7章习题解材料力学课后习题题解
材料力学第2版 课后习题答案 第7章 弯曲变形
250
−qx l⎞ ⎛ 9l 3 − 24lx 2 + 16 x 3 ) ⎜ 0 ≤ x ≤ ⎟ ( 384 EJ 2⎠ ⎝ − ql ⎛l ⎞ y2 = −l 3 + 17l 2 x − 24lx 2 + 8 x 3 ) ⎜ ≤ x ≤ l ⎟ ( 384 EJ ⎝2 ⎠
y1 =
41ql 4 ( x = 0.25l ) 1536 EJ 5ql 4 ⎛l⎞ y⎜ ⎟ = − 768EJ ⎝2⎠
习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI为常量。
7-1 (a) M( x) = M 0
∴ EJy '' = M 0 1 EJy ' = M 0 x + C EJy = M 0 x 2 + Cx + D 2 边界条件: x = 0 时 y = 0 ; y' = 0
代入上面方程可求得:C=D=0
(c)
l−x q0 l q0 1 3 ⎛l−x⎞ M ( x) = − q( x) ( l − x ) ⎜ ⎟ = − ( l − x) 2 6l ⎝ 8 ⎠ q 3 ∴ EJy '' = 0 ( l − x ) 6l q 4 EJy ' = − 0 ( l − x ) + C 24l q 5 EJy = 0 ( l − x ) + Cx + D 120l y = 0 ; y' = 0 边界条件: x = 0 时 q( x) =
)
(c)解:
q0 x l q x2 EJy ''' = 0 + C 2l q0 x3 '' EJy = + Cx + D 6l q x 4 Cx 2 EJy ' = 0 + + Dx + A 24l 2 q0 x5 Cx 3 Dx 2 ' EJy = + + + Ax + B 120l 6 2 ⎧y=0 ⎧y=0 边界条件: x = 0 ⎨ '' x = l ⎨ '' ⎩y = 0 ⎩y = 0 ql D=0 ∴C = − 0 6 7q l 3 A= 0 B=0 360 EJy '''' =
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=—2P,N2=P(e):N1= —50N,N2= -90N(f):N1=0.896P,N2=—0。
732P注(轴向拉伸为正,压缩为负)1—2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm.以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1= =35。
3Mpaσ2= =30。
4MPa∴σmax=35。
3Mpa1—3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1= =15。
4Mpa上端单螺孔截面:σ2==8。
72MPa上端双螺孔截面:σ3= =9.15Mpa∴σmax=15。
4Mpa1—4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB= =-47。
7MPaσBC==103。
5 MPa1—5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N。
钢链又两层钢板构成,如c所示。
每个链板厚t=4。
5mm,宽h=40mm,H=65mm,钉孔直径d=30mm。
试求链板的最大应力。
解:F=6PS1=h*t=40*4。
5=180mm2S2=(H-d)*t=(65-30)*4。
5=157.5mm2∴σmax==38.1MPa1—6:一长为30cm的钢杆,其受力情况如图所示。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 .
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
材料力学典型例题及解析7.应力应变状态典型习题解析
应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。
绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。
b = 60 mm ,h = 100 mm 。
解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。
则各点处的应力状态如图示。
2、梁截面惯性矩为点微体上既有正应力又有切应力。
解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。
材料力学性能学习题与解答[教材课后答案]
度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第7章 弯曲强度
[ ]
[]
0.5 x 0.4125
M(kN.m)
7
习题 7-10 图
解:画弯矩图如图所示: 对于梁:
M max = 0.5q M 0.5q σ max = max ≤ [σ ] , ≤ [σ ] W W [σ ]W = 160 ×106 × 49 ×10−6 = 15.68 ×103 N/m=15.68kN/m q≤ 0.5 0.5
A
B
W
a + Δa
W + ΔW
B
A
a图
b图
整理后得
Δa =
ΔW (l − a ) (W + ΔW )
此即为相邻跳水者跳水时,可动点 B的调节距离 Δa 与他们体重间的关系。 7- 14 利用弯曲内力的知识,说明为何将标准双杠的尺寸设计成 a=l/4。
9
习题 7-14 图
解:双杠使用时,可视为外伸梁。 其使用时受力点应考虑两种引起最大弯矩的情况。如图a、b所示。
[ ]+
[σ ]- =120 MPa。试校核梁的强度是否安全。
6
30 x 10 M(kN.m) C 截面
+ = σ max - σ max
40
习题 7-9 图
30 ×103 N ⋅ m × 96.4 ×10−3 m = 28.35 × 106 Pa=28.35 MPa 1.02 ×108 ×10−12 m 4 30 ×103 N ⋅ m ×153.6 ×10−3 m = = 45.17 ×106 Pa=45.17 MPa 1.02 ×108 × 10−12 m 4 40 ×103 N ⋅ m ×153.6 ×10−3 m = 60.24 ×106 Pa=60.24 MPa> [σ ] 8 −12 4 1.02 ×10 × 10 m 40 ×103 N ⋅ m × 96.4 × 10−3 m = = 37.8 × 106 Pa=37.8 MPa 8 −12 4 1.02 × 10 × 10 m
《材料力学》第7章-应力状态和强度理论-习题解
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。
材料力学课后习题答案
材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。
材料力学第六版答案第07章
习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+-3-1=6EJ B ql θ 4-1=8EJB y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++ 边界条件:0x = 时 0y = ;'0y = 代入上面方程可求得:4024q l C l -= 50120q l D l =()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=-⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤ 43412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
《材料力学》第七章课后习题参考答案
题目二
说明杆件在拉伸或压缩时,其 应力与应变的关系。
题目三
一矩形截面梁,长度为L,截面 积为A,弹性模量为E,泊松比 为v,求梁的临界截面转角。
题目四
一圆截面杆,直径为D,弹性模 量为E,泊松比为v,求杆的临 界截面转角。
答案
第一季度
第二季度
第三季度
第四季度
答案一
材料力学的研究对象是 固体,特别是金属和复 合材料等工程材料。其 基本假设包括连续性假 设、均匀性假设、各向 同性假设和小变形假设 。
解析四
圆截面杆的临界截面转角是指杆在受到扭矩作用 时发生弯曲变形的角度。通过弹性力学和材料力 学的知识,我们可以计算出这个角度的值。其中 ,D表示杆的直径,E表示杆的弹性模量,v表示 杆的泊松比。
03
习题三答案及解析
题目
• 题目:一矩形截面简支梁,其长度为L,截面高为h,宽度为b,且h/b=2,梁上作用的均布载荷q=100N/m,试求梁上最大 弯矩值Mmax。
解释了材料力学的基本假设,包括连续性假设、 均匀性假设、各向同性假设和线性弹性假设。这 些假设是材料力学中常用的基本概念,对于简化 复杂的实际问题、建立数学模型以及进行实验研 究具有重要的意义。
题目二解析
强调了材料力学在工程实践中的重要性,说明了 它为各种工程结构的设计、制造、使用和维护提 供了理论基础和实验依据,能够保证工程结构的 可靠性和安全性。这表明了材料力学在工程实践 中的实际应用价值。
题目四解析
解释了材料力学中的应力和应变概念,说明了应 力表示单位面积上的内力,应变表示材料在受力 过程中发生的变形程度。这些概念是材料力学中 的基本概念,对于理解和分析材料的力学行为具 有重要的意义。
THANK YOU
7章习题解材料力学课后习题题解
1 3 2 2 1 l 3 EIy2 qlx ql x q x C2 x D2 12 16 24 2
4
1 2 3 2 qlx ql x C1 4 8 1 3 EIy1 qlx 3 ql 2 x 2 C1 x D1 12 16 EIy1
M =3ql /8 A
2
q B C x
ql/2 y
x1 x2 l/2
(b)
l/2
1 3 2 M1 ( x) qlx ql EIy1 2 8 1 2 3 2 qlx ql x C1 EIy1 4 8 1 3 2 2 3 EIy1 qlx ql x C1 x D1 12 16
3
2
代入积分常数可得:
13ql C y(l ) 48EI
4
M =5ql /8
A
2
q
B x1 x2 l/2
(b)
ql/2
C
71ql yC y (l ) 384 EI
4
ql
l/2
补例:采用叠加法求梁截面C处的挠度yC和转角 。梁的抗弯 刚度EI为常数。 q ql/2 解:分为图示两种荷载 B 单独作用的情况 C A
3
A
yC
l/2
(b)
ቤተ መጻሕፍቲ ባይዱ
l/2
q
B C
A
l/2 l/2
θB
yB
y C1
ql/2
B
A
l/2 l/2
C
y C2
7.2(d)试用积分法求图示梁 C 截面处的挠度yC和转角θC 。 梁的抗弯刚度EI为常数。 q qa 解:支座反力如图, A B 本题应分3段建立 C 挠曲近似微分方程。 3qa/ 4 5qa/ 4 ( d ) 因此,写出3段弯矩 x1 x2 方程为:
材料力学全部习题解答
弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y
章习题参考答案材料力学课后习题题解_图文
2.37 图示销钉连接中,F=100kN ,销钉材料许用剪切应力 [τj]=60MPa,试确定销钉的直径d25kN;FBA=43.3kN。查型钢表 可得:ABC=6.928cm2,
FBC=25kN;FBA=43.3kN;ABC=6.928cm2, [σ]1=160MPa;AAB=100×50mm2 ;[σ]2=8MPa。
杆BC满足强度要求,但杆BA不满足强度要求。 将[FBA]带入(1)、(2)式中求得许用荷载[F]=46.2kN
2.25 图示结构中,横杆AB为刚性杆,斜杆CD为直径d=20mm 的圆杆,材料的许用应力[σ]=160MPa ,试求许用荷载[F]。
解:CD=1.25m, sinθ=0.75/1.25=0.6
2.25 图示结构中,横杆AB为刚性杆,斜杆CD为直径d=20mm 的圆杆,材料的许用应力[σ]=160MPa ,试求许用荷载[F]。
解:受力分析如图
d1=20mm,E1=200GPa; d2=25mm,E2=100GPa。
2.15 图示结构中,AB杆和AC杆均为圆截面钢杆,材料相同 。已知结点A无水平位移,试求两杆直径之比。 解:
由两杆变形的几何关系可得
2.20 图示结构中,杆①和杆②均为圆截面钢杆,直径分别 为d1=16mm,d2=20mm ,已知F=40kN ,刚材的许用应力 [σ]=160MPa,试分别校核二杆的强度。 解:受力分析如图
解:CD=1.25m, sinθ=0.75/1.25=0.6
d=20mm [σ]=160MPa
2.27 图示杆系中,木杆的长度a不变,其强度也足够高,但 钢杆与木杆的夹角α可以改变(悬挂点C点的位置可上、下 调整)。若欲使钢杆AC的用料最少,夹角α应多大? 解:
答 45o
家电公司研发部资料材料力学习题答案(七)
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
材料力学习题册答案-第7章-应力状态知识讲解
材料力学习题册答案-第7章-应力状态第七章应力状态强度理论一、判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。
(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。
(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。
(×) 原因:正应力一般不为零。
4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴上的一个点。
(×)原因:单向应力状态的应力圆不为一个点,而是一个圆。
三向等拉或等压倒是为一个点。
5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。
(×)原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。
(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。
(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。
(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。
(×)原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。
(×)原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。
A 最大面积B 最小面积C 最大应力D 最大内力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。
A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-应力状态和强度理论(圣才出品)
一、应力状态概述(见表7-1-1) 表7-1-1 应力状态概述主要内容
二、平面应力状态的应力分析·主应力(见表7-1-2)
1 / 66
圣才电子书
十万种考研考证电子书、题库视频学习平台
表7-1-2 主应力主要内容
2 / 66
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、空间应力状态的概念 对于受力物体内一点处的应力状态,最普遍的情况是所取单元体三对平面上都有正应力 和切应力,这种应力状态为一般的空间应力状态。在一般的空间应力状态中,有9个应力分 量,分别为正应力σx、σy、σz和切应力τxy、τyx、τxz、τzx、τyz、τzy,其中τxy=τyx、τxz=τzx、 τyz=τzy。 四、应力与应变间的关系(见表7-1-3)
τA=M2/Wp=16×78.6/(π×0.023)Pa=50MPa
σA=M1/Wz=32×39.3/(π×0.023)Pa=50MPa
A 点单元体如图 7-2-2(d)所示。
图 7-2-2(d)
7-2 有一拉伸试样,横截面为 40mm×5mm 的矩形。在与轴线成 α=45°角的面上 切应力 τ=150MPa 时,试样上将出现滑移线。试求试样所受的轴向拉力 F 的数值。
B
=
FS 2Iz
( h2 4
−
y2)
材料力学课后答案07d
F = 10 kN 时杆件的轴向变形量,以及使杆件屈服的荷载。
解:材料屈服的荷载:
Fu
=
1 4
πd 2σ s
=
1 4
× 3.14 ×102
×180
= 14137
N。
故荷载 F = 10 kN 作用时杆件仍处于弹性阶段。由图可知,
E
=
180 0.2 ×10−2
= 90
GPa 。
杆件轴向变形量
σ (MPa) 180
ε y = −νε x 。
q
250
400
题 7-7 图
面积改变量
∆A = A(ε x + ε y ) = Aε x (1 −ν ) 。
故有
ν
=1−
∆A Aε x
=1−
56 400 × 250 × 8 ×10−4
= 0.3 。
7-8 某种材料的试件的应力应变曲线如图。图中上方曲线对应于横坐标中上一排应变标
识,下方曲线对应于下一排应变标识,即低应变区。试确定这种材料的类型,并确定其
弹性模量 E,屈服极限σ s ,强度极限σ b 与伸长率 δ 。
σ (MPa)
500
σ (MPa)
500
400
400
300
300
200
200
100
100
ε (%)
ε (%)
0
5
10 15 20 25 30
0
5
10 15 20 25 30
E.获取许用应力的安全系数必定是大于 1 的;
F. 获取许用应力的安全系数的大小主要取决于构件的尺寸,尺寸越大的构件安全
系数就应越大。
7-4 某杆件横截面为宽 b = 30 mm 、高 h = 50 mm 的矩形。杆件中有一法线方向与杆 轴 线 成 30o 角 的 斜 截 面 。 斜截 面 上 作 用有 均 布 正 应力 σ = 30 MPa 和 均 布切 应 力 τ = 20 MPa 。求该斜截面上所有应力的合力的大小与方位。
材料力学(单辉祖)课后习题答案
2.求重量最轻的α值
FN1
=
F sinα
,FN2
=
Fctanα
5
由强度条件得
A1
=
[σ
F ]sinα
,A2
=
F [σ ]
ctanα
结构的总体积为
V
=
A1l1
+
A2l2
=
F [σ ]sinα
⋅
l cosα
+
Fl [σ]
ctanα
=
Fl [σ ]
(
2 sin2α
+ ctanα)
由
dV dα
=
0
得
3cos2α −1 = 0
=
0.090m 0.060m
= 1.5
R d
=
R b2
=
0.012m 0.060m
=
0.2
查圆角应力集中因素曲线,得
K 2 ≈ 1.74
故有
σ max
= K2σn2
=
K2F b2 δ
=
1.74 × 36 ×103 N 0.060 × 0.010m2
= 1.04 ×108 Pa
= 104MPa
3. 结论
2-18 .......................................................................................................................................................7
2-21 .......................................................................................................................................................8
刘鸿文《材料力学》(第6版)笔记和课后习题(含考研真题)详解(第7章)【圣才出品】
第7章应力和应变分析强度理论7.1复习笔记一、应力状态一点的应力状态:过一点不同方向面上应力的集合。
应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀分布;②任意一对平行平面上的应力相等。
主单元体是指各侧面上切应力均为零的单元体。
其中,单元体上切应力为零的面称为主平面,主平面上的正应力称为主应力。
说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直的主应力分别记为σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即σ1≥σ2≥σ3。
应力状态分类及实例(1)单向应力状态:也称为简单应力状态,三个主应力σ1、σ2、σ3中只有一个不等于零。
实例:简单的拉伸或压缩。
(2)平面(二向)应力状态:三个主应力σ1、σ2、σ3中有两个不等于零。
实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。
(3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力σ1、σ2、σ3,均不等于零。
实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。
二、二向应力状态分析1.解析法如图7-1-1(a)所示,一单元体abcd处于平面应力状态,采用截面法取左边部分单元体eaf为研究对象,如图7-1-1(b)所示。
图7-1-1(1)符号规定:由x轴转到外法线n,逆时针转向夹角α为正;正应力仍规定拉应力为正;切应力对单元体内任一点取矩,顺时针转向为正。
(2)应力计算①任意斜截面α上应力正应力:cos2sin222x y x y xy ασσσσσατα+-=+-切应力:sin 2cos 22x y xy ασστατα-=+②主应力主应力的大小2max 2min 22x y x y xy σσσσστσ+-⎛⎫⎫=±+⎬ ⎪⎭⎝⎭将σmax 、σmin 和0按大小顺序排列,分别记为σ1、σ2和σ3。
主平面方位角tan2α0=-2τxy /(σx -σy )约定|α0|<45°,即α0取值在±45°范围内,则确定主平面的规则为:当σx ≥σy 时,α0是σx 与σmax 之间的夹角;当σx <σy 时,α0是σx 与σmin 之间的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7ql 4 384
ql3 6EI
71ql 4 384
A
l/2
l/2
ql/2
B
C
y C2
l/2
10
C1
B
q
l 2
3
6EI
ql 3 48
C 2
1 ql3 2 2EI
ql 3 4EI
C
C1
C 2
13ql 4 48EI
q
B
A
ql/2
C
yC
l/2
l/2
y
M elx 6EI
1
x2 l2
2
