoutarrest of respiration, colicin E2 causes DNA breakdown, and colicin E3 stops protein synthesis(Nomura 1967). In each case, he showed that the lethal action is reversed by treatment withtrypsin. Since his pioneering work, colicins were shown to kill their targets by either membranepermeabilization or nucleic acid degradation (Braun et al. 1994; Riley and Wertz 2002b;Smarda and Smajs 1998).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptColicins are usually encoded on one of two types of colicinogenic plasmids (Pugsley andOudega 1987). Type A plasmids are small (6 to 10 kb) and present in numerous copies percell. They are mobilizable in the presence of a conjugative plasmid and are amplifiable. TypeB are monocopy plasmids of about 40 kb, which carry numerous genes in addition to thoseencoding colicin activity and are able to conjugate. However, plasmid carriage of bacteriocinsis not a requirement. A close relative to the colicins, the bacteriocins of Serratia marcesens ,are found on both plasmids and the chromosome (Ferrer et al. 1996; Guasch et al. 1995).A colicin protein is comprised of three functionally distinct domains; receptor recognition,protein translocation, and killing (Cao and Klebba 2002). In colicins, the central domaincomprises about 50% of the protein and is involved in the recognition of specific cell surfacereceptors on the outer membrane of the target cell (Zakharov and Cramer 2004). The N-terminaldomain (<25% of the protein) is responsible for translocation of the protein through the cellenvelope by either the Tol or Ton machinery to its target (Zakharov and Cramer 2004; Zakharovet al. 2004), which is the inner membrane for ionophore colicins and the cytoplasm for nucleasecolicins (James et al. 2002; Sharma et al. 2007). The remainder of the protein houses the killingdomain and the immunity region, which is a short sequence involved in immunity proteinbinding (Cascales et al. 2007).In addition to colicins, E. coli strains produce a second type of bacteriocin, known as microcins,which are smaller than colicins and share more properties with the bacteriocins produced byGram-positive bacteria, including thermostability, resistance to some proteases, relativehydrophobicity, and resistance to extreme pH (Baquero and Moreno 1984; Gillor et al. 2004;Pons et al. 2002). Fourteen microcins have been reported to date, of which only seven havebeen isolated and fully characterized. However, these seven possess a diversity of killingmechanisms (Duquesne et al. 2007a); some are active as unmodified peptides, while others areheavily modified by dedicated maturation enzymes (Duquesne et al. 2007b; Severinov et al.2007).The successful use of probiotics-producing colicins, microcins, or any other bacteriocinsrequires understanding the factors influencing the frequency of bacteriocin production in abacterial population. This aspect of bacteriocin ecology was recently studied in clinical andenvironmental E. coli populations. Recent evidence indicates that the frequency of bacteriocinproduction in E. coli populations can vary from 10 to 80% depending on the animal host fromwhich they were isolated (Gordon et al. 1998; Gordon and O'Brien 2006), the host's diet(Barnes et al. 2007), temporal changes (Gordon et al. 1998), and the type of bacteriocinproduced by the strain (Gordon et al. 2007). These observations suggest that it is not enoughfor antimicrobial-producing probionts to be proven potent against pathogens; they also needto complement the existing bacterial dynamics in the target host.Bacteriocins of Gram-positive bacteriaBacteriocins of Gram-positive bacteria are as abundant and even more diverse then those foundin Gram-negative bacteria. The Gram-positive bacteriocins resemble many of the antimicrobialpeptides produced by eukaryotes; they are generally cationic, amphiphilic, membrane-permeabilizing peptides, and range in size from 2 to 6 kDa (Heng et al. 2007). They differ frombacteriocins of Gram-negative bacteria in two fundamental ways (Riley and Wertz 2002b).First, the bacteriocins produced by Gram-positive bacteria are not necessarily lethal to theproducing cell. This critical difference is due to dedicated transport mechanisms Gram-positivebacteria encode to release the bacteriocin toxin. Typically, their biosynthesis is self-regulatedwith specifically dedicated