铁碳合金
铁碳合金状态图课件
根据铁碳合金在不同温度下的状态,绘 制等温线。
根据铁碳合金在不同温度和成分下的状 态,在图上标记相应的区域,并注明相 应的名称。
04
铁碳合金状态图的应用
在铸造工业中的应用
铸造工艺设计
铁碳合金状态图是铸造工艺设计的重 要依据,通过分析合金的凝固温度范 围和液相线温度,可以确定合适的浇 注温度和时间。
确定比例尺
根据实际需要选择合适的比例 尺,以便在图纸上准确表示铁 碳合金的实际 状态,在图上绘制等温线。
绘制元素分布曲线
根据铁碳合金中各元素的分布 情况,在图上绘制相应的曲线。
绘制实例和演示
选择合适的比例尺,绘制坐标轴。
对绘制好的铁碳合金状态图进行演示和 讲解,以便更好地理解和掌握铁碳合金 的状态变化规律。
1 2 3
铁碳合金状态图的实验研究
当前,研究者通过实验手段深入探究铁碳合金的 相变规律和组织性能,为实际生产提供理论支持。
铁碳合金状态图的计算模拟研究
随着计算材料学的进步,研究者利用计算机模拟 手段预测和模拟铁碳合金的状态和性能,为新材 料的开发提供有力支持。
铁碳合金状态图的应用研究
在实际生产中,钢铁企业根据铁碳合金状态图选 择合适的材料和工艺,提高产品质量和降低成本。
适的锻造温度和变形量。
锻件质量控制
通过铁碳合金状态图,可以预测锻 件在不同温度和变形条件下的组织 和性能变化,从而控制锻件的质量。
锻造设备选择
根据铁碳合金状态图,可以确定不 同锻造条件下材料的变形行为和所 需设备吨位,从而选择合适的锻造 设备。
在焊接工业中的应用
焊接材料选择
铁碳合金状态图可以指导焊接材 料的选择,根据母材的成分和状
《金属材料与热处理》第四章铁碳合金
学习情境四:铁碳合金 4.3
4、在焊接方面的应用 焊接时由焊缝到母材各区域的温度是不同的,根据Fe-Fe3C 相图可知,受到不同加热温度的各区域在随后的冷却中可能 会出现不同的组织和性能。这需要在焊接之后采用相应的热 处理方法加以改善。 5、在热处理方面的应用
Fe-Fe3C相图是制订热处理工艺的依据。应用Fe-Fe3C相 图可以正确选择各种碳钢的退火、正火、淬火等热处理的 加热温度范围。由于含碳量的不同,各种碳钢热处理的加 热温度和组织转变也各不相同,都可从状态图中求得。
31
学习情境四:铁碳合金 4.4
1、在钢铁材料选用方面的应用
Fe-Fe3C相图反映了铁碳合金的组织、性能随成分的变化 规律,为钢铁材料的选用提供了依据。如各种型钢及桥梁、船 舶、各种建筑结构等,都需要强度较高、塑性及韧性好、焊接 性能好的材料,故一般选用含碳量较低(WC<0.25%)的钢材; 各种机械零件要求强度、塑性、韧性等综合性能较好的材料, 一般选用碳含量适中(WC=0.30%~0.55%)的钢;各类工具、 刃具、量具、模具要求硬度高,耐磨性好的材料,则可选用含 碳量较高(WC=0.70%~1.2%)的钢。纯铁的强度低,不宜 用作工程材料。白口铸铁硬度高、脆性大,不能锻造和切削加 工,但铸造性能好,耐磨性高,适于制造不受冲击、要求耐磨、 形状复杂的工件,如冷轧辊、球磨机的铁球等。
29
学习情境四:铁碳合金 4.4
低碳钢:Wc=0.1-0.25% 中碳钢:Wc=0.25-0.6% 高碳钢:Wc=0.6-1.4% 随着Wc的增加,硬度、强度都增加。
30
学习情境四:铁碳合金 4.3
三、铁碳合金状态图的应用
1、在钢铁材料选用方面 2、在铸造生产上的应用 3、在锻造方面的应用 4、在焊接方面的应用 5、在热处理方面的应用
铁碳合金的应用
铁碳合金的应用
一、介绍铁碳合金
铁碳合金是一种由铁和碳组成的合金,其中碳的含量在0.008%至
2.11%之间。
它是一种广泛应用于制造业中的材料,因其优良的物理
和化学性质而备受青睐。
二、铁碳合金的物理性质
1. 密度:铁碳合金密度在6.1-7.87g/cm³之间,具有较高的密度。
2. 熔点:铁碳合金熔点在1147℃-1538℃之间,具有较高的熔点。
3. 硬度:铁碳合金硬度在60-700HB之间,硬度较高。
4. 磁性:铁碳合金具有良好的磁性。
三、铁碳合金的化学性质
1. 腐蚀抵抗性:铁碳合金对大多数酸和盐具有良好的耐腐蚀性。
2. 氧化还原反应:铁碳合金可以参与氧化还原反应。
3. 合成反应:通过不同比例的混合物可以制备出不同比例的铁碳合金。
四、应用领域
1. 钢材制造:铁碳合金是钢铁制造中不可或缺的材料之一。
通过添加
铁碳合金可以改善钢材的硬度、强度和耐腐蚀性等性能。
2. 铸造业:铁碳合金也广泛应用于铸造业中。
它可以用于制造各种类
型的铸件,例如汽车零部件、机械零部件等。
