11.3 多边形及其内角和 能力培优训练(含答案)

合集下载

人教版 八年级数学 11.3 多边形及其内角和 优化训练

人教版 八年级数学 11.3 多边形及其内角和 优化训练

一点的对角线的条数是( )
Байду номын сангаас
A.8
B.9
C.10
D.11
10. 一个多边形切去一个角后,形成的另一个多边形的内角和为 1080°,那么原
多边形的边数为( )
A.7
B.7 或 8
C.8 或 9
D.7 或 8 或 9
二、填空题(本大题共 5 道小题) 11. 如图,王明想从一块边长为 60 cm 的等边三角形纸片上剪下一个最大的正六 边形,写上“祝福祖国”的字样来表达自己的喜悦之情,则此正六边形的边长是
根据小明设计的模型,可知该班师生之间每周至少要通电话的次数为________. 15. 如图,若该图案是由 8 个形状和大小相同的梯形拼成的,则∠1=________°.
三、解答题(本大题共 4 道小题) 16. 如图,在五边形 ABCDE 中,AB∥CD,求图形中 x 的值.
17. 已知一个多边形的内角和比它的外角和的 3 倍少 180°,求这个多边形的边数.
人教版 八年级数学 11.3 多边形及其内角和 优化训练(含答案)
一、选择题(本大题共 10 道小题) 1. 图中不是凸多边形的是( )
2. 若一个 n 边形的内角和为 360°,则 n 等于( )
A.3
B.4
C.5
D.6
3. 从九边形的一个顶点出发可以引出的对角线的条数为( )
A.3
B.4
C.6
D.9
7. 若一个正多边形的每一个外角都等于 40°,则它是( )
A.正九边形
B.正十边形
C.正十一边形
D.正十二边形
8. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)

11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)18010每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n边形有(3)2n n 条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对n n .角线每一条都重复了一次,故n边形的对角线条数为(3)2 15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。

专题11.3 多边形及其内角和(讲练)(解析版)(人教版)

专题11.3 多边形及其内角和(讲练)(解析版)(人教版)