transport mechanisms facilitating release, although some employthe Sec-dependent export pathway (Drider et al. 2006; Eijsink et al. 2002; Maqueda et al.2008). Second, the Gram-positive bacteria have evolved bacteriocin-specific regulation,NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptwhereas bacteriocins of Gram-negative bacteria rely solely on host regulatory networks (Nes et al. 1996).Bacteriocins produced by LAB, which have a long history of use in fermentation and meat and milk preservation, are the best characterized of this group (Cintas et al. 2001). Four classes of LAB antibiotics are identified: Class I is comprised of modified bacteriocins, known as lantibiotics (Twomey et al. 2002); class II includes heat stable, minimally modified bacteriocins (Drider et al. 2006; Eijsink et al. 2002); class III includes larger, heat-labile bacteriocins; and class IV is comprised of complex bacteriocins carrying lipid or carbohydrate moieties (Heng et al. 2007). Classes I and II have been the focus of most probiotic ctic acid bacteria have been employed for centuries in the fermentation of food, partly due to the fact that they can prevent the growth of spoilage and pathogenic microorganisms (Cheigh and Pyun 2005). They produce bacteriocins, the lantibiotics, so named because they are post-translationally modified to contain amino acids such as thioether bridges of lanthionine and 3-methyllanthionine or dehydroalanin (Twomey et al. 2002). Lantibiotics are ribosomally synthesized bacteriocins that target a broad range of Gram-positive bacteria and are subdivided into three groups on the basis of their structure and mode of action: Type A lantibiotics, such as nisin, are small (2–5 kDa), elongated, screw-shaped proteins that contain positively charged molecules, which kill via the formation of pores, leading to the dissipation of membrane potential and the efflux of small metabolites from the sensitive cells (Nagao et al. 2006). Nisins have a dual mode of action: (1) They bind to lipid II, the main transporter of peptidoglycan subunits from the cytoplasm to the cell wall, and therefore prevent correct cell wall synthesis,leading to cell death, and (2) they employ lipid II as a docking molecule to initiate a process of membrane insertion and pore formation that leads to rapid cell death (Wiedemann et al.2001). Type B lantibiotics, such as mersacidin (Twomey et al. 2002), kill by interfering with cellular enzymatic reactions, such as cell wall synthesis (Pag and Sahl 2002; Sahl and Bierbaum 1998; Sahl et al. 1995). Another subgroup is composed of two-component lantibiotics, suchas lacticin 3147 (Wiedemann et al. 2006), consisting of two lantibiotic peptides thatsynergistically display antimicrobial activity (Ryan et al. 1998). It was shown that the dualactivities could be distributed across two peptides: While one resembles type B lantibioticmersacidin, which depolarizes the membrane, the other is more similar to the type A lantibioticclass pore formers (Martin et al. 2004).Class II LAB bacteriocins are also small nonlanthionine-containing peptides (Drider et al.2006; Oppegård et al. 2007). The majority of bacteriocins in this group kill by inducingmembrane permeabilization and the subsequent leakage of molecules from target bacteria.These bacteriocins are organized into subgroups: Class IIa is the largest group and its membersare distinguished by shared activity against Listeria and a conserved amino-terminal sequence(YGNGVXaaC) that is thought to facilitate nonspecific binding to the target surface. Like typeA lantibiotics, class IIa bacteriocins act through the formation of pores in the cytoplasmicmembrane. Examples include pediocin (this group is also called pediocin-like bacteriocins),sakacin A, and leucocin A (Drider et al. 2006; Hechard and Sahl 2002; Oppegård et al.2007). Class IIb bacteriocins such as lacticin F and lactococcin G form pores, composed oftwo different proteins, in the membrane of their target cells (Garneau et al. 2002; Hechard andSahl 2002). A third subgroup (IIc) has been proposed, which consists of bacteriocins that aresec -dependent, such as acidocin 1B (Han et al. 2007). Class III bacteriocins are large heat-labile proteins such as helveticins J or lactacin B (Dobson et al. 2007; Joerger 2003). Anadditional proposed class (IV) requires lipid or carbohydrate moieties for activity. Little isknown about the structure and function of this class. Examples include leuconocin S andlactocin 27 (Choi et al. 1999; Vermeiren et al. 2006).