3. 电子工业:铁碳合金在电子工业中也有广泛应用。
它可以用于制造磁芯、电感器、变压器等电子元器件。
4. 化学工业:铁碳合金还可以用作化学反应催化剂,例如在氧化亚氮反应中起到重要作用。
五、结论
综上所述,铁碳合金是一种非常重要的材料,在制造业中有着广泛的应用。
通过了解其物理和化学性质以及应用领域,我们可以更好地利用这种材料来满足不同领域的需求。
材料科学基础-铁碳合金
(2)奥氏体(γ或 A ) 定义:C在面心立方γ-Fe中的间隙固溶体 溶碳量较大: 0.77% (727℃) ~2.11% (1148℃) 性能: 强硬度较低; 塑性较好, 变形抗力较低, 易于锻压成形; 顺磁性。 ——热加工(塑性变形) 相 ——合金化后成为室温基体相(无磁性);
(3)渗碳体(Fe3C) Fe与C形成的金属化合物,含6.69%C, 复杂正交晶系。 性能 强度低:σb= 30MPa; 硬度高:800HB 无塑性:δ=0; ψ=0; Ak=0 弱的铁磁性(<230 ℃)
单 相 组 织
两 相 组 织 (6)变态莱氏体(Ld′):P+Fe3C
二、Fe―Fe3C相图分析
实际组元:
Fe-Fe3C
L+δ
1538℃A
δ
N
1495℃ 0.17 0.53 H J B
铁碳相图 L
2.11 E
L +Fe3C
4.3 C
T
912℃ G
L+γ
D
γ α+γ
0.77 P S 0.0218
1148℃ F
(2)熟记铁碳相图,弄清重要温度与成分点、重要 线意义;铁碳合金中各种相的本质与特征;
(3)典型铁碳合金的结晶过程分析,室温平衡组织 中相及组织组成物相对量的计算;熟悉各组织特征 (4)掌握铁碳合金的成分—组织-性能之间的关系
§1 铁碳合金与铁碳相图
铁碳合金——应用最广泛的合金 一 铁碳合金中的基本相和基本组织 (一) 纯铁的晶体结构与性能 1 纯铁冷却中晶体结构的变化: L → δ-Fe → γ-Fe → α-Fe bcc fcc bcc —— 纯铁在冷却中经历两次同素异构转变
铁碳相图 L
2.11 E
第三章铁碳合金
第三章铁碳合金众所周知,钢铁材料具有一系列优良的机械性能和工艺性能,是现代工农业生产中应用最普遍的金属材料,它们是以铁和碳作为大体元素的合金,改变其化学成份和工艺条件,就能够够取得不同的组织和性能,从而能知足生产和利用的多种需要。
其大体组元是铁和碳,故统称为铁碳合金。
由于碳的质量分数大于6.69%时,铁碳合金的脆性专门大,已无有效价值。
因此,实际生产中应用的铁碳合金其碳的质量分数均在6.69%以下。
第一节铁碳合金的组元及大体组织一、纯铁Fe是ⅧB族26号元素,具有一系列优良的物理及化学性质,大伙儿都比较熟悉,那个地址就不涉及,只讲铁在晶体结构上的一个性质——多晶型性,即在不同的条件下,铁具有不同的晶体结构,在条件改变时铁会发生同素异构转变。
金属从一种晶格转变成另一种晶格,这种转变称为金属的同素异晶转变。
现以纯铁为例来讲明金属的同素异晶转变进程。
图3-1 纯铁的冷却曲线α,液态纯铁在1538℃时结晶成具有体心立方晶格(b、c、c)的δ-Fe(不同于Fe-晶格尺寸较大);冷却到1394℃时发生同素异晶转变,由体心立方晶格的δ-Fe转变成面心立方晶格的γ-Fe(f、c、c);继续冷却到912℃时又发生同素异晶转变,由面心立方晶格的γ-Fe转变成体心立方晶格的α-Fe(b、c、c)。
金属发生同素异晶转变时,必然伴随着原子的从头排列,这种原子的从头排列进程,事实上确实是一个结晶进程,与液态金属结晶进程的不同点在于其是在固态下进行的,但它一样遵循结晶进程中的形核与长大规律。
二、铁素体(Ferrite )在铁碳合金中,由于含碳量和温度的不同,铁原子和碳原子彼此作用能够形成铁素体、奥氏体和渗碳体等大体相。
碳溶入α-Fe 中形成的间隙固溶体称为铁素体,用符号F 表示。
铁素体具有体心立方晶格,这种晶格的间隙散布较分散,因其间隙尺寸很小,溶碳能力较差,在727℃时碳的溶解度最大为0.0218%,室温时几乎为零。
铁素体的塑性、韧性专门好(δ=30~50%、a KU =160~200J /cm 2),但强度、硬度较低(σb =180~280MPa 、σs =100~170MPa 、硬度为50~80HBS)。
第三章 铁碳合金
把以铁及铁碳为主的合金(钢铁)称为 黑色金属,而把其他金属及其合金称为 有色金属。
§3-1 合金及其组织
一、合金的基本概念
1、合金
所谓合金,是以一种金属为基础,加入其他 金属或非金属,经过熔合而获得的具有金属 特性的材料,即合金是两种或两种以上的元 素所组成的金属材料。