专题11.3 多边形及其内角和典例体系一、知识点1、n 边形的内角和=()2180-⨯n; 2、n 边形的外角和=360。

3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。

4、各角都相等、各边都相等的多边形叫做正多边形,边数为n 的正多边形,也叫作正n 边形.5、多边形的镶嵌(密铺)问题.二、考点点拨与训练考点1:与多边形内角有关的计算典例:(2020·安徽省初三三模)如图,在五边形ABCDE 中,280A B E EDC BCD ︒∠+∠+∠=∠∠,、的平分线DP CP 、相交于P 点,则P ∠的度数是( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】 ∵五边形的内角和等于(5-2)×180°=540°,∠A+∠B+∠E=280°,∴∠BCD+∠CDE=540°一280°=260°,∵∠BCD ,∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠CDE+∠BCD)=130°, ∴∠P=180°-130°=50°,故选:C .方法或规律点拨本题考查了多边形的内角和,角平分线的性质,求出五边形内角和是解题关键.巩固练习1.(2020·福建省初三月考)若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7【答案】C【解析】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.2.(2020·福建省初三二模)已知一个多边形的内角和是540︒,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形【答案】B【解析】 根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此,由()n 2180540︒-=︒得n=5.故选B . 3.(2020·偃师市实验中学初一月考)如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是 ( )A .5B .6C .7D .8【答案】C【解析】设多边形原有边数为x ,则(2x−2)×180=2160,2x−2=12,解得x=7,故本题选C.4.(2020·江苏省初一月考)一个多边形的每个内角都等于135°,则这个多边形的边数为( ) A .5B .6C .7D .8 【答案】D【解析】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.5.(2020·北京初三二模)如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则αβ+的度数是( )A .360︒B .540︒C .720︒D .900︒【答案】B【解析】 直线l 将四边形ABCD 分成两部分,左边为四边形,其内角和为α=360°,右边为三角形,其内角和为β=180°,因此360180540αβ︒︒︒+=+=故选:B .6.(2019·河南省初一期末)下列选项可能是多边形的内角和的是( )A .580°B .1240°C .1080°D .2010°【答案】C【解析】解:判断哪个度数可能是多边形的内角和,看它是否能被180°整除.580÷180=3...40,1240÷180=6...160,1080÷180=6,2010÷180=11...30,只有1080°能被180°整除.故选:C .7.(2020·江苏省扬州教育学院附中初一期中)一个多边形的每个内角都是120°,这个多边形是( ) A .四边形B .六边形C .八边形D .十边形 【答案】B【解析】解:外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.故选:B.8.(2020·江苏省初一月考)一个正多边形的每个内角度数均为135°,则它的边数为____.【答案】8【解析】设该正多边形的边数为n由题意得:(2)180?nn-⨯=135°解得:n=8故答案为8.考点2:与多边形外角有关的计算典例:(2020·陕西省初二期末)如果一个多边形的内角和与外角和之比是13:2,求这个多边形的边数.【答案】15.【解析】解:设这个多边形的边数为n,依题意得:13(2)1803602n-︒=⨯︒,解得15n=,∴这个多边形的边数为15.方法或规律点拨考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,多边形的外角和等于360度.巩固练习1.(2020·北大附属嘉兴实验学校初二期中)一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【答案】B【解析】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=9,则这个多边形的边数是9.故选B.2.(2020·福建省初一期末)若多边形的边数增加一条,则它的外角和()A.增加180°B.不变C.增加360°D.减少180°【答案】B【解析】根据多边形的外角和定理:多边形的外角和都等于360º,与边数多少无关,故选B.3.(2020·广东省初三一模)已知一个正多边形的每个外角都等于72°,则这个正多边形是( )A.正五边形B.正六边形C.正七边形D.正八边形【答案】A【解析】这个正多边形的边数:360°÷72°=5.故选A.4.(2020·江苏省初一月考)若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.5.(2020·山东省济宁学院附属中学初三二模)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【解析】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.6.(2020·重庆西南大学附中初三月考)一个正多边形的外角为45°,则这个正多边形的内角和是()A.540° B.720° C.900° D.1080°【解析】∵正多边形的一个外角是45°,∴360°÷45°=8∴这个正多边形是正八边形∴该正多边形的内角和为:180°×(8-2)=1080°.故答案选:D.7.(2020·陕西省初三一模)已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为____.【答案】5【解析】解:设这个多边形的边数为n,依题意得:(n−2)180°=32×360°,解得:n=5.故这个多边形的边数为5.故答案为:5.8.(2020·河南省初二期末)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?( )A.40°B.45°C.50°D.60°【答案】A【解析】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,考点3:正多边形的角度计算典例:(2019·吉林省第二实验学校初三二模)如图,以正六边形ABCEDF 的边AB 为直角边作等腰直角三角形ABG ,使点G 在其内部,且90BAG ∠=︒,连接FG ,则EFG 的大小是__________度.【答案】45【解析】解:在正六边形ABCDEF 中, ∵∠AFE=∠BAF=(62)180120,6-⨯︒=︒ ∵∠BAG=90°, ∴∠FAG=120°-90°=30°,又∵AF=AB=AG ,∴∠AFG=1803075,2︒-︒=︒ ∴∠EFG=∠AFE -∠AFG=120°-75°=45°,故答案为:45.方法或规律点拨本题考查了多边形的内角与外角,等腰三角形的性质,熟记多边形的内角和公式是解题方法或规律点拨 巩固练习1.(2019·江苏省初一期中)如图,一块六边形绿化园地,六角都做有半径为1m 的圆形喷水池,则这六个喷水池占去的绿化园地的面积(结果保留π)为( )A .π2mB .2π2mC .4π2mD .n π2m【答案】B∵六边形的内角和为:62180720()-⨯︒=︒,∴六个阴影部分所对的圆心角的和为:720°,∴阴影部分的面积相当于两个圆的面积之和,∴阴影部分的面积为:2π×12=2π(2m )故选B .2.(2018·内蒙古自治区初二期末)有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B 【解析】正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B . 3.(2020·广东省初三其他)如图,在正六边形ABCDEF 的外侧,作正方形EFGH ,则∠DFH 的度数为____.【答案】75°【解析】观察图形可知,△EFH 是等腰直角三角形,则∠EFH=45°,△DEF 是等腰三角形,∵∠DEF=120°, ∴∠EFD=(180°﹣120°)÷2=30°, ∴∠DFH=45°+30°=75°.4.(2020·陕西省西北工业大学附属中学初三月考)如果一个正多边形的内角和等于1440︒,那么这个正多边形的每一个外角的度数为______.【答案】36【解析】正多边形的内角和等于1440︒∴()21801440n-⨯=解得:10n=多边形的外角和为360,且正多边形的每一个外角均相等∴这个正多边形的每一个外角的度数为3601036÷=故答案是:365.(2020·上海初三二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为__________【答案】8【解析】设正多边形的边数为n,∵内角和为(2)180n-⨯,外角和为360°,∴一个内角度数为(2)180nn-⨯,一个外角度数为360n,∴(2)180nn-⨯=3603n⨯,解得n=8,经检验n=8是方程的解且符合题意,故答案为:8.6.(2020·山东省初三一模)如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.【答案】140°.【解析】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为:140°.7.(2020·江苏省泰兴市实验初级中学初一期中)如图,在五边形ABCDE 中,∠A =∠B =∠C =∠D ,点F 在边AB 上,∠AFE =45°,则∠AEF 与∠AED 的度数的比值是_______.【答案】1:4【解析】解:设∠AEF=x ,∵∠AFE =45°,∴∠A=180°-∠AFE -∠AEF=135°-x∴∠A =∠B =∠C =∠D =135°-x∵∠A +∠B +∠C +∠D +∠AED=180°×(5-2)=540°∴∠AED=540°-4(135°-x )=4x∴∠AEF :∠AED=1:4故答案为:1:4.8.(2020·常州市第二十四中学初一期中)一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】解:360÷45=8,则所走的路程是:6×8=48m ,则所用时间是:48÷0.3=160s.9.(2020·江西省石城二中初三其他)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108考点4:多边形对角线问题典例:(2020·上蔡县思源实验学校初一月考)一个多边形的外角和是它内角和的14,求:(1)这个多边形的边数;(2)这个多边形共有多少条对角线.【答案】(1)边数为10;(2)35条【解析】解:设这个多边形的边数为n,由题意得:180(n-2)×14=360,解得:n=10,答:这个多边形的边数为10;(2)10×(10-3)÷2=35(条).方法或规律点拨本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.巩固练习1.(2020·全国初一)下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【答案】B【解析】n边形对角线条数为(3)2n n∴A. 四边形有2条对角线,故错误;B. 五边形有5条对角线,正确;C. 六边形有9条对角线,故错误;D. 七边形有14条对角线,故错误;故选B.2.(2020·全国初一)在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个B.6个C.7个D.8个【答案】D【解析】如图,或者根据八边形内一点,和任意一边的两端点均可构成三角形,所以可求得三角形的个数为8.故选:D.3.(2020·全国初一)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5B.6C.7D.8【答案】D【解析】如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D .4.(2020·温州外国语学校初二月考)从十二边形的一个顶点出发,可引出对角线( )条A .9条B .10条C .11条D .12条【答案】A【解析】解:从十二边形的一个顶点出发,可引出对角线的条数是()1239-=条.故选:A .5.(2019·北京初三其他)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( ) A .360°B .540°C .720°D .1080° 【答案】C【解析】从一个顶点出发的对角线共有3条 ∴这个多边形是一个六边形则这个多边形的内角和为180(62)720︒⨯-=︒故选:C .6.(2019·北京市第四十一中学初二期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .7.(2019·重庆市凤鸣山中学初一期中)一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有( )A.104条B.90条C.77条D.65条【答案】C【解析】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.考点5:多边形的镶嵌问题典例:40.(2020·长春市第四十七中学初一期中)如图所示的图形中,能够用一个图形镶嵌整个平面的有()个A.1B.2C.3D.4【答案】C【解析】解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面;圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C.方法或规律点拨本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.巩固练习1.(2020·偃师市实验中学初一月考)用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形【答案】C【解析】A、正八边形的每个内角为:180°-360°÷8=135°,正三角形的每个内角60°.135m+60n=360°,n=6-9m,显然m取任何正整数时,n不能得正整数,故不能铺满;4B、正五边形每个内角是180°-360°÷5=108°,正八边形的每个内角为:180°-360°÷8=135°,108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;C、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360度,能铺满;D、正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,120m+108n=360°,m取任何正整数时,n不能得正整数,故不能铺满.故选C.2.(2019·山西省初一月考)用若干个某种正多边形瓷砖可以铺满地面,这种正多边形瓷砖不可能是()A.B.C.D.【答案】D【解析】A.正三角形,其单个内角为60°,360°÷60°=6,A选项满足条件;B.正方形,其单个内角为90°,360°÷90°=4,B选项满足条件;C.正六边形,其单个内角为120°,360°÷120°=3,C选项满足条件;D.正八边形,其单个内角为135°,360°÷135° 2.7≈,D选项不满足条件.故选:D.3.(2020·哈尔滨市中实学校初一期中)能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;C 、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D 、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n 取任何正整数时,m 不能得正整数,故不能铺满.故选C .4.(2020·四川省初二期末)只用下列图形不能进行平面镶嵌的是( )A .正六角形B .正五边形C .正四边形D .正三边形【答案】B【解析】解:A 、正六边形的每个内角是120°,能整除360°,能密铺;B 、正五边形每个内角是108°,不能整除360°,不能密铺;C 、正四边形的每个内角是90°,能整除360°,能密铺;D 、正三边形的每个内角是60°,能整除360°,能密铺.故选:B .5.(2019·雷州市第二中学初三一模)在下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形A .4种B .3种C .2种D .1种 【答案】C【解析】解:正三角形的一个内角度数为180360360-÷=︒,①正方形的一个内角度数为180360490-÷=︒,360290360⨯+⨯=︒,那么3个正三角形和2个正方形可作平面镶嵌;②正五边形的一个内角度数为1803605108-÷=︒,任意若干个都不能和正三角形组成平面镶嵌;③正六边形的一个内角度数为1803606120-÷=︒,2602120360⨯+⨯=︒或460120360⨯+=︒,可作平面镶嵌;④正八边形的一个内角度数为1803608135-÷=︒,任意若干个都不能和正三角形组成平面镶嵌; 能镶嵌的只有2种正多边形.故选C .考点6:多边形的去(多)角问题典例:(2019·江苏省初一期中)小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是_______.【答案】9【解析】设多边形的边数为n,多加的内角度数为α,则(n-2)•180°=1380°-α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴n-2=7,n=9;故答案为:9.方法或规律点拨本题考查了多边形的内角和公式,根据多边形的内角和公式判断出多边形的内角和公式是180°的倍数是解题的关键.巩固练习1.(2020·全国初一)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.2.(2019·云南省初三二模)小明在计算一个多边形的内角和时,漏掉了一个内角,结果算得800°,这个多边形应该是()A.六边形B.七边形C.八边形D.九边形【答案】B【解析】解:设多边形的边数是n.依题意有(n﹣2)•180°≥800°,解得:n≥649,则多边形的边数n=7;故选:B.3.(2019·浙江省初二学业考试)一个四边形截去一个角后,形成新的多边形的内角和是()A.180°B.360°或540°C.540°D.180°或360°或540°【答案】D【解析】解:∵一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能是180°,或(4-2) ×180°=540°,或(5-2) ×180°=540°.故选:D.4.(2018·山西省初一期末)若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()A.90°B.105°C.130°D.120°【答案】C【解析】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C5.(2020·偃师市实验中学初一月考)多边形的所有内角与它的一个外角的和为600°,这个多边形的边数是_____【答案】5【解析】解:设边数为n,一个外角为α,则(n-2)×180°+α=600°,∴n=600180α-︒︒+2,∵0°<α<180°,n为正整数,∴当α=60°时,600180α-︒︒为正整数,此时n=5,内角和为(n-2)×180º=540°.故多边形的边数为5.6.(2019·山西省初一月考)如图,有一张正方形桌面,它的4个内角的和为360°,现在锯掉它的一个角,残余桌面所有的内角的和是_____________【答案】540°【解析】解:由题意得,残余桌面为五边形,∴残余桌面所有的内角的和为(5-3)×180°=540°故答案为:540°.。