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptGram-positive bacteriocins, in general, and lantibiotics, in particular, require many more genesfor their production than do those of Gram-negative bacteria (Nagao et al. 2006). The nisingene cluster, for example, includes genes for the prepeptide (nis A), enzymes for modifyingamino acids (nis B, nis C), cleavage of the leader peptide (nis P), secretion (nis T), immunity(nis I, nis FEG), and regulation of expression (nis R, nis K). These gene clusters are most oftenencoded on plasmids but are occasionally found on the chromosome (Cheigh and Pyun2005). Several Gram-positive bacteriocins, including nisin, are located on transposons (Kimand Dunn 1997).The conventional wisdom about the killing range of Gram-positive bacteriocins is that theyare restricted to killing other Gram-positives (Riley and Wertz 2002a). The range of killingcan vary significantly, from relatively narrow as in the case of lactococcins A, B, and M, whichhave been found to kill only Lactococcus , to extraordinarily broad (Martínez-Cuesta et al.2006). For instance, some type A lantibiotics, such as nisin A and mutacin B-Ny266, have beenshown to kill a wide range of organisms including Actinomyces , Bacillus , Clostridium ,Corynebacterium , Enterococcus , Gardnerella , Lactococcus , Listeria , Micrococcus ,Mycobacterium , Propionibacterium , Streptococcus , and Staphylococcus (Mota-Meira et al.2000, 2005). Contrary to conventional wisdom, these particular bacteriocins are also activeagainst a number of medically important Gram-negative bacteria including Campylobacter ,Haemophilus , Helicobacter , and Neisseria (Morency et al. 2001).Production of bacteriocins in Gram-positive bacteria is generally associated with the shift fromlog phase to stationary phase. For example, nisin production begins during mid-log phase andincreases to a maximum as the cells enter stationary phase (Breukink and de Kruijff 1999).The regulation of expression is not cell cycle dependent, per se, but rather culture densitydependent (Dufour et al. 2007). It has been demonstrated that nisin A acts as a proteinpheromone in regulating its own expression, which is controlled by a two-component signaltransduction system typical of many quorum-sensing systems (Hechard and Sahl 2002). Thegenes involved are nis R (the response regulator) and nis K (the sensor kinase). Nisintranscription is induced by the addition of nisin to the culture medium, with the level ofinduction directly related to the level of nisin added (Kuipers et al. 1995).The ecology of bacteriocinsWithout question, bacteriocins serve some function in microbial communities. This statementfollows from the detection of bacteriocin production in all surveyed lineages of prokaryotes(Klaenhammer 1988). What remains in question is what, precisely, that role is. Bacteriocinsmay serve as anti-competitors enabling the invasion of a strain into an established microbialcommunity (Lenski and Riley 2002; Riley and Gordon 1999). They may also play a defensiverole and act to inhibit the invasion of other strains or species into an occupied niche or limitthe advance of neighboring cells (Riley and Wertz 2002b). In vivo studies had, indeed,demonstrated that bacteriocin production improves the establishment success of the producingstrains (McCormick et al. 1989): E. coli F-18 Col −, a derivative of E. coli F-18 that no longerproduces microcin V, colonize the large intestine of streptomycin-treated mice and itscorresponding wild type when fed alone. Yet, when the two strains were fed together, themicrocin-deficient strain was eliminated from the large intestine. Additional roles have recentlybeen proposed for Gram-positive bacteriocins, in which they may mediate quorum sensing(Gobbetti et al. 2007) and act as communication signals in bacterial consortia, e.g., biofilms(Gillor 2007). It is likely that whatever roles bacteriocins play, these roles change ascomponents of the environment, both biotic and abiotic, change.Early experimental studies on the ecological role of bacteriocins were inconclusive and oftencontradictory (Ikari et al. 1969). More recently, a theoretical