合金具有比纯金属高得多的强度、硬度、耐磨性等机械性能, 是工程上使用得最多的金属材料,如机器中常用的黄铜是铜 和锌的合金;钢是铁和碳的合金;焊锡是锡和铅的合金。
3、在锻造工艺上的应用
对可锻性而言,低碳钢比高碳钢好。由于钢加热呈 单相奥氏体状态时,塑性好,强度的,便于塑性变 形,所以一般锻造都在奥氏体状态下进行,锻造时 必须根据铁碳合金相图确定合适的温度,始轧和始 锻温度不能过高,以免产生过烧;始轧和始锻温度 不能过低,以免产生裂纹。
§3-4 碳素钢
碳素钢(简称碳钢)是含碳量大于
主要应用在钢材料的选用和加热工工艺的制度两方面。
1、作为选用钢材料的依据
制造要求塑性、韧性好,而强度不太高的构件,选 用含碳量较低的钢;
要求强度、塑性和韧性等综合性能较好的构件,选 用含碳量适中的钢; 各种工具要求硬度高及耐磨性好,选用含碳量较高 的钢。
2、在铸造生产中的应用
对于铸造性能来说,铸铁的流动性比钢好,易于铸 造,特别是靠近共晶成分的铸铁,其结晶温度低, 流动性好,更具有良好的铸造性能。
二、合金的组织
根据合金中各组元之间结合方式的不同, 合金组织可分为固溶体、金属化合物和混合 物三类。
1、固溶体
固溶体是一种组元的原子溶于另一组元 的晶格中所形成的均匀固相。溶入的元素称 为溶质,而基体元素称为溶剂。固溶体保持 溶剂的晶格类型。固溶体一般用α、β、 γ……来表示。
《金属工艺学》铁碳合金
主要线
二条平行线(ECF、PSK)表示恒温反应: ECF:1148 ℃发生共晶反应 Lc --- AE + Fe3C PSK: 727 ℃发生共析反应 As ----- FP + Fe3C
ES线(Acm线):C在A中的固溶线。 1148 ℃:C在A中最大溶解度2.11% 727 ℃: C在A中最大溶解度0.77%
在钢中与其他组织共存时,可呈片状、网状或粒 状。 Fe3C的形状、大小、分布和数量对钢的性 能有极大的影响。
Fe3C在一定条件下可分解成铁和石墨。
(4)珠光体 P
含碳量为0.77%的A同时析出F和Fe3C的机械 混合物。(共析反应)
P是软的F片和硬的Fe3C片相间的机械混合物。 性能介于两者之间:δ=20~25%,σb =600~800MPa,HBS=170~230
(2)固溶体是单相,它具有与溶剂金属相同的晶 格。其基本性能也同溶剂。
(3)根据溶解的方式不同,固溶体可分为:
① 置换固溶体(下页图)
一部分溶剂晶格结点上的原子被溶质原子所代替。 在溶剂和溶质原子直径差别不大时易形成。晶格会 发生畸变,塑性变形阻力增加,强度和硬度升高, 这种溶质原子使固溶体的强度和硬度升高的现象, 叫固溶强化。——提高合金机械性能的一个途径。
目的: ① 细化晶粒(可提高σ、δ、ak) ② 降低硬度(便于切削加工) ③ 消除内应力(以及加工硬化)、(可防变形和
开裂)
1、完全退火
将亚共折钢加热到AC3以上30-50℃,保温 后缓冷。
加热得细晶粒的A,冷却后得细晶粒F+P。 目的:
①细化晶粒;②降低硬度;③消除内应力。
2、球化退火
重要特性点 P19 B1-4
特性点 A C D E F G
第三章 铁碳合金(二、三)
§3-2铁碳合金的基本组织和性能钢和铁是工业上应用最广泛的金属材料,它们都是铁碳合金。
不同成分的钢和铸铁的组织都不相同,因此,它们的性能和应用也不一样。
铁碳合金中碳原子和铁原子可以有几种不同的结合方式:一种是碳溶于铁中形成固溶体;另一种是碳和铁化合形成化合物;此外,还可以形成由固溶体和化合物组成的混合物。
一、铁素体(F)它是碳溶解于α-Fe中的间隙固溶体称为铁素体(简称α固溶体)。
通常用符号F表示。
晶体结构呈体心立方晶格,碳在α铁中的溶解度极小,随温度的升高略有增加,在室温时的溶解度仅有0.008%,在727℃时最大溶解度为0.0218%。
铁素体的性能几乎与纯铁相同,它的强度和硬度较低,σb=250MPa,HBS=80,塑性和韧性则很高,δ= 50%。
二、奥氏体(A)碳溶解于γ-Fe中的间隙固溶体称为奥氏体(简称γ固溶体),通常用符号A表示。
晶体结构呈面心立方晶格。
由于γ铁晶格中间隙较大,因此在727℃时能溶解0.77%碳,在1148℃时的最大溶解度达到2.11%,奥氏体存在于727℃以上的高温区间,具有一定的强度和硬度,以及很好的塑性,是绝大多数钢在高温进行锻造或轧制时所要求的组织。
三、渗碳体(Fe3C)它是铁与碳形成的金属化合物Fe3C,含碳量为6.69%,其晶胞是八面体,晶格构造十分复杂。
渗碳体的性能很硬很脆,HBW≈800,δ≈0。
渗碳体在钢中主要起强化作用,随着钢中含碳量的增加,渗碳体的数量增多,钢的强度和硬度提高,而塑性下降。