人教版八年级数学上册金榜名师推荐课时提升作业11.3多边形及其内角和(含答案解析)

人教版八年级数学上册金榜名师推荐课时提升作业11.3多边形及其内角和(含答案解析)

课时提高作业 ( 五)多边形及其内角和(30 分钟50分)一、选择题 ( 每题 4 分, 共 12 分)1. 如图 , 以下图形不是凸多边形的是()【分析】选 C.若将侧,有一部分在直线ABAB向双方延伸右边 .,这个图形有一部分在直线AB左【知识概括】多边形的分类多边形有两类 :一类是凸多边形 ,它的每个内角都小于180 °,另一类是凹多边形 ,它的内角中起码有一个大于180°.2.(2014 ·连江理智质检 ) 如下图 , 一个 60°角的三角形纸片 , 剪去这个 60°角后 , 获得一个四边形 , 则∠ 1+∠2 的度数为()A.120 °B.180°C.240°D.300°【分析】选 C.依据三角形的内角和定理得:四边形除掉∠1,∠2 后的两角的度数为180 °-60 °=120 °,则依据四边形的内角和定理得: ∠1+ ∠2=360 °-120 °=240 °.3.多边形的每个内角都等于 150°, 则此后多边形的一个极点出发可作的对角线共有 ()A.8 条B.9条C.10条D.11条【分析】选 B.∵多边形的每个内角都等于 150 °,∴多边形的每个外角都等于180 °-150 °=30 °,∴边数 n=360 °÷30°=12, ∴此后多边形的一个极点出发可作的对角线条数为12-3=9.二、填空题 ( 每题 4 分, 共 12 分)4. 剪掉多边形的一个角 , 则所成的新多边形的内角和.【分析】 n 边形的内角和是 (n-2) ·180 °,因为剪掉一个多边形的一个角,则所得新的多边形的边数可能增添一, 可能不变 ,也可能减少一 , 因此所成的新多边形的内角和增添180°或不变或减少180 °.答案 :增添 180 °或不变或减少180°5.如图 : 小亮从 A 点出发行进 10m,向右转 15°, 再行进 10m,又向右转15° , , 这样向来走下去, 他第一次回到出发点 A 时 , 一共走了m.【分析】此多边形的每个外角均相等,每一条边都相等, 由外角和为360 °,得边数 ==24, 则小亮走的总行程为24 ×10=240(m).答案 :2406. 因为一个多边形的外角最多能有个钝角,所以,一个多边形的内角最多能有个锐角 .【分析】多边形的外角和是360 °,设最多有x 个钝角 ,则 90 °x<360 °,解得 x<4, ∴x 最大取 3,即外角最多有 3 个钝角 .∴内角最多有 3 个锐角 .答案:3 3三、解答题 ( 共 26 分)7.(8分)在一个正多边形中,一个外角的度数等于一个内角度数的,求这个正多边形的边数和它每一个内角的度数.【分析】设这个正多边形的边数为n,由题意得 : (n-2) ×180=360, 解得 :n=9,故每一个内角为180 °-=140 °.答:这个正多边形的边数为 9,每一个内角的度数为 140 °.8.(8 分) 四边形 ABCD中, ∠A=140°, ∠D=80°.(1) 如图 1, 若∠ B=∠C,试求出∠ C的度数 .(2) 如图 2, 若∠ ABC的角均分线 BE交 DC于点 E, 且 BE∥AD,试求出∠ C 的度数 .【分析】 (1)因为∠A+∠B+∠C+ ∠D=360 °,∠B=∠C,所以∠B=∠C===70 °.(2) ∵BE∥AD,∴∠BEC= ∠D=80 °,∠ABE=180 °-∠A=180 °-140 °=40 °.又∵BE 均分∠ABC, ∴∠EBC= ∠ABE=40 °,∴∠C=180 °-∠EBC- ∠BEC=180 °-40 °-80°=60 °.【培优训练】9.(10 分) 小明和小亮分别利用图①、图②的不一样方法求出了五边形的内角和都是 540°. 请你考虑在图③中再用此外一种方法求五边形的内角和 . 并写出求解过程 .【分析】(答案不独一)连结五边形的一对不相邻的极点,获得一个三角形和一个四边形,三角形的内角和是180 °,四边形的内角和是360°,因此五边形的内角和是 180 °+360 °=540 °.。

