高考数学压轴专题专题备战高考《计数原理与概率统计》全集汇编含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《计数原理与概率统计》复习知识点
一、选择题
1.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .
5108
B .
113
C .
17
D .
710
【答案】B 【解析】 【分析】
根据条件概率的计算公式即可得出答案. 【详解】
3311166617()216A P AB C C C +==Q ,111
5556111
6691
()1216
C C C P B C C C =-= ()()()72161
|2169113
P AB P A B P B ∴=
=⨯= 故选:B 【点睛】
本题主要考查了利用条件概率计算公式计算概率,属于中档题.
2.已知函数,在区间
内任取一点,使
的概率为( )
A .
B .
C .
D .
【答案】C 【解析】 【分析】 先求出的取值范围,再利用几何概型相关公式即可得到答案. 【详解】 由
得,故
或
,由
,故
或
,故使
的概率为
.
【点睛】
本题主要考查几何概型的相关计算,难度一般.
3.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v
共线的概率为( ) A .
13
B .
14
C .
16
D .
112
【答案】D
【分析】
由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r
共线的基本事件的个数,利用
古典概型及其概率的计算公式,即可求解。 【详解】
由题意,将一枚骰子抛掷两次,共有6636⨯=种结果,
又由向量(,),(3,6)p m n q ==u r r
共线,即630m n -=,即2n m =,
满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果,
所以向量p u r 与q r 共线的概率为31
3612
P =
=,故选D 。 【点睛】
本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础题。
4.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(
表示一根阳线,
表示一根阴线),从
八卦中任取两卦,则这两卦的六根线中恰好有4根阴线的概率为( )
A .
314
B .27
C .
928
D .
1928
【答案】A 【解析】 【分析】
列出所有28种情况,满足条件的有6种情况,计算得到概率. 【详解】 根据题意一共有:
乾坤、乾巽、乾震、乾坎、乾离、乾艮、乾兑;坤巽、坤震、坤坎、坤离、坤艮、坤兑; 巽震、巽坎、巽离、巽艮、巽兑;震坎、震离、震艮、震兑;坎离、坎艮、坎兑; 离艮、离兑;艮兑,28种情况.
满足条件的有:坤巽,坤离,坤兑,震坎,震艮,坎艮,共6种.
故632814p =
=. 故选:A .
本题考查了概率的计算,意在考查学生的计算能力和应用能力.
5.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .
85
B .
65
C .
45
D .
25
【答案】B 【解析】 【分析】
由题意知,3~(5,
)3X B m +,由3
533EX m =⨯
=+,知3~(5,)5
X B ,由此能求出()D X .
【详解】
由题意知,3
~(5,
)3
X B m +, 3
533
EX m ∴=⨯
=+,解得2m =, 3
~(5,)5
X B ∴,
336
()5(1)555
D X ∴=⨯⨯-=.
故选:B . 【点睛】
本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.
6.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .
112
B .
115
C .
118
D .
114
【答案】D 【解析】 【分析】
先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解. 【详解】
由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,