四、珠光体(P)珠光体是由铁素体和渗碳体组成的机械混合物,用符号P表示,它是由硬的渗碳体片和软的铁素体片层片相间,交错排列而成的组织。
所以其性能介于它们二者之间,强度较高,σb=750MPa ,HBS=180,同时保持着良好的塑性和韧性δ=(20~25)%。
五、莱氏体(L d)奥氏体与渗碳体的机械混合物称为莱氏体,用符号Ld表示。
它是C=4.3%的铁碳合金液体在1148℃发生共晶转变的产物。
4.铁碳合金
第四章 铁碳合金
纯铁的冷却曲线及 晶体结构变化
第四章 铁碳合金
碳在γ-Fe晶格中的位置
第四章 铁碳合金
奥氏体的显微组织
第四章 铁碳合金
铁素体的显微组织
第四章 铁碳合金
铁的固溶体
晶格类型 最大含碳量
性质
铁素体 (F)
体心立方 0.0218%
室温下铁素体的性 能与纯铁相似。
奥氏体 (A)
面心立方 2.11%
高温铁素 体 (δ)
体心立方 0.09%
奥氏体具有良好的 塑性、韧性和一定 的强度、硬度。
第四章 铁碳合金
二、渗碳体(铁碳化合物)
渗碳体(cementite)是Fe—C合金中碳以化合物(Fe3C) 形式出现的。它具有复杂的晶格(正交晶系)。Fe3C是 由C原子构成的一个斜方晶格, 原子周围有六个Fe原 子,构成一个八面体,而每个Fe原子属于两个八面体 共有,Fe:C=3:1。
片状石墨+铁素体和珠光体的混合组织。
灰铸
石
铁的
墨 片
的
显微
三 维
形
铁 素 体 灰 铸 铁
组织
貌
铁
素
珠 光 体 灰 铸 铁
体 加 珠 光 体 灰 铸
铁
球墨铸铁的显微组织
铁
素 体 球 墨 铸 铁
珠 光 体 球 墨 铸
铁
铁
素
体
球加墨Fra bibliotek珠铸
光
铁
体
中
球
的
墨
石
铸
墨
铁
球
第四章 铁碳合金
石墨晶体长大时,沿层面的长大速度较快,即层面 的扩大快而层的加厚慢,导致其结晶形态通常发展成片 状。
铁碳合金的基本组织名称类型特点
铁碳合金的基本组织名称类型特点一、铁碳合金的基本组织铁碳合金是指含有一定量碳元素的铁合金,其基本组织包括珠光体、贝氏体、马氏体和残余奥氏体四种。
1. 珠光体珠光体是铁碳合金中最常见的基本组织,其形态呈球状或半球状。
珠光体通常由铁素体经过缓冷或退火处理形成。
珠光体中的碳元素以Fe3C(水滑石)的形式存在,因此在显微镜下呈黑色。
2. 贝氏体贝氏体是由珠光体和渗碳贝氏体共同构成的一种基本组织。
贝氏体呈板条状,其形态与尺寸受到冷却速度和温度等因素的影响。
贝氏体中的碳元素以Fe3C和奥氏体固溶态(即固溶于γ-Fe中的C)的形式存在。
3. 马氏体马氏体是由奥氏体在快速冷却过程中分解而成。
马氏体呈针状或板条状,具有高强度、高硬度和良好的韧性。
马氏体中的碳元素以固溶态和Fe3C的形式存在,其中固溶态碳元素的含量较高。
4. 残余奥氏体残余奥氏体是指在快速冷却过程中未能完全转变为马氏体而残留下来的奥氏体。
残余奥氏体具有良好的韧性和可塑性,但强度和硬度较低。
残余奥氏体中的碳元素以固溶态和Fe3C的形式存在。
二、铁碳合金组织类型根据不同的冷却速度和温度条件,铁碳合金可以形成不同类型的组织。
常见的组织类型包括珠光体钢、淬火钢、退火钢、球墨铸铁等。
1. 珠光体钢珠光体钢是指经过缓冷或退火处理后所得到的组织为珠光体的钢。
珠光体钢具有良好的可加工性和韧性,但硬度和强度较低。
2. 淬火钢淬火钢是指经过快速冷却(淬火)处理后所得到的组织为马氏体的钢。
淬火钢具有高强度、高硬度和良好的耐磨性,但韧性较差。
3. 退火钢退火钢是指经过加热处理后缓慢冷却所得到的组织为贝氏体或珠光体的钢。
退火钢具有良好的可加工性和韧性,但强度和硬度较低。
4. 球墨铸铁球墨铸铁是指在铸造过程中加入一定量镁元素,使其形成球形石墨颗粒的铸铁。
球墨铸铁具有高强度、高韧性和良好的耐蚀性,适用于制造机械零件等要求高强度和耐磨性的零部件。
三、铁碳合金特点1. 铁碳合金具有良好的可加工性和可塑性,适用于制造各种机械零件、建筑材料等。
机械工程材料第五章 铁碳合金
4、共晶白口铁
L
L→ Ld( A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织:Ld′ 即 P+(Fe3C)Ⅱ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
L L→A L→ Ld (A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织: Ld′+P+(Fe3C)Ⅱ 即(P+(Fe3C)Ⅱ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