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)
∵AB∥DE,
∴∠BAG+∠AGD=90°,
则AG⊥DE.
点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.
18.如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
详解:(1)由平移的性质得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四边形ABED为平行四边形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE为△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由为:
由平移的性质得到∠EDF=∠BAC,
A. 200米B. 180米C. 160米D. 140米
【答案】B
【解析】
【分析】
多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.
【详解】∵多边形的外角和为360°,而每一个外角为20°,
∴多边形的边数为360°÷20°=18,
∴小华一共走了:18×10=180米.
故选B.
∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.
故选B.
点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.
6.如图所示,小华从A点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )

多边形及其内角和(能力培优)

多边形及其内角和(能力培优)

多边形及其内角和一、多边形1、概念:在平面内,由一些线段首尾顺次相接组成的封闭图形.(注意:三角形是最简单的多边形)2、内角:相邻两边组成的角.3、外角:多边形的边与它的邻边的延长线组成的角.4、分类:①凸多边形:任一线段所在直线不会经过图形内部的图形叫凸多边形.②凹多边形:只要有一条线段所在直线经过图形内部则被称作为凹多边形.5、正多边形:各个角相等,各条边相等的多边形.二、n边形1、n个顶点2、n个内角3、n条边4、过一个顶点有(n-3)条对角线5、过一个顶点的对角线把n边形分成(n-2)个三角形6、共有2)3n(n条对角线7、内角和为(n-2)180°8、外角和为360°三、多边形的内角和推理方法一:从n边形的一个顶点引出(n-3)条对角线,这(n-3)条对角线把n边形分成(n-2)个三角形,每个三角形的内角和是180°,所以n边形的内角和是(n-2)×180°.四、多边形外角和的推理多边形的每个内角和与它相邻的外角都是邻补角,所以n边形的内角和加上外角和为n×180°,外角和等于n×180°-(n一2)×180°=360°.题型讲解【题型1】多边形内角和公式的运用例1、把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )A. 141°B. 144°C. 147°D. 150°迁移训练1.如图,若干全等正五边形排成环状。

图中所示的是前3个五边形,要完成这一圆环还需( )个五边形。

A. 6B. 7C. 8D. 9迁移训练2.在凸四边形ABCD中,∠A-∠B=∠B-∠C=∠C-∠D>0,且四个内角中有一个角为84°,求其余各角的度数。

【题型2】多边形内角和与平行线性质的结合例2、(2018·南京)如图,五边形ABCDE是正五边形。

人教版八年级上册:11.3 多边形及其内角和 课后作业 word版,含答案

人教版八年级上册:11.3 多边形及其内角和 课后作业 word版,含答案

11.3 多边形及其内角和课后作业一.选择题1.如图,在五边形ABCDE中,AB∥CD,∠A=135°,∠C=60°,∠D=150°,则∠E 的大小为()A.60°B.65°C.70°D.75°2.下列说法中错误的是()A.三角形的一个外角大于任何一个内角B.边数为n的多边形内角和是(n﹣2)×180°C.有一个内角是直角的三角形是直角三角形D.三角形的中线、角平分线、高线都是线段3.已知正多边形的一个内角为144°,则该正多边形的边数为()A.12B.10C.8D.64.一个正多边形的内角和为540°,则这个正多边形的每一个内角是()A.120°B.108°C.90°D.605.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.86.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.180°B.260°C.270°D.360°二.填空题7.已知正n边形的每个内角为144°,则n=.8.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为.9.如图所示,正五边形中∠α的度数为.10.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是度.11.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.12.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A'的位置,若∠A =40°,则∠1﹣∠2的度数为度.三.解答题13.一个多边形的每个内角都相等,都等于150°,求这个多边形的边数?14.在四边形ABCD中,∠D=60°,∠B=∠A+20°,∠C=2∠A,求∠B的度数.15.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=70°,∠ACB=40°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.16.(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案一.选择题1.解:∵AB∥CD,∴∠C+∠B=180°,∵五边形ABCDE中,∠A=135°,∠D=150°,∴∠E=540°﹣180°﹣135°﹣150°=75°.故选:D.2.解:A、三角形的一个外角大于与它不相邻的任何一个内角,故原说法错误,故本选项符合题意;B、边数为n的多边形内角和是(n﹣2)×180°,说法正确,故本选项不合题意;C、有一个内角是直角的三角形是直角三角形,说法正确,故本选项不合题意;D、角形的中线、角平分线、高线都是线段,说法正确,故本选项不合题意;故选:A.3.解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为36°,∵多边形的外角之和为360°,∴边数==10,∴这个正多边形的边数是10.故选:B.4.解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5.则这个正多边形的每一个内角为540°÷5=108°.故选:B.5.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.6.解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故选:A.二.填空题7.解:由题意得正n边形的每一个外角为180°﹣144°=36°,n=360°÷36°=10,故答案为10.8.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=×360°,解得n=5.故这个多边形的边数为5.故答案为:5.9.解:∵正五边形的内角为:(5﹣2)×180°÷5=108°,∴∠α=×(180°﹣108°)=36°,故答案为:36°.10.解:如图,∵正五角星中,五边形FGHMN是正五边形,∴∠GFN=∠FNM==108°,∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.故答案是:36.11.解:∵∠B=30°,∴∠BEF+∠BFE=180°﹣30°=150°,∴∠DEF+∠GFE=360°﹣150°=210°.∵∠DEF=∠A+∠D,∠GFE=∠C+∠G,∴∠A+∠D+∠C+∠G=∠DEF+∠GFE=210°,故答案为:210.12.解:如下图所示,∵△ABC纸片沿DE进行折叠,点A落在四边形BCED的外部点A'的位置,∴∠4=∠5,∠3=∠2+∠DEC,∵∠1+∠4+∠5=180°,∴∠1+2∠4=180°,∴∠1=180°﹣2∠4,∵∠3+∠DEC=180°,∴∠2=∠3﹣∠DEC=2∠3﹣180°,∴∠1﹣∠2=180°﹣2∠4﹣2∠3+180°=360°﹣2∠4﹣2∠3=2∠A,∴∠1﹣∠2=2×40°=80°,故答案为:80.三.解答题13.解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.边数为12.14.解:四边形内角和定理得:∠A+∠B+∠C+∠D=360°,∵∠D=60°,∠B=∠A+20°,∠C=2∠A,∴∠A+(∠A+20°)+2∠A+60°=360°,∴∠A=70°,∴∠B=∠A+20°=90°,答:∠B的度数是90°.15.解:(1)∵∠ACE=∠A+∠ABC,∴∠ACD+∠DCE=∠A+∠ABD+∠DBC,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠ABC=70°,∠ACB=40°,∴∠A=180°﹣∠ABC﹣∠ACB=70°,∴∠D=35°;(2)∠D=(∠M+∠N﹣180°);理由:延长BM、CN交于点A,∵∠A+∠ANM+∠AMN=180°,∠AMN+∠BMN=180°,∠ANM+∠CNM=180°,∴∠A=180°﹣∠ANM﹣∠AMN=180°﹣(180°﹣∠CNM)﹣(180°﹣∠BMN)=180°﹣180°+∠CNM﹣180°+∠BMN,则∠A=∠BMN+∠CNM﹣180°,由(1)知,∠D=∠A,∴∠D=(∠BMN+∠CNM﹣180°).16.解:(1)∠CBD=138°,∠ACE=117°,∠BAF=105°,所以∠CBD+∠ACE+∠BAF=360°,发现:三角形中的外角和为360°,理由:因为∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,所以∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又因为∠ABC+∠ACB+∠BAC=180°,所以∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.。