and empirical base has beenNIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author Manuscriptestablished that has defined the conditions that favor maintenance of toxin-producing bacteria in both population and community settings. Almost exclusively, these studies have modeled the action of colicins. Chao and Levin (1981) showed that the conditions for invasion of a colicin-producer strain were much broader in a spatially structured environment than in an unstructured one. In an unstructured environment with mass action, a small population of producers cannot invade an established population of sensitive cells (Durrett and Levin 1997). This failure occurs because the producers pay a price for toxin production, the energetic costs of plasmid carriage, and lethality of production, while the benefits, the resources made available by killing sensitive organisms, are distributed at random. Moreover, when producers are rare, the reduction in growth rate experienced by the sensitive strain (owing to extra deaths)is smaller than the reduction felt by the producer (owing to its costs), and the producer population therefore goes extinct (Nakamaru and Iwasa 2000). In a physically structured environment, such as on the surface of an agar plate, the strains grow as separate colonies.Toxin diffuses out from a colony of producers, thus killing sensitive neighbors (Kerr et al.2002). The resources made available accrue disproportionately to the producing colony owing to its proximity, and therefore, killers can increase in frequency even when initially rare.Several modeling efforts have incorporated additional biological reality. Two such efforts introduced a third species, one that is resistant to the toxin but cannot itself produce the toxin (Nakamaru and Iwasa 2000). Resistance can be conferred through mutations in either the binding site or the translocation machinery required for a bacteriocin to enter the target cell.Acquisition of an immunity gene will also confer resistance to its cognate bacteriocin. It is assumed that there is a cost to resistance and that this cost is less than the cost of toxin production borne by the killer strain (Riley and Wertz 2002b). Owing to this third member, pair-wise interactions among the strains have the non-transitive structure of the childhood game of rock–scissors–paper (Karolyi et al. 2005; Kerr et al. 2002). The producer strain beats the sensitive strain, owing to the toxin's effects on the latter. The sensitive strain beats the resistant strain because only the latter suffers the cost of resistance. And the resistant strain wins against theproducer because the latter bears the higher cost of toxin production and release while theformer pays only the cost of resistance. In an unstructured environment, this game allowsperiodic cycles, in which all three types coexist indefinitely but each with fluctuatingabundance (Table 1). In a structured environment, this game permits a quasi-stable globalequilibrium, one in which all three strains can persist with nearly constant global abundance(Laird and Schamp 2008; Neumann and Schuster 2007a, b).More recently, experimental tests of several of these theoretical conclusions have beenreported. The first employed in vitro methods (liquid culture, static plate, and mixed plateenvironments) to assess the impact of local interactions and dispersal on the abundance of threestrains of E. coli (colicin producer, colicin sensitive, and colicin resistant; Kerr et al. 2002).This study revealed that in environments where interactions and dispersal are not solely local,the resistant strain overtook the community during the course of the experiment. In contrast,in the static plate environment, where interactions and dispersal are solely local, the threephenotypes were maintained at similar densities throughout the experiment. The thirdenvironment, mixed plate, revealed that growth on a surface is not the key factor, as resistanceovertook the other strains on this plate also. The critical component is whether the interactionsare local or not.The second study employed a mouse model to investigate precisely the same colicin dynamicsin an in vivo setting, the mouse gut (Kirkup and Riley 2004). The same three strains in theseexperiments revealed exactly the same non-transitive interactions described above. When amouse harbored