四、 Fe-Fe3C相图的应用
1.为选材提供成分依据
低碳钢(0.10-0.25%C):建筑结构和容器等 中碳钢(0.25-0.60%C):如轴等 高碳钢(0.6-1.3%C):如工具等 白口铁:如拔丝模、轧辊和球磨机的铁球等
34
2.为制定热加工工艺提供依据
(1)在铸造生产方面的应用 根据Fe-Fe3C相图可以确定铁碳合金的浇注温度, 浇注温度一般在液相线以上50℃~100℃。 共晶成分的铸铁凝固区间最小(为零),流动性 好,分散缩孔少,可使缩孔集中在冒口内,有可 能得到致密的铸件得到较广泛的应用。
其性能特点是强度低,硬度不高,易于塑性变形。
⑸ Fe3C相(又称渗碳体):根据其生成条件不同有条状、网状、
片状、粒状等形态,对铁碳合金的力学性能有很大影响。
1600 A 1400 N 1200 1000
+L
B 0.53 J 0.17 H 0.09 1495
L
2.11 E
4.3 1148 C
+
注意:由于不保证化学成分,所以热处理时不能 依甲类钢来选材,应依乙类钢选,才能根据相图 制定热处理工艺。
铁 碳 合 金
铁碳合金
(1)共析钢的组织转变。奥氏体的碳的质量分数为0.77%,当 冷却到S点时,就全部转变为珠光体P。
(2)亚共析钢的组织转变。奥氏体的碳的质量分数低于0.77%, 当冷却到GS线时,开始析出铁素体。随着温度下降,铁素体不断增 加,奥氏体逐渐减少。当冷却到PS线时,铁素体析出完毕,剩余的 奥氏体碳的质量分数变为0.77%,就转变为珠光体。因此,GS线与 PS线之间的结晶组织为铁素体和奥氏体,PS线以下的结晶组织为铁 素体和珠光体。这种组织的钢称为亚共析钢。
铁碳合金
2. 奥氏体
碳溶解在γ-Fe中形成的固溶体称为奥氏体,通常用A(或γ) 表示。它仍保持γ-Fe的面心立方结构。Γ-Fe溶解碳的能力比α-Fe 大,在1 148 ℃时其溶解度最大达wC=2.11%。温度降低时,其溶 解度也降低,在727 ℃时,其溶解度为wC=0.77%。
稳定的奥氏体在钢内存在的最低温度为727 ℃。奥氏体的硬度 不是很高(160~220 HBW),塑性很好,是绝大多数钢种在高温 进行压力加工时所要求的组织。在显微镜下观察,奥氏体晶粒呈多 边形,晶界较铁素体平直。
同素异构转变不仅存在于纯铁中,而且存在于以铁为基 体的钢铁材料中,这是钢铁材料性能多种多样、用途广泛, 并能通过各种热处理进一步改善其组织与性能的重要因素。
铁碳合金
铁碳合金的基本组织
在铁碳合金中,铁和碳互相结合的方式是:在液态时,铁 和碳可以无限互溶;在固态时,碳可以溶于铁中形成固溶体; 当碳含量超过固态溶解度时,则出现化合物。此外,还可以形 成由固溶体和化合物组成的机械混合物。现将铁碳合金在固态 下出现的几种基本组织分述如下。
铁碳合金
3. 渗碳体
铁与碳形成稳定的化合物称为渗碳体,通常用Fe3C表示。 渗碳体中碳的质量分数为6.69%,渗碳体具有复杂的晶格形式, 与铁的晶格截然不同,故其性能与铁素体差别很大。
铁碳合金的相图的最全详细讲解
过共晶白口铁组织金相图
Fe - Fe3C 相图的应用
选择材料方面的应用
制定热加工工艺方面的应用
一.选择材料方面的应用
1. 分析零件的工作条件, 根据铁碳合金 成分、组织、性能之间的变化规律进 行选择材料。
2. 根据铁碳合金成分、组织、性能之间 的变化规律 , 确定选定材料的工作范 围。
二.制定热加工工艺方面的应用
§2-5 铁碳合金的组织与状态图
铁碳合金—碳钢和铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,都可作为 纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。
共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Le表示。为 蜂窝状, 以Fe3C为基,性能硬而 脆。
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
1.工业纯铁 ( Wc < 0.0218% )
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
亚共析钢组织金相图
第三节铁碳合金
4.相图的实际应用
1)为选材提供成分依据 2)为制定热加工工艺提供依据 3)局限性
1)为选材提供成分依据
• 若零件要求塑性,韧性好,如建筑结构和容器等, 应选用低碳钢(0.10~0.25%C);