人教版 数学八年级上册 11.3多边形及其内角和 培优练习

人教版  数学八年级上册 11.3多边形及其内角和 培优练习

人教版初中数学八年级上册11.3多边形及其内角和培优练习(含答案)一、选择题(本大题共6道小题)1. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°2. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形3. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°6. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共5道小题)7. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.8. 如图所示,x的值为________.9. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.10. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.11. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.三、解答题(本大题共3道小题)12. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.13. 如图,在五边形ABCDE中,AB∠CD,求图形中x的值.14. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版 初中数学八年级上册 11.3多边形及其内角和 培优练习-答案一、选择题(本大题共6道小题)1. 【答案】C [解析] ∠多边形内角和公式为(n -2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.2. 【答案】A [解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.3. 【答案】B [解析] 设正多边形的边数为n ,则当30°n =360°时,n =12,故A可能;当50°n =360°时,n =365,不是整数,故B 不可能;当40°n =360°时,n =9,故C 可能;当60°n =360°时,n =6,故D 可能.4. 【答案】B 【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b .5. 【答案】D6. 【答案】C 【解析】点A (0,a ),∴y 轴过点A ,点C 、D 纵坐标相同,∴CD 与x 轴平行,∵正五边形是轴对称图形,∴点E 和点B 关于y 轴对称,∴点E 的坐标为(3,2).二、填空题(本大题共5道小题)7. 【答案】100°8. 【答案】55° [解析] 由多边形的外角和等于360°,得360°-105°-60°+x +2x =360°,解得x =55°.9. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.10. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.11. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.三、解答题(本大题共3道小题)12. 【答案】解:设这个多边形的边数是n.依题意,得(n-2)×180°=3×360°-180°,解得n=7.∠这个多边形的边数是7.13. 【答案】解:∠AB∠CD,∠∠B+∠C=180°.∠(5-2)×180°=x°+150°+125°+180°,解得x=85.14. 【答案】解:延长ED,BC相交于点G.在四边形ABGE中,∠G=360°-(∠A+∠B+∠E)=50°,12(∠DCB-∠CDG)=12∠G=12×50°=25°.∠P=∠FCD-∠CDP=。

新人教版八年级数学上册11.3 多边形及其内角和 同步练习及答案

新人教版八年级数学上册11.3 多边形及其内角和 同步练习及答案

第11章《三角形》同步练习(§11.3 多边形及其内角和)班级学号姓名得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350. 从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x . 从而⋅++=-18050142x n 因为边数n 为正整数,所以x =130.16.可以走回到A 点,共走100米.可以编辑的试卷(可以删除)学习提示:1、通过练习发现不足。