a sensitive strain, an introduced colicin-producing strain was able to invade.When a colicin-producing strain was resident, an introduced R strain was able to invade. InNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptboth experimental systems, the non-transitive nature of colicin-mediated dynamics was furtherrevealed (Kirkup and Riley 2004).Numerous surveys of colicin production in natural populations suggest that populations of E.coli may closely match predictions of these ecological models (Riley and Gordon 1999). In E.coli , producer strains are found in frequencies ranging from 10% to 50% (Barnes et al. 2007;Gordon and O'Brien 2006; Gordon and Riley 1999; Riley and Gordon 1992). Resistant strains are even more abundant and are found at frequencies from 50% to 98%. In fact, most strains are resistant to all co-segregating colicins. Finally, there is a small population of sensitive cells.The models predict this distribution of phenotypes results from frequent horizontal transfer of resistance and the significant cost associated with colicin production (Barnes et al. 2007). In other words, if a strain can gain resistance and lose production, they will over time—just as was observed in E. coli isolated from field mouse population over a period of 3 months (Gordon et al. 1998).The probiotic application of bacteriocinsThe GI tract The human GI tract is a complex ecosystem in which a delicate balance exists between theintestinal microflora and the host. The microflora serves as a primary stimulus for thedevelopment of the mucosal immune system (Deplancke and Gaskins 2002; Macfarlane andCummings 2002). Two main genera of lactic acid bacteria dominate the intestinal flora,including 56 species of Lactobacillus and numerous species of Bifidobacterium . Most of thesespecies have been shown to produce bacteriocins in vitro (Avonts and De Vuyst 2001; Carr etal. 2002; Cross 2002). More recently, some of these strains have also been shown to producebacteriocins in vivo (Table 2). One particularly compelling study demonstrated the in vivoactivity of Lactobacillus salivarius strain UCC118, which produces a potent broad-spectrumbacteriocin (Abp118) active against the food-borne pathogen Listeria monocytogenes(Claesson et al. 2006). In mice, the L. salivarius strain provided protection against L.monocytogenes infection, while a mutant strain of the same species, impaired in its bacteriocinproduction ability, did not. Even more compelling, the bacteriocin-producing strain providedno protection against pathogen infection when mice were infected with a strain of L.monocytogenes expressing the cognate Abp118 immunity protein (Corr et al. 2007).A strain of Lactobacillus casei L26 LAFTI was shown to significantly inhibit anenterohemorrhagic strain of E. coli and a strain of L. monocytogenes in mice (Su et al.2007a, b), probably due to bacteriocin production (Pidcock et al. 2002). The release ofbacteriocins inhibiting Helicobacter pylori , a human pathogen that causes severegastroduodenal diseases (Kandulski et al. 2008), has been chiefly studied in lactobacilli strains.A BLIS with anti-H. pylori activity was identified in probiotic Lactobacillus johnsonii strainLA1 (Gotteland et al. 2008; Michetti et al. 1999) and Lactobacillus acidophilus strain LB(Coconnier et al. 1998). In both cases, the inhibitory activity was retained when H. pylori wasbound to intestinal epithelial cells. Oral administration of L. acidophilus LB in mice protectedthe animals from infection with Helicobacter felis (Coconnier et al. 1998; Nedrud andBlanchard 2001). This PB was further shown to inhibit gastric colonization and prevent thedevelopment of gastric inflammation (Coconnier et al. 1998). Administration of L. johnsoniiLA1 supernatant to adult patients colonized by H. pylori significantly decreased infection(Gotteland et al. 2008; Gotteland and Cruchet 2003), while oral consumption of the live bacteriaby school children, which were found to be H. pylori positive, resulted in a significant decreasein urease production (Cruchet et al. 2003). Mutacin B-Ny266, a lantibiotic produced byStreptococcus mutans , was recently shown to inhibit a broad spectrum of multi-resistantpathogens including staphylococci, streptococci, and Neisseria strains (Mota-Meira et al.NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript。