八年级下册数学期中考试知识点复习-教育文档
初二下数学期中考试知识点
二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (baba >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.四边形概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”.矩形菱形正方形3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆…… .注意:线段有两条对称轴.※5.梯形中常见的辅助线:※6.几个常见的面积等式和关于面积的真命题:相似形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:成比例线段、第四比例项、比例中项、黄金分割、相似三角形、相似比. 二 定理:※1.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.※2.“平行”出比例定理:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. ※3.“SSS ”出相似定理:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.※4.“HL ”出相似定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 三 常识:1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线. ※2.证线段成比例的题中,常用的分析方法有:(1)直接法:由所要求证的比例式出发,找对应的三角形(一对或两对),判断并证明找到的三角形相似,从而使比例式得证; (2)等线段代换法:由所证的比例式出发,但找不到对应的三角形,可利用图形中的相等线段对所证比例式中的线段(一条或几条)进行代换,再利用新的比例式找对应的三角形证相似或转化;(3)等比代换法(即中间比法):用上述的直接法或间接法都无法解决的证比例线段的问题,且题目中有两对或两对以上的相似形,可考虑用等比代换法,两对相似形的公共边或图形中的相等线段往往是中间比,即要证d c b a =时,可证f e b a =且f e d c =从而推出dc b a =;(4)线段分析法:利用相似形的对应边成比例列方程,并求线段长是常见题目,这类题目中如没有现成的比例式,可由题目中的已知线段和所求线段出发,找它们所围成的三角形,若能证相似,即可利用对应边成比例列方程求出线段长. 3.相似形有传递性;即: ∵Δ1∽Δ2 Δ2∽Δ3∴Δ1∽Δ3。
2023年初二下册数学期中复习重点考点梳理
初二下册数学期中复习重点考点梳理初二下册数学期中复习:重点考点整理(二次根式)1、二次根式定义形如式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数〔含有,且有意义〕。
①被开方数可以是数,也可以是单项式、多项式、分式等代数式;②推断时肯定要注意不要化简,肯定要有意义。
2、最简二次根式假设二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
①根号下无分母,分母中无根号;②被开方数中没有能开方的因数或因式。
知识点3 二次根式的性质〔1〕非负性√a 〔a≥0〕是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到.〔2〕〔√a〕^2=a 〔a≥0〕注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或〔3〕非负代数式写成注意:〔1〕字母不肯定是正数.〔2〕能开得尽方的因式移到根号外时,必须用它的算术平方根替代.知识点4 最简二次根式和同类二次根式〔1〕最简二次根式:☆最简二次根式的定义:①被开方数是整数,因式是整式②被开方数中不含能开得尽方的数或因式,分母中不含根号☆同类二次根式〔可合并根式〕:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5 二次根式计算——分母有理化〔1〕分母有理化定义:把分母中的根号化去,叫做分母有理化。
〔2〕有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用来确定,如下,分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如以下式子,互为有理化因式〔3〕分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6 二次根式计算——二次根式的乘除〔1〕积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。
八年级数学下册期中复习知识点
八年级数学下册期中复习知识点一、选择题1.下列图案中,是中心对称图形的是()A.B.C.D.2.平行四边形的一条边长为8,则它的两条对角线可以是()A.6和12 B.6和10 C.6和8 D.6和63.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为()A.15°B.22.5°C.30°D.45°4.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=05.如图,▱ABCD的周长为22m,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为()A.8cm B.9cm C.10cm D.11cm6.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.下列调查中,适宜采用普查方式的是()A.一批电池的使用寿命B.全班同学的身高情况C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家8.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( ) A .20B .300C .500D .8009.下面调查方式中,合适的是( )A .试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B .了解一批袋装食品是否含有防腐剂,选择普查方式C .为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .调查某新型防火材料的防火性能,采用普查的方式10.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙,3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( ) A .3B .2C .1D .1-二、填空题11.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.12.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).13.要使代数式5x -有意义,字母x 必须满足的条件是_____. 14.48与最简二次根式23a -是同类二次根式,则a =_____.15.如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.16.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____. 17.如图,AB ∥CD ,AB =7,CD =3,M 、N 分别是AC 和BD 的中点,则MN 的长度_____.18.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.19.若点()23,在反比例函数ky x=的图象上,则k 的值为________. 20.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.三、解答题21.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人? 22.解方程:x 21x 1x-=-. 23.如图,在四边形ABCD 中,AB ∥CD ,AB =AD ,对角线AC 、BD 交于点O ,AC 平分∠BAD .求证:四边形ABCD 为菱形.24.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?25.已知关于x 的一元二次方程x 2+(2m ﹣1)x+m 2=0有两个实数根x 1和x 2. (1)求实数m 的取值范围; (2)当x 12﹣x 22=0时,求m 的值. 26.阅读下列材料:已知:实数x 、y 满足22320.25x xy x x +=++(0.75)x ≠-,求y 的最大值. 解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题:已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.27.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题根据中心对称图形的概念求解.【详解】A选项是中心对称图形,故本选项符合题意;B选项是轴对称图形,故本选项不合题意;C选项是轴对称图形,故本选项不合题意;D选项是轴对称图形,故本选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.2.A解析:A【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OB与OC的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC.A、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A.【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.3.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.4.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.5.D解析:D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,AO=CO,可得AD+CD=11cm,由线段垂直平分线的性质可得AE=CE,即可求△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AO=CO,又∵EO⊥AC,∴AE=CE,∵▱ABCD的周长为22cm,∴2(AD+CD)=22cm∴AD+CD=11cm∴△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm故选:D.【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.6.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A项是轴对称图形,不是中心对称图形;B项是中心对称图形,不是轴对称图形;C项是中心对称图形,不是轴对称图形;D项是中心对称图形,也是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.7.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A.调查一批电池的使用寿命适合抽样调查;B.调查全班同学的身高情况适合普查;C.调查一批食品中防腐剂的含量适合抽样调查;D.调查全市中小学生最喜爱的数学家适合抽样调查;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.C解析:C【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,⨯=次,故选C.所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.9.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B、了解一批袋装食品是否含有防腐剂,适合抽样调查;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D、调査某新型防火材料的防火性能,适合抽样调查.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.C解析:C 【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值. 【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根,∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定, ∴<1.8a 且0a >. 则a=1. 故答案选:C. 【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.二、填空题11.0或-2 【分析】根据(ab≠0),可以得到a 和b 的关系,从而可以求得所求式子的值. 【详解】解:∵(ab≠0), ∴,∴(a2+b2)2=4a2b2, ∴(a2﹣b2)2=0, ∴a2=b2解析:0或-2 【分析】 根据2222114a b a b +=+(ab ≠0),可以得到a 和b 的关系,从而可以求得所求式子的值. 【详解】解:∵2222114a b a b +=+(ab ≠0), ∴2222224b a a b a b+=+, ∴(a 2+b 2)2=4a 2b 2, ∴(a 2﹣b 2)2=0, ∴a 2=b 2, ∴a =±b ,经检验:a b =±符合题意,当a =b 时,2019202020192020110,b a a b ⎛⎫⎛⎫-=-= ⎪⎪⎝⎭⎝⎭当a =﹣b 时,()()2019202020192020112,b a a b ⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭故答案为:0或﹣2.【点睛】本题考查的是代数式的值,同时考查了因式分解的应用,类解分式方程的方法,掌握以上知识是解题是关键.12.①②③⑤ 【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可. 【详解】∵四边形ABCD 是平行四边形,AB =AD , ∴四边形ABCD 是菱形, 又∵AC=BD , ∴四边形ABCD 是正方解析:①②③⑤ 【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可. 【详解】∵四边形ABCD 是平行四边形,AB =AD , ∴四边形ABCD 是菱形, 又∵AC =BD ,∴四边形ABCD 是正方形,①正确; ∵四边形ABCD 是平行四边形,AB ⊥AD , ∴四边形ABCD 是矩形, 又∵AC ⊥BD ,∴四边形ABCD 是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.13.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】x5∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.14.3【分析】首先化简二次根式,再根据同类二次根式定义可得2a﹣3=3,再解即可.【详解】,∵与最简二次根式是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主解析:3【分析】2a﹣3=3,再解即可.【详解】==,是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主要考查了同类二次根式,关键是掌握把二次根式化为最简二次根式后被开方数相同的二次根式称为同类二次根式.15.105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度解析:105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度数,再根据平角定义即可求得∠DEF的度数.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE 为等边三角形,∴AE=BE=AB ,∠EAB=60°,∴AE=AD ,∠EAD=∠BAD ﹣∠BAE=30°,∴∠AED=∠ADE=12(180°﹣30°)=75°, ∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点睛】 本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.16.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.【分析】连接并延长DM 交AB 于E ,证明△AME≌△CMD,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【分析】先过点O 作BG 的平行线,过点O′作AB 的平行线,两平行线交于点H ,构造直角三角形,再根据正方形的性质得出OH 和O′H 的长,再利用勾股定理即可求【详解】过点O作BG的平行线,过点O解析:5【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB长为3,CE长为1,点O和点O′为正方形中心,∴OH=12×(3+1)=2,O′H=12×(3-1)=12×2=1,∴在直角三角形OHO′中:222+15【点睛】本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.19.6【详解】解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:620.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 三、解答题21.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.详见解析.【分析】先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.【详解】证明:∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD .∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.24.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.25.(1)m≤14;(2)m=14.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x12-x22=0得x1+x2=0或x1-x2=0;当x1+x2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m的值.【详解】解:(1)由题意有△=(2m-1)2-4m2≥0,解得m≤14,即实数m的取值范围是m≤14;(2)由两根关系,得根x1+x2=-(2m-1),x1•x2=m2,由x12-x22=0得(x1+x2)(x1-x2)=0,若x1+x2=0,即-(2m-1)=0,解得m=12,∵12>14,∴m=12不合题意,舍去,若x1-x2=0,即x1=x2∴△=0,由(1)知m=14,故当x12-x22=0时,m=14.【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.26.2316【分析】 类比阅读材料给出的方法,分类探讨得出函数的最小值即可.【详解】解:将原等式转化成关于x 的方程,得:2(3)(21)(2)0y x y x y -+-+-=①,若3y =,代入①得15x =-, ∵15x ≠-, ∴3y ≠,因此①必为一元二次方程.∵3a y =-,21b y =-,2c y =+,∴224(21)4(3)(2)0b ac y y y ∆=-=----≥, 解得:2316y ≥且3y ≠. ∴y 的最小值为2316. 【点睛】 本题考查了根的判别式的运用,把函数转化为关于x 的方程,根据系数的取值范围,结合根的判别式,分类探讨得出答案即可.27.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒, ∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒, 而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒, DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=, ①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
八年级数学下册期中复习知识点
八年级数学下册期中复习知识点一、选择题1.如图,点E,F,G,H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A.不是平行四边形B.不是中心对称图形C.一定是中心对称图形D.当AC=BD时,它为矩形2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个3.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.124.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱5.如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在的直线折叠得到△AFE,延长AF交CD于点G,已知CG=2,DG=1,则BC的长是()A.32B.26C.25D.236.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=07.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体8.如图,函数kyx=-与1y kx=+(0k≠)在同一平面直角坐标系中的图像大致()A.B.C.D.9.如图所示,在矩形ABCD中,E为AD上一点,EF CE⊥交AB于点F,若2DE=,矩形ABCD的周长为16,且CE EF=,求AE的长( )A.2B.3C.4D.610.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形二、填空题11.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).12.如图,点D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE= .13.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.14.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.15.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)16.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.17.x 千克橘子糖、y 千克椰子糖、z 千克榴莲糖混合成“什锦糖”.已知这三种糖的单价分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x 、y 、z 的代数式表示)18.若正方形的对角线长为2,则该正方形的边长为_____.19.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.20.▱ABCD 的周长是32cm ,∠ABC 的平分线交AD 所在直线于点E ,且AE :ED =3:2,则AB 的长为_____.三、解答题21.在矩形ABCD 中,AB =3,BC =4,点E 为BC 延长线上一点,且BD =BE ,连接DE ,Q 为DE 的中点,有一动点P 从B 点出发,沿BC 以每秒1个单位的速度向E 点运动,运动时间为t 秒.(1)如图1,连接DP 、PQ ,则S △DPQ = (用含t 的式子表示);(2)如图2,M 、N 分别为AD 、AB 的中点,当t 为何值时,四边形MNPQ 为平行四边形?请说明理由;(3)如图3,连接CQ ,AQ ,试判断AQ 、CQ 的位置关系并加以证明.22.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.23.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.24.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)25.解方程:x 21x 1x-=-. 26.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.27.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =;(2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先连接AC ,BD ,根据EF =HG =12AC ,EH =FG =12BD ,可得四边形EFGH 是平行四边形,当AC ⊥BD 时,∠EFG=90°,此时四边形EFGH 是矩形;当AC=BD 时,EF=FG=GH=HE ,此时四边形EFGH 是菱形,据此进行判断即可.【详解】连接AC ,BD ,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确;第4个,既是轴对称图形,也是中心对称图形,故本选项正确.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.3.C解析:C【分析】由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD 是矩形,∴AC =BD ,OB =OD ,OC =OA ,∠ABC =90°∴OC =OD ,∴四边形CODE 是菱形∵AB =4,BC =35AC ∴=∴OC =52∴四边形CODE 的周长=4×52=10 故选:C .【点睛】本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.4.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A 、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B 、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C 、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D 、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D .5.B解析:B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt △EGF ≌Rt △EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴∠C =90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC =AD 22AG DG -2251-=6.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键. 6.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、x 2﹣x (x +3)=0,化简后为﹣3x =0,不是关于x 的一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0,当a =0时,不是关于x 的一元二次方程,故此选项不合题意;C 、x 2﹣2x ﹣3=0是关于x 的一元二次方程,故此选项符合题意;D 、x 2﹣2y ﹣1=0含有2个未知数,不是关于x 的一元二次方程,故此选项不合题意; 故选:C .【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A 、每个学生的身高是个体,故A 正确;B 、本次调查是抽样调查,故B 错误;C 、样本容量是500,故C 错误;D 、八年级10000名学生的身高是总体,故D 错误;故选:A .【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当k 0<时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x=-的图象分布在一、三象限,B 选项正确,故选:B .【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 9.B解析:B【分析】易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度.【详解】∵四边形ABCD 为矩形,∴∠A=∠D=90°,∵EF ⊥CE ,∴∠CEF=90°,∴∠CED+∠AEF=90°,∵∠CED+∠DCE=90°,∴∠DCE=∠AEF ,在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DCE(AAS),∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2,∴2AE=6,∴AE=3;故选:B .【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.10.A解析:A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A 、对角线互相垂直的平行四边形是菱形,此项正确B 、两组对边分别相等的四边形是平行四边形,此项错误C 、对角线相等的平行四边形是矩形,此项错误D 、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.12.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.14.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数. 【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.15.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 16.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC 中,点D ,E 分别为BC ,AC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE ,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.17.【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:;故答案为:.【点睛】本题考查列代数式,解题的关键是读懂题意.解析:303240 x y zx y z++++【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:303240x y zx y z++++;故答案为:303240x y zx y z++++.【点睛】本题考查列代数式,解题的关键是读懂题意.18.【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt解析:【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt△ADC中,∵AD2+CD2=AC2即x2+x2=(2)2解得:x=1,(x=﹣1舍去)所以该正方形的边长为1故答案为:1.【点睛】本题考查正方形的性质,一元二次方程的应用和勾股定理的应用,根据题意列出方程求解是解题的关键.19.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.20.6cm或12cm.【分析】证△ABE是等腰三角形,分“点E在线段AD上” 和“点E在AD的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E在线段AD上,如图1,∵四边解析:6cm或12cm.【分析】证△ABE是等腰三角形,分“点E在线段AD上” 和“点E在AD的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E在线段AD上,如图1,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:5,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×38=6(cm).②点E在AD的延长线上,如图2,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:1,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×34=12(cm);故答案为:6cm或12cm.【点睛】本题考查了平行四边形与角平分线线的综合应用,熟知以上知识点及应用是解题的关键.三、解答题21.(1)15344t-;(2)当t=52时,四边形MNQP为平行四边形,证明见解析;(3)AQ⊥CQ,证明见解析.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=12(S△BED﹣S△BDP)可求解;(2)当t=52时,可得BP=52=12BE,由中位线定理可得MN∥BD,MN=12BD=5,PQ∥BD,PQ=12BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【详解】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD22BC CD+5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=12S△DPE,∴S△DPQ=12(S△BED﹣S△BDP)=11135t3222⎛⎫⨯⨯-⨯⨯⎪⎝⎭=15344t-.故答案为:15344t-.(2)当t=52时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=12BD=52,∵t=52时,∴BP=52=12BE,且点Q是DE的中点,∴PQ∥BD,PQ=12BD=52,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.22.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF ,∴∠FPN+∠PFE=90°,即AP ⊥EF ,故AP=EF ,且AP ⊥EF .(3)题(1)(2)的结论仍然成立;如右图,延长AB 交PF 于H ,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.23.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317,44x x +==. 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=3174+,x2=3174-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.24.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.25.2x .【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人). 故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.27.(1)详见解析;(2)详见解析;(3)20【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.【详解】(1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴= //AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥CF AG ∴⊥ 又点D 是AC 的中点12DF AC ∴= BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=, ①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
苏科版八年级数学下册期中复习知识点大全doc
苏科版八年级数学下册期中复习知识点大全doc一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.将下列分式中x ,y (xy ≠0)的值都扩大为原来的2倍后,分式的值一定不变的是( )A .312x y +B .232x yC .232x xyD .3232x y3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个4.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC 的度数为( )A .35°B .40°C .45°D .60°5.下列调查中,适合采用普查的是( ) A .了解一批电视机的使用寿命 B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率6.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100° 7.下列成语故事中所描述的事件为必然发生事件的是( )A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔8.如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 平行于AB 的次数是( )A .2B .3C .4D .59.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .32B .26C .25D .2310.下列调查中,适合普查方式的是( ) A .调查某市初中生的睡眠情况 B .调查某班级学生的身高情况 C .调查南京秦淮河的水质情况D .调查某品牌钢笔的使用寿命11.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙,3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( ) A .3B .2C .1D .1-二、填空题13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.14.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.15.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.16.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。
八年级下册数学期中考试知识点复习
八年级下册数学期中考试知识点复习第一章证明(二)一. 等腰三角形1. 性质:等边对等角2. 判定:等角对等边3. 推论:“三线合一”4.等边三角形的性质及判定定理例1、已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A.30°B.45°C.36°D.72°图1例2、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°已知等腰三角形一角,求其他两角的情况。
注意:等边三角形与轴对称、中心对称的关系。
二.直角三角形(含30°的直角三角形的边的性质)※1. 勾股定理及其逆定理※2. 命题与逆命题※3. 直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)三. 线段的垂直平分线※1. 线段垂直平分线的性质及判定※2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.例1、如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= , = .△BDC的周长C△BDC第3题四. 角平分线※1. 角平分线的性质及判定定理※2. 三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.例1、如图,ABC ∆中,DE A AC AB ,,ο40=∠=是腰AB 的垂直平分线,求DBC ∠的度数。
平移与旋转轴对称图形的关系例1、如图6-2-13,在Rt △ABC 中,∠ACB =90°,AC =BC=1,将»BD,则图中Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为阴影部分的面积是__________.第二章 一元一次不等式和一元一次不等式组一. 不等关系准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质注意:有且仅当不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
人教版八年级下册数学期中考试重点知识复习提纲
人教版八年级下册期中考试重点知识复习提纲八年级下册第十六章二次根式2. 最简二次根式必须同时满足下列条件:(1)被开方数中不含开方开得尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式。
3. 同类二次根式二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4. 二次根式的性质5. 二次根式的运算(1)因式的外移和内移如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,·变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后,再移到根号里面。
(2)二次根式的加减法先把二次根式化成最简二次根式,再合并同类二次根式(3)二次根式的乘除法二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式。
用字母表示为:(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。
第十七章勾股定理1. 勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
【应用】(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2. 勾股定理逆定理如果三角形三边长a、b、c 满足a2+b2=c2,那么这个三角形是直角三角形。
【应用】勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
注意:定理中a、b、c 及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a、b、c满足a2+c2=b2,那么以a、b、c为三边的三角形是直角三角形,但是b为斜边。
3. 勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,a、b、c为正整数时,称a、b、c为一组勾股数。
②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。
八年级数学下册期中复习知识点