人教版2021年八年级上册:11.3 多边形及其内角和 同步练习 word版,含详解

人教版2021年八年级上册:11.3 多边形及其内角和 同步练习 word版,含详解

11.3 多边形及其内角和同步练习一.选择题1.下面的多边形中,内角和是360°的是()A.B.C.D.2.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75B.65C.60D.55 3.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°4.若一个正多边形的一个内角是144°,则它的边数是()A.6B.10C.12D.13 5.若正多边形的一个外角是40°,则这个正多边形的内角和是()A.720°B.900°C.1080°D.1260°6.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°7.如图.∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.120°D.360°8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°二.填空题9.一个多边形的内角和跟它的外角和相等,则这个多边形是边形.10.如果一个多边形的每一个外角都等于40°,那么该多边形是边形.11.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.12.如图,在四边形ABCD中,E、F分别是两组对边延长线的交点,EG、FG分别平分∠BEC、∠DFC,若∠ADE=115°,∠ABF=95°,则∠EGF的度数为.13.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.14.一个不规则的图形如图所示,那么∠A+∠B+∠C+∠D+∠E+∠F=.15.如图,∠A+∠B+∠C+∠D+∠E=°.16.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=.三.解答题17.如图,∠1,∠2,∠3,∠4是四边形ABCD的四个外角.用两种方法证明∠1+∠2+∠3+∠4=360°.18.一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数.19.在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.20.某科技小组制作了一个机器人,它能根据指令要求进行行进和旋转,某一指令规定:机器人先向前方行走2m,然后左转60°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了多少米?21.(1)如图1,四边形ABCD沿MN折叠,使点C、D落在四边形ABCD内的点C'D'处,探索∠AMD′、∠BNC'与∠A+∠B之间的数量关系,并说明理由;(2)如图2,将四边形ABCD沿着直线MN翻折,使得点D落在四边形ABCD外部的D′处,点C落在四边形ABCD内部的C'处,直接写出∠AMD'、∠BNC'与∠A+∠B之间的关系.22.(1)如图①,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE的内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(3)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)参考答案一.选择题1.解:∵n边形的内角和公式为180°(n﹣2),∴当180°(n﹣2)=360°,则n=4.∴四边形的内角和等于360°.故选:B.2.解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75.故选:A.3.解:因为五边形ABCDE是正五边形,所以∠E=∠CDE==108°,AE=DE,所以,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.4.解:设这个正多边形的边数为n,则(n﹣2)×180°=144°×n,解得n=10.故选:B.5.解:正多边形的每个外角相等,且其和为360°,据此可得=40°,解得n=9,(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故选:D.6.解:∵∠A+∠B+∠1=180°,∠C+∠D+∠3=180°,∠E+∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠3+∠E+∠F+∠2=540°,∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.7.解:如图:∵∠1=∠2+∠C,∠2=∠A+∠D,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.8.解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.二.填空题9.解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故答案为:4.10.解:∵一个多边形的每一个外角都等于40°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷40°=9.故答案为九.11.解:∵正多边形的一个内角是162°,∴它的外角是:180°﹣162°=18°,边数n=360°÷18°=20.故答案为:二十.12.解:如图:连接EF,根据三角形内角和定理及角平分线的性质得:∠EGF=180°﹣(∠GEF+∠GFE)=180°﹣(∠CEF﹣∠CEG+∠CFE﹣CFG)=180°﹣(∠CEF+∠CFE)+(∠CFG+∠CEG)=∠C+∠CFD+∠CEB=∠C+(180°﹣∠C﹣∠CDF)+(180°﹣∠C﹣∠CBE)=∠C+180°﹣∠C﹣(180°﹣115°+180°﹣95°)=105°.故答案为:105°.13.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.14.解:如图,连接AD,则∠F AD+∠EDA+∠1=180°,∠E+∠F+∠2=180°,又∵∠1=∠2,∴∠F AD+∠EDA=∠E+∠F,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠B+∠C+∠CDE+∠F AD+∠EDA=∠BAD+∠B+∠C+∠CDA=360°.故答案为:360°.15.解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.16.解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=(5﹣2)×180°﹣300°=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故答案为:60°.三.解答题17.证法1:∵∠1+∠BAD=180°,∠2+∠ABC=180°,∠3+∠BCD=180°,∠4+∠CDA=180°,∴∠1+∠BAD+∠2+∠ABC+∠3+∠BCD+∠4+∠CDA=180°×4=720°.∵∠BAD+∠ABC+∠BCD+∠CDA=360°,∴∠1+∠2+∠3+∠4=360°.证法2:连接BD,∵∠1=∠ABD+∠ADB,∠3=∠CBD+∠CDB,∴∠1+∠2+∠3+∠4=∠ABD+∠ADB+∠2+∠CBD+∠CDB+∠4=180°×2=360°.18.解:设这个多边形的边数是n,n为正整数,根据题意得:0°<2018°﹣(n﹣2)×180°<180°,解得:<n<,即n=13,这个外角为2018°﹣(13﹣2)×180°=38°.19.解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20°)+α=180°,解得α=40°,即多边形的每个外角为40°,又∵多边形的外角和为360°,∴多边形的外角个数==9,∴多边形的边数=9,∴多边形的内角和=(9﹣2)×180°=1260°.20.解:∵机器人向前走2米,然后向左60°,反复执行这一指令,∴从出发到第一次回到原处,机器人走过的图形是正多边形,边数=360°÷60°=6,∴机器人共走了6×2=12(米).答:从出发到第一次回到原处,机器人共走了12米.21.解:(1)∠AMD′+∠BNC′=360°﹣2(∠A+∠B),理由如下:根据四边形的内角和为360°可知,∠D+∠C=360°﹣(∠A+∠B),∠DMN+∠CNM=360°﹣(∠C+∠D)=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠DMD′+∠CNC′=2(∠A+∠B),∵∠DMD′+∠AMD′=180°,∠CNC′+∠BNC′=180°,∴∠AMD′+∠BNC′=360°﹣2(∠A+∠B).(2)∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B),理由如下:由(1)知,∠DMN+∠CNM=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠D′MN+∠C′NM=∠A+∠B,由四边形的内角和为360°得,∠D′MN﹣∠AMD′+∠BNC′+∠C′NM=360°﹣(∠A+∠B)∴∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B).22.解:(1)根据折叠的性质可知:∠ADE=∠A′DE,∠AED=∠A′ED,∴∠1=180°﹣2∠ADE①,∠2=180°﹣2∠AED②,①+②,得∠1+∠2=360°﹣2(∠ADE+∠AED),∵∠ADE+∠AED+∠A=180°,∴∠ADE+∠AED=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=360°﹣360°+2∠A=2∠A,∴∠A=(∠1+∠2).故答案为:∠A=(∠1+∠2).(2)根据折叠的性质可知,∴∠1=180°﹣2∠ADE①,∠2=2∠AED﹣180°②,①﹣②,得∠1﹣∠2=180°﹣2∠ADE﹣2∠AED+180°=360°﹣2(∠ADE+∠AED),∴2(∠ADE+∠AED)=360°﹣(∠1﹣∠2),∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°﹣∠A,∴2(180°﹣∠A)=360°﹣(∠1﹣∠2),360°﹣2∠A=360°﹣∠1+∠2,∴∠1﹣∠2=2∠A,∴∠A=(∠1﹣∠2).(3)根据折叠的性质可知,∠AEF=(180°﹣∠1),∠DFE=(180°﹣∠2),∵∠A+∠D+∠AEF+∠DFE=360°,∴∠A+∠D+(180°﹣∠1)+(180°﹣∠2)=360°,∴2(∠A+∠D)=∠1+∠2+360°,∴∠A+∠D=(∠1+∠2+360°).。