• 若零件要求强度、塑性、韧性都较好,如轴等,应 选用中碳钢(0.25~0.60%C);
• 若零件要求硬度高、耐磨性好,如工具等,应选用 高碳钢(0.6~1.3%C)。
Fe3C % ≈ 0.4 / 6.67 = 6 % F % ≈ 1 – 6 % = 94 %
室温组织:
F + P,500×
亚共析钢
亚 共 析 钢
(4)过共析钢 ( C % = 1.2 % )结晶过程
各组织组成物的相对量:
Fe3CII % = ( 1.2 – 0.77 ) / ( 6.67 – 0.77 ) ≈7%
共晶铸铁
共 晶 铸 铁
(6)亚共晶白口铁 ( Wc = 3.0% )
(7)过共晶白口铁 ( Wc = 5.0% )
标注了组织组成物的相图
3.铁碳合金的 成分-组织-性能关系
含碳量与相的相对量关系: C %↑→F %↓,Fe3C %↑
含碳量与组织关系: 图(a)和(b)
含碳量与性能关系 HB:取决于相及相对量 强度:C%=0.9% 时最大 塑性、韧性:随C%↑而↓
2. 1) 铁素体的本质是碳在α- Fe 中的间隙相。(No) 2) 20 钢 比 T12 钢 的碳质量分数要高。(No)
3) 在退火状态(接近平衡组织)45 钢 比 20 钢 的塑性和强度都 高。 (No)
4) 在铁碳合金平衡结晶过程中,只有碳质量分数为4.3%的铁 碳合金才能发生共晶反应。(No)
3. 1) 奥氏体是:
铁 碳 合 金
铁碳合金
铁碳合金是以铁和碳为基本组元的合金,它是现代机械工业中应 用最广泛的金属材料。要合理地选择铁碳合金,就必须熟悉铁碳合 金的成分、组织和性能之间的关系。
1.1 铁碳合金的基本组织
铁碳合金中含有质量分数为0.10%~0.20%的杂质,称之为 工业纯铁。工业纯铁虽然塑性、导磁性良好,但强度较低,不适 宜制作机械零件。为了提高纯铁的强度、硬度,常在纯铁中加入 少量碳元素,可形成等五种基本组织。
谢谢观看!
K
727
P
727
6.69 0.0218
Fe3C的成分点 碳在α-Fe中的最大溶解度
S
727
0.77
共析点
Q 600(室温) 0.0057(0.0008) 600℃(或室温)时碳在α-Fe中的溶解度
铁碳合金分类
通常根据铁碳合金含碳量和室温组织的特点,由Fe—Fe3C相图中的P 点和E点将铁碳合金分为工业纯铁、钢及白口铸铁三类。
铁素体、奥氏体、渗碳体、珠光体、莱氏体
1.2 铁碳合金相图
表2-1 Fe—Fe3C相图中的特性点
符号 温度(℃) 含碳量(%)
说明
A
1538
0
纯铁的熔点
C
1148
4ห้องสมุดไป่ตู้30
共晶点
D
1227
6.69
渗碳体的熔点
E
1148
2.11
碳在γ-Fe中的最大溶解度
F
1148
6.69
渗碳体的成分点
G
912
0
Α-Fe与γ-Fe同素异构转变点
工业纯铁 是指P点以左的铁碳合金(含碳量小于0.0218%),室温组织为铁素 体+少量三次渗碳体。工业纯铁的性能特点是塑性韧性好,硬度和强度较 低。 钢 是指高温固态组织为单相固溶体的一类铁碳合金,相图中P点成分与E 点成分之间的铁碳合金(含碳量0.0218%~2.11%),具有良好的塑性, 适于锻造、轧制等压力加工,根据室温组织的不同又分为亚共析钢、共 析钢和过共析钢三种。 白口铸铁 是指E点成分以右(含碳量2.11%~6.69%)的铁碳合金。白口铸铁有 较低的熔点,流动性好,便于铸造,脆性大。根据室温组织的不同,白 口铸铁又分为亚共晶白口铸铁、共晶白口铸铁和过共晶白口铸铁三类。
1.3铁碳合金
▪ 铁碳合金:以铁为基体,有不
同碳含量的合金,称为铁碳合金。
铁碳合金是工业上应用最 广泛的合金。
第1页,共23页。
1.3.1 铁碳合金的基本组织
(1).铁碳合金中,固态时可形成
固溶体、化合物、机械混合 物
(2).铁碳合金的基本组织有铁 素体、奥氏体、渗碳体、珠光体 和莱氏体。
(3).纯铁:熔点1538℃,有同素
当冷却到4点 温度时,剩余傲视 体的w(C)减少至 0.77%,达到共 析成分,发生共析 反应,转变为珠光
第18页,共23页。
(4)共晶白口铸铁结晶过程 动画演示
L → Ld(A+Fe3C) → Ld(A+Fe3C+Fe3CⅡ) → L’d(P+ Fe3C+Fe3CⅡ)
当液态合金冷 却到1点以下温度 时,发生共晶反 应,转变为莱氏 体,随着温度的下 降,碳在澳氏体中 的溶解度不断下 降。由奥氏体中不 断析出渗碳体。
思考题
1.比较铁碳合金各种基本组织的晶体结构和力学性 能。
2.碳钢与铸铁在成分与组织上有哪些区别?