7.2 试用积分法求图示 M =3ql2/8
q
各梁 C 截面处的挠度yC
A
B
C
和转角θC 。梁的抗弯
x
刚度EI为常数。
解:支座反力如图所示 ql/2
x1
分两段建立挠曲线近似
x2
l/2
l/2
微分方程并积分。
y
(b)
AB段:
EIy1
M el 3EI
max
y
l 2
M 16
el 2 EI
0,
M elx 6EI
1
3x2 l2
0
x 0
3l 3
ymax
y x 0
M el 2 9 3EI
3M el 2 27EI
y
M elx 6EI
1
3x2 l2
ql 2
qlx
1 2
qx 2
A
ql
EIy1
5 8
ql
2
x
1 2
qlx2
1 6
qx3
C1
EIy1
5 16
ql 2 x2
1 6
qlx3
1 24
qx4
C1x
D1
EIy2
M
2 ( x)
5 8
ql 2
qlx
ql 2
x
l 4
EIy2
5 8
ql 2 x
7.1 试用积分法求图示各梁的挠曲线方程、转角方程、最大
挠度和最大转角。梁的抗弯刚度EI为常数。
解:支座反力如图
Me
M (x) Me x
A
l
x
EIy M (x) M e x Me/l l
l (a)
B M e/l
EIy M e x2 C 2l
代入得:C Me l, D 0 6
解:分为图示两种荷载
q
ql/2
单独作用的情况
yC1
yB
l 22
C
yC
q
l
4
2
l
q
l
3
2
7ql 4
8EI 2 6EI 384
(b)
q
B
A
C
θB
y B y C1
yC 2
1 ql3 2 3EI
ql 3 6EI
l/2
yC
yC1
yC 2
(b)
q
B
C
A
θB
y B y C1
M1(x)
1 2
qlx
3 8
ql
2
EIy1
1 4
qlx2
3 8
ql 2
x
C1
EIy1
1 12
qlx3
3 16
ql 2 x2
C1x
D1
3
M =3ql2/8 A
q
B
C
x
ql/2
x1
x2
BC段:
l/2
l/2
y
(b)
EIy2
M
2
(
x)
1 2
qlx
3 8
ql
2
1 2
q
qlx3
3 16
ql 2
x2
C1x
D1
EIy2
1 4
qlx2
3 8
ql 2 x
1 6
q
x
l 2
3
C2
EIy2
1 12
qlx3
3 16
ql 2x2
1 24
q
x
l 2
4
C2x
D2
由连续性条件:
M =3ql2/8 A
q
B
C
x
ql/2 y
x1
x
l 2
2
EIy2
1 4
qlx2
3 8
ql 2 x
1 6
q
x
l 2
3
C2
EIy2
1 12
qlx3
3 16
ql 2 x2
1 24
q
x
l 2
4
C2x
D2
4
EIy1
1 4
qlx2
3 8
ql 2 x
C1
EIy1
1 12
5 16
ql 2 x2
1 6
qlx3
ql 12
x
l 4
3
C2 x
D2
代入积分常数可得:
C
y(l)
13ql 4 48EI
yC
y(l)
71ql 4 384EI
M =5ql2/8 q
A
x1
ql
x2
l/2
ql/2
B C
l/2 (b)
9
补例:采用叠加法求梁截面C处的挠度yC和转角 。梁的抗弯 刚度EI为常数。
M =5ql2/8 q
A
x1
ql
x2
l/2
ql/2
B C
l/2 (b)
解:支座反力如图所示,分两段建立挠曲线近似微分方程 并积分。
7
M1(x)
qlx
5 8
ql
2
1 2
qx2
M =5ql2/8
M
2
(
x)
qlx
5 8
ql
2
ql 2
x
l 4
EIy1
M
1(x)
5 8
l 2
4
C2x
D2
M =3ql2/8 A
q B
ql/2 y
x1
x2
l/2
l/2
(b)
代入边界条件:
C x 0, y 0, y 0 x C1 C2 0; D 1 D2 0
C
y2 (l)
7 48EI
ql 3
yC
y2 (l)
41 384EI
ql 4
6
7.2(b)试用积分法求图示梁 C 截面处的挠度yC和转角θC 。 梁的抗弯刚度EI为常数。
1 2
qlx2
ql 4
x
l 4
2
C2
EIy2
5 16
ql 2 x2
1 6
qlx3
ql 12
x
l 4
3
C2x
D2
q
B x1
ql/2
C
x2
l/2
l/2
(b)
由变形连续条件:
EIy1
l 2
EIy
l 2
EIy1
x2
l/2
l/2
(b)
l x 2 : y1 y2;
1 2 y1 y2
C1 C2; D1 D52
EIy2
1 4
qlx2
3 8
ql 2 x
1 6
q
x
l 2
3
C2
EIy2
1 12
qlx3
3 16
ql 2x2
1 24
q
x
EIy M e x3 Cx D 6l
边界条件:
x 0 : y 0; x l : y 0
y
M elx 6EI
1
3x2 l2
y
M elx 6EI
1
x2 l2