《 多边形及其内角和》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

《 多边形及其内角和》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

2021-2022学年人教版八年级数学上册《11.3多边形及其内角和》同步专题提升训练(附答案)1.多边形的每个外角与它相邻内角的关系是()A.互为余角B.互为邻补角C.两个角相等D.外角大于内角2.已知正多边形的一个内角为144°,则该正多边形的边数为()A.12B.10C.8D.63.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°5.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米6.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.97.如图,六边形ABCDEF内部有一点G,连接BG、DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为()A.60°B.70°C.80°D.90°8.一个四边形截去一个内角后变为()A.三角形B.四边形C.五边形D.以上均有可能9.已知多边形的内角和是1080°,这个多边形的边数是;六边形的外角和等于°.10.一个多边形的每个内角都相等,且一个外角等于一个内角,这个多边形是形.11.若一个多边形的内角和与外角和之和是1980°,则此多边形是边形.12.在五边形ABCDE中,∠A=100°,∠B=∠C=112°,∠D=108°,则∠E=°.13.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.14.如图,∠A+∠B+∠C+∠D+∠E=°.15.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是.16.如图,四边形ABCD中,AB⊥BC,∠A=∠C=100°,则∠D的度数为度.17.若一个多边形的内角和等于其外角和的2倍,则它是边形.18.如图所示,若∠A+∠B+∠C+∠D+∠E+∠F=660°,求∠G+∠H的度数.19.一个正n边形的一个外角等于36°.(1)求它的边数n;(2)求它的内角和.20.【知识回顾】:如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.【初步运用】:如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)【拓展延伸】:如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.参考答案1.解:多边形的每个外角与它相邻的内角互为邻补角.故选:B.2.解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为36°,∵多边形的外角之和为360°,∴边数==10,∴这个正多边形的边数是10.故选:B.3.解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故选:D.4.解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.5.解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.6.解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.7.解:∵多边形ABCDEF是六边形,∴∠1+∠5+∠4+∠3+∠2+∠6+∠7+∠C=180°×(6﹣2)=720°,∵∠1+∠2+∠3+∠4+∠5=440°,∴∠6+∠7+∠C=720°﹣440°=280°,∵多边形BCDG是四边形,∴∠C+∠6+∠7+∠BGD=360°,∴∠BGD=360°﹣(∠6+∠7+∠C)=360°﹣280°=80°,故选:C.8.解:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.故选:D.9.解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8;六边形的外角和等于360°故答案为:8,360.10.解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形是正八边形.故答案为:正八边.11.解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1980°,n﹣2=9,n=11.故答案为:11.12.解:五边形的内角和为:(5﹣2)×180°=540°,∴∠E=540°﹣∠A﹣∠B﹣∠C﹣∠D=540°﹣112°﹣112°﹣108°﹣100°=108°,故答案为:108°.13.解:如图,∵∠3+∠4+8=180°①,∠6+∠7+∠10+∠11=360°②,∠1+∠2+∠5+∠9=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠9+∠10+∠11+∠12=900°,∵∠8+∠10=180°,∠9+∠11=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=900°﹣180°﹣180°=540°.故答案为:540°.14.解:如图,设线段BD,BE分别与线段AC交于点N,M.∵∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,∠DNC+∠D+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.15.解:如图可知,原来多边形的边数可能是5,6,7.16.解:∵AB⊥BC,∴∠B=90°,∵∠A=∠C=100,∴∠D=360﹣100﹣100﹣90=70°.17.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=2×360°,解得n=6.故答案为:六.18.解:连接AF,∵∠GDH=∠ADF,∴∠G+∠H=∠DAF+∠DF A,∵∠A+∠B+∠C+∠D+∠E+∠F+∠DAF+∠DF A=(6﹣2)×180°=720°,又∠A+∠B+∠C+∠D+∠E+∠F=660°,∴∠DAF+∠DF A=720°﹣660°=60°,则∠G+∠H=60°.19.解:(1)n=360°÷36°=10,所以它的边数n是10;(2)(10﹣2)•180°=1440°.所以它的内角和是1440°.20.解:【知识回顾】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;【初步运用】(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.。

11.3多边形及其内角和练习题(含答案)

11.3多边形及其内角和练习题(含答案)

11.3多边形及其内角和练习题姓名:_______________班级:_______________考号:_______________一、选择题1、n边形所有对角线的条数有()A. B. C. D.2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270°C.180° D.135°3、一个多边形的内角和与它的一个外角的和为,那么这个多边形的边数为()A.5 B.6C.7D.84、如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°5、一个四边形,截一刀后得到的新多边形的内角和将()A.增加180°B.减少180° C.不变 D.以上三种情况都有可能6、如果一个多边形的边数变为原来的2倍后,其内角和增加了1260°,则这个多边形的边数为()A.7 B.8 C.9 D.107、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或78、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有A.8条B.9条C.10条D.11条9、一个多边形有14条对角线,那么这个多边形有()条边A.6B.7C.8D.910、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为--()A.8 B.9 C.10 D.1211、如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A.30° B.35° C.36° D.42°12、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.813、一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1314、正多边形的一个内角的度数为108°,则这个正多边形的边数为A. 4B. 5C. 6D. 715、多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定二、填空题16、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为.17、如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= _________ .18、如图,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和为19、一个多边形的内角和与外角和之比为9:2,则从这个多边形的个顶点可以引_______条对角线。

人教版八年级数学11.3 多边形及其内角和(含答案 )

人教版八年级数学11.3  多边形及其内角和(含答案 )

人教版八年级数学11.3多边形及其内角和(含答案)知识要点:1.多边形:在平面内,由一些线段首位顺次相接组成的封闭图形叫做多边形.2.正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.3.多边形内角和定理:n 边形内角和等于(2)180n -⨯︒.4.多边形内角和定理的推理过程:(1)从n 边形的一个顶点出发,可以引出(3)n -条对角线,这(3)n -条对角线把n 边形分成(2)n -个三角形,又每个三角形的内角和是180︒,所以n 边形的内角和是(2)180n -⨯︒.(2)在n 边形内任取一点P ,连接1PA ,2PA ,…,n PA ,把n 边形分成n 个三角形,这n 个三角形的内角和为180n ⋅︒,再减去中间的一个周角,即得n 边形的内角和为(2)180n -⨯︒.5.多边形的外角和定理:多边形的外角和为360︒.6.多边形的外角和定理的推理过程:多边形的每个内角同与它相邻的外角都是邻补角,所以n 边形的内角和加上外角和为180n ⋅︒,外角和等于180(2)180360n n ⋅︒--⨯︒=︒.一、单选题1.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A .13B .15C .13或14或15D .15或16或17【答案】D解:设新多边形的边数是n ,则(n-2)•180°=2520°,解得n=16,∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,∴原多边形的边数是15,16,17,故选:D.2.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的度数为()的外角和等于210°,则BODA.30°B.35°C.40°D.45°【答案】A∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5−2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°−510°=30°,故选:A.3.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形【答案】B∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形,故选B.4.下列正多边形中,能够铺满地面的是()A.正十边形B.正五边形C.正八边形D.正六边形【答案】DA.正十边形每个内角为144°,不能整除360°,所以不能铺满地面;B.正五边形每个内角为108°,不能整除360°,所以不能铺满地面;C.正八边形每个内角为135°,不能整除360°,所以不能铺满地面;D.正六边形每个内角为120°,能整除360°,所以能铺满地面;故选D.5.一个多边形的每个内角均为150°,则这个多边形是()A.九边形B.十边形C.十二边形D.十五边形【答案】C解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12,故选:C.6.下面哪一个度数可以是某个多边形的内角和().A.1060°B.1080°C.1100°D.1200°【答案】B四个选项中只有1080°是180°的倍数,其余的都不是180°的倍数,因此是某多边形的内角和的是1080°,故选B.7.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【答案】B由多边形的外角和等于360°,有∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,所以∠1=360°-320°=40°.8.一个多边形的内角和为540°,则它的对角线共有()A.3条B.5条C.6条D.12条【答案】B解:设该多边形的边数为n,∴(n﹣2)•180°=540°,解得n=5;∴这个五边形共有对角线12×5×(5﹣3)=5条.故选:B.9.如果一个多边形的每一个外角都等于60°,这个多边形的边数是()A.4B.5C.6D.7【答案】C∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360÷60=6.故选C.10.正五边形的每一个外角的度数是()A.60°B.108°C.72°D.120°【答案】C多边形的外角和为360°,正多边形的每一个外角都相等,所以正五边形的每个外角的度数为360°÷5=72°.故选:C.11.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=_____()A.180°B.360°C.540°D.不能确定【答案】B如图所示.∵∠1+∠5=∠8,∠4+∠6=∠7.又∵∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故选B.12.把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°【答案】A∠EAG=180°-360°÷5-90°=18°.二、填空题13.一个多边形的内角和是1080°,这个多边形的边数是_____.【答案】8解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.14.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_____°.【答案】360°由图形可知:∠AMQ=∠A+∠B,∠CNA=∠C+∠D,∠CPE=∠E+∠F,∠EQG=∠G+∠H,∵∠AMQ+∠CNA+∠CPE+∠EQG=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠AMQ+∠CNA+∠CPE+∠EQG=360°,故答案为:360°.15.六边形有m条对角线,五边形有n条对角线,则m﹣n=________.【答案】4∵六边形有()6632⨯-=9条对角线,∴m=9,∵五边形有()5532⨯-=5条对角线,∴n=5,∴m-n=9-5=4,故答案为:4.16.一个多边形截去一个角后,形成的另一个多边形的内角和是1260°,则原多边形的边数是为_______________.【答案】8或9或10设多边形截去一个角的边数为n,根据题意得:(n﹣2)•180°=1260°解得:n=9.∵截去一个角后边上可以增加1,不变,减少1,∴原多边形的边数是8或9或10.故答案为:8或9或10.17.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为_________.【答案】61°首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD=1∠BOD=29°,2继而求得∠ACD=90°﹣∠BCD=61°.考点:圆周角定理18.根据如图所示的已知角的度数,求出其中∠α的度数为______.【答案】50度如图所示,由图可得,∠ACD=180°-120°=60°,∠ADC=180°-120°=60°.所以由四边形内角和等于360°可以求得∠BAD=360°-110°-60°-60°=130°,所以∠α=180°-∠BAD=50°,故答案为50度。

多边形的内角和专题(含答案)

多边形的内角和专题(含答案)

13.一个正多边形的每个外角为 ફ ,那么这个正多边形的内角和是________.
14.如图,
ꡰમ⺁
三、解答题 1 一个多边形的各内角都等于 1ꡰફ ,它是几边形?
1 一个多边形的内角和等于 1ꡰ ફ ,它是几边形?
17.如图,在四边形 ꡰમ⺁ 中, 与 મ 互补, ꡰમ、 ⺁મ 的平分线分别交 મ⺁、 ꡰ 于点 、 ‫ܧ‬䁞䁞 ꡰ,交 ꡰમ
ꡰમ ⺁મ ફ 1ౘફ 1ౘફ ,
ꡰ 、⺁ 分别平分 ꡰમ、 ⺁મ,
1
1 ꡰ
⺁મ,

‫ܧ‬䁞䁞 ꡰ,
1 ꡰ
ꡰમ,

ꡰ,
1

1 ꡰ
⺁મ
1 ꡰ
ꡰમ
Ꟑફ ,
即 1 与 ꡰ 互余.
ꡰમ
1ફફ , 1 ꡰꡰ ,
મ ౘફ , ꡰ ꡰౘ ,

મꡰ ꡰౘ ,
ꡰ મ 1ౘફ ꡰౘ ౘફ ꡰ ,
મ ‫ ܧ‬ꡰ ꡰౘ ꡰ .
因为多边形的外角和为 ફ ,
所以这个多边形的边数为 ફ ફ ,
所以这个多边形是六边形.
16.【答案】解:设这个多边形是 边形,
根据多边形内角和公式,得 ꡰમ 1ౘફ 1ꡰ ફ , 解得 Ꟑ
所以这个多边形是九边形.
17.【答案】解: 1મ 1 与 ꡰ 互余.
四边形 ꡰમ⺁ 的内角和为 ફ , 与 મ 互补,
A. ꡰ1ફ
B. 11ફ
C. 1 ફ
D. 1ફફ
1
10.若一个正 边形的每个内角为1ꡰꡰ ,则这个正 边形的所有对角线的条数是 ( )
A.
B. 1ફ
C.
D. ફ
二、填空题
11.若一个多边形的内角和是外角和的两倍,则该多边形的边数是______.

2024年-八年级数学人教版上册【能力培优】11.3多边形及其内角和(含答案)

2024年-八年级数学人教版上册【能力培优】11.3多边形及其内角和(含答案)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12B.11C.10D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3多边形及其内角和
专题一根据正多边形的内角或外角求值
1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.9
2.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.
3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.
专题二求多个角的和
4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°
5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.
6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.
状元笔记
【知识要点】
1.多边形及相关概念
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
2.多边形的内角和与外角和
内角和:n边形的内角和等于(n-2)·180°.
外角和:多边形的外角和等于360°.
【温馨提示】
1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.
2.多边形的外角和等于360°,而不是180°.
【方法技巧】
1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.
2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.
参考答案
1.A解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.
2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.
3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.
4.B解析:∵∠1=∠C+∠D,∠2=∠E+∠F,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.
5.360°解析:在四边形BEFG中,
∵∠EBG=∠C+∠D,
∠BGF=∠A+∠ABC,
∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.
6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.
∵∠A+∠B+∠BPO+∠POA=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

相关文档
最新文档