3.试分析W(C)分别为0.2%、0.77%、1.3%的铁碳合金自 高温缓慢冷却至室温的组织转变过程。
第23页,共23页。
返回目录
当冷却到2点 温度时,剩余液体 的w(C)减至 4.3%,达到共晶 成分,发生共晶反 应,转变为莱氏 体。
温度在2点和3 点之间时,莱氏体 中的奥氏体由于冷
第21页,共23页。
1.3.3 碳对铁碳合金组织和性能的影响
(1)当w(c)<0.9%时,随着含碳量的增加,钢的强度的
硬度不断提高,而塑性不断下降,这是由于钢中珠光体 的含量不断增多,铁素体的含量不断减少所致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含碳量:0~0.0218%(727 ℃)
B
0~0.0008%(室温) N J
D
温度范围:<912℃
912 ℃
E
C
F
G
力学性能:强度、硬度低;
K
塑性好。
PS 0.0218
工业纯铁——<0.02%C, 冷轧提高强度,得到冷轧板。
0.0008 Q
3、珠光体(P)——和Fe3C形成的机械混合物
相:+ Fe3C两种相组成
含碳量与力学性能的关系(P79)
由图可知: Wc≤1.0%时:随钢中Wc↑,则 其HB、σb↑,δ、ΨAk↓;
当 Wc>1.0%时:σb↓而HB↑。 为什么?
因钢中出现Fe3CⅡ网而导 致钢的σb ↓,但HB ↑
为保证工业用钢应具有 足够的σb 和一定的δ 、Ak , 故其碳含量一般都不超过
Wc1.3% ~1.4%。
强度≈230×F%+770×P% (MPa)
四、铁碳相图的应用
1、在铸造上的应用 2、在锻造上的应用 3、在热处理上的应用
第三节 碳钢及合金钢概述
一、钢中常存在的杂质元素及其影响 二、钢的分类、编号及应用
一、钢中常存在的杂质元素及其影响
1、Mn 脱氧;减轻S的影响;固溶强化。
2、Si 固溶强化
(3) 区
4个单相区 1条垂直线 7个双相区
铁碳合金中的相
⑴液相L 铁与碳的液溶体。 ⑵δ相 是碳在δ—Fe中的间隙固溶
体,呈体心立方晶格,在1394℃以上 δ 存在,1495℃时溶碳量为0.09%。
⑶α相 是碳在α—Fe中的间隙固溶
δ+L
δ+
L
γ
γ+L
L+Fe3C
体,呈体心立方晶格。其中碳的固溶
一、典型合金的平衡结晶过程及室温平衡组织
1、共析钢
L L→γ
γ→α+Fe3C
γ
室温组织:P 室温相:α+Fe3C
2、亚共析钢
γ→α+Fe3C
L L→δ
L→γ
γ
γ→α
室温组织:P+F 室温相:α+Fe3C
3、过共析钢
γ→α+Fe3C
L L→γ γ γ→ Fe3CⅡ
室温组织:P+Fe3CⅡ 室温相:α+Fe3C
渗碳体),根据其生成条件不同有条
α+Fe3C
Fe3C
状、网状、片状、粒状等形态,对铁 碳合金的力学性能有很大影响。
Fe
Wc(%)
6.69
2、铁碳相图中三种基本转变
包晶转变
匀
晶
转
变
共晶转变
共析转变
铁碳相图中三种基本的转变
➢在1495 ℃发生包晶转变
A
1495 ℃
1495℃
LB+H
γJ
H N
J
B
E
➢在1148℃发生共晶转变
组织:莱氏体或室温莱氏体,用符号L’d表示。 含碳量:4.3%(称共晶白口铸铁)
温度范围:<727℃
B
⇌ 1148℃
LC
Ld( E+Fe3C)
N
G
727 ℃+t s + Fe3CⅡ
727 ℃-t P 室温组织: L’d(P + Fe3CⅡ +Fe3C)
J
E
PS +Fe3C
D
F C 1148℃ Ld
K 727℃
P
Fe3C Ⅱ
T12钢退火组织 (4%硝酸酒精浸蚀)
3、白口铸铁
碳含量为2.11%~6.69%,白口铸铁(简称白口 铁)又可分为三类:亚共晶白口铁C%为2.11%~ 4.3%,共晶白口铁C%为4.3%,过共晶白口铁 C%为4.3%~6.69%。
共 晶
亚共晶白口铸铁 (含碳量2.11%~4.3%)
6、过共晶白口铁
L γ→ Fe3CⅠ
L→γ+Fe3C
γ→α+Fe3C 室温组织:L'd+Fe3CⅠ 即(P+Fe3CⅡ+Fe3C)+Fe3CⅠ 室温相:α+Fe3C
+L
+A A
L+ A
L L+ Fe3CⅠ
F F+A F+Fe3CⅢ F+P
A+Fe3CⅡ
A+Fe3CⅡ+Ld Fe3CⅠ+Ld
Fe3C
度室温时约为0.0008%,600℃时为
γ
0.0057%,在727℃时为0.0218%。其性
能特点是强度低、硬度低、塑性好
⑷γ相 是碳在γ—Fe中的间隙固溶
α+γ
γ+Fe3C
体,呈面心立方晶格。其中碳的固溶
度在1148℃时为2.11%。其性能特点是 α
强度较低,硬度不高,易于塑性变形
⑸Fe3C相 是一个金属化合物(又称
一、铁碳合金基本组元
⑴ Fe 铁是过渡族元素, 熔点为1538℃,密度是 7.87g/cm3。
⑵ Fe3C 是一种具有复杂 结构的间隙化合物,通常 称渗碳体。含碳量6.69%, 硬度很高,强度低,塑性 韧性很差。理论熔化温度 1227℃。是介稳定化合物, 条件适当时,会分解成单 质状态的石墨C 。
F 工业纯铁室温组织
2、碳钢
C%为0.0218%~2.11%,碳钢根据碳含量又可分为 三类:亚共析钢0.0218%~0.77%;共析钢0.77%; 过共析钢0.77%~2.11%。
共
析
工
钢
业
纯
铁 亚共析钢
过共析钢
亚共析钢 (C%为0.0218%~0.77%)
组织特征:P+F 随含C量增加, P量逐渐增加, F量逐 渐减少;形态从块状→断续网状。 性能特点:塑性、韧性好。
G
1148℃
LC
γE+Fe3C P S
➢ 在727℃发生共析转变
γS
727℃ P+Fe3C Fe
L
1227℃
D
C
F
1148℃
K
727 ℃
Fe3C
注意:共析转变与共晶转变的区别
共析转变:在一定温度下,一定成分的固相同时转变 成两种成分和晶体结构完全不同的新固相的过程。 共晶转变:在一定温度下,一定成分的液相同时转变 成两种成分和晶体结构完全不同的新固相的过程。
4、共晶白口铁
L
L→γ+Fe3C γ→ Fe3CⅡ
γ→α+Fe3C 室温组织:L'd 即 P+Fe3CⅡ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
γ→α+Fe3C
L L→γ L→γ+Fe3C γ→ Fe3CⅡ
室温组织:L'd+P+Fe3CⅡ 即(P+Fe3CⅡ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
组织:珠光体,用符号P表示
B
含碳量:0.77% (称为共析钢)N J
D F
温度范围:<727℃
G
EC
⇌727℃
S
P(P+Fe3C)
PS
K
力学性能:强度、硬度较高;
+Fe3C
塑性较好。 钢丝绳
Q 0.77
P
共析钢室温组织珠光体(P)
4、莱氏体(L’d)—P和Fe3C形成的机械混合物
相:+ Fe3C两种相。
T Fe3C Fe2C FeC
碳质量分数超过 6.69%的铁碳合金 脆性很大,没有使 用价值,所以有使用 意义并被深入研究 的只有Fe-Fe3C这一 部分。
Fe
C%
C
6.69%C
所研究的Fe-Fe3C相图的位置
固态铁的特性——同素异构转变
固态铁随温度的改变,由一种晶格转变为另一种晶格 的现象,称为同素异构转变。该特性是钢铁材料通过 热处理获得多种组织结构与性能的理论依据。
F
F
P
P PF
15钢
45钢
65钢
在显微分析中常以P与F的面积数量比来 估计亚共析钢的含碳量。
例如,一种未知钢号的碳钢(退火态),利用 金相法估算此钢的碳含量。
磨制好的金相试样,在显微镜下观察其组织发现: 组织中含有50%P和50%F,
钢中含碳量%=Vp×0.77%+VF×0.0008%
可忽略
即:C%=50%P×0.8%C=0.40% 此钢含碳量约为0.40%,即40钢。
3、S 热脆
4、P 冷脆
二、钢的分类、编号及应用
(一)钢的分类
低碳钢(Wc ≤ 0.25%) 按含碳量分 中碳钢(Wc 0.25 ~ 0.60%)
高碳钢(Wc ≥ 0.60%)
普通碳钢(Ws ≤ 0.055%,Wp ≤ 0.045%) 按质量分 优质碳钢(Ws ≤ 0.040%,Wp ≤ 0.040%)
δ-Fe 1394℃ γ-Fe 912℃ α-Fe
bcc
fcc
bcc
二、铁碳相图分析(相图结构,点线区,三种反应)
1、铁碳相图中主要的点、线、区 分析
L+
+
+
L
L+
L+ Fe3C
+ Fe3C
+ Fe3C
以相组成物表示的Fe-Fe3C相图
(1) 点
(见P69)
(2) 线
液相线 固相线 三条水平线 三条特征线
0.0218%<Wc<2.11%称为钢,2.11%<Wc < 6.69%称