八年级数学下册期中复习知识点一、选择题1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.302.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C 的对应点为点F,若BE=6cm,则CD=( )A.4cm B.6cm C.8cm D.10cm3.下列调查中,适宜采用普查方式的是()A.对全国中学生使用手机情况的调查B.对五一节期间来花果山游览的游客的满意度调查C.环保部门对长江水域水质情况的调查D.对本校某班学生阅读课外书籍情况的调查4.平行四边形的一条边长为8,则它的两条对角线可以是()A.6和12 B.6和10 C.6和8 D.6和65.下列图标中,是中心对称图形的是()A.B.C.D.6.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱7.如果a=32,b=3﹣2,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b8.如图,▱ABCD的周长为22m,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为()A.8cm B.9cm C.10cm D.11cm9.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形10.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .403911.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( )A .2000B .200C .20D .212.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184SB .20194SC .20204SD .20214S二、填空题13.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.14.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.15.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.16.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.17.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.18.已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于_____.19.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体V的反比例函数,其图像如图所示.则其函数解析式为_________.体积()3m20.如图,在 ABCD中,若∠A=2∠B,则∠D=________°.21.如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=___°.22.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.23.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若 6 cm AB =,8 cm BC =则AEF 的周长=______cm .24.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题25.如图,在ABCD 中,点O 为对角线BD 的中点,过点O 的直线EP 分别交AD ,BC 于E ,F 两点,连接BE ,DF .(1)求证:四边形BFDE 为平行四边形;(2)当∠DOE = °时,四边形BFDE 为菱形?26.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均在BD 上),折痕分别为BH 、DG .(1)求证:△BHE ≌△DGF ;(2)若AB =6cm ,BC =8cm ,求线段FG 的长.27.解下列方程:(1)9633x x =+- ; (2)241111x x x -+=-+ . 28.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.29.如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.30.如图,在▱ABCD 中,BE=DF .求证:AE=CF .31.解方程:224124x x x +-=-- 32.化简求值:221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中31x =- 33.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD 中,若∠A =∠C =90°,则四边形ABCD 是“准矩形”;如图②,在四边形ABCD 中,若AB =AD ,BC =DC ,则四边形ABCD 是“准菱形”.(1)如图,在边长为1的正方形网格中,A 、B 、C 在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.34.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.35.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?36.阅读下列材料:已知:实数x、y满足22320.25x xyx x+=++(0.75)x≠-,求y的最大值.解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题: 已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】 试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.2.A解析:A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF ,∴四边形ECDF 是正方形,∴DC=EC=BC-BE ,∵四边形ABCD 是矩形,∴BC=AD=10,∴DC=10-6=4(cm ).故选A.3.D解析:D【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对全国中学生使用手机情况的调查适合抽样调查;B.对五一节期间来花果山游览的游客的满意度调查适合抽样调查;C.环保部门对长江水域水质情况的调查适合抽样调查;D.对本校某班学生阅读课外书籍情况的调查适合普查;故选:D.【点睛】本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.4.A解析:A【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OB与OC的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC.A、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A.【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.5.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.6.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.7.A解析:A【分析】先利用分母有理化得到a2),从而得到a与b的关系.【详解】2),∵a而b2,∴a=﹣b,即a+b=0.故选:A.【点睛】﹣2是解答本题的关键.8.D解析:D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,AO=CO,可得AD+CD=11cm,由线段垂直平分线的性质可得AE=CE,即可求△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC ,AO =CO ,又∵EO ⊥AC ,∴AE =CE ,∵▱ABCD 的周长为22cm ,∴2(AD+CD )=22cm∴AD+CD =11cm∴△CDE 的周长=CE+DE+CD =AE+DE+CD =AD+CD =11cm故选:D .【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.9.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.10.A解析:A【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x =中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x …2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x =, 得:1y 、2y 、3y …2020y 202040392019.52y ==, 故选:A .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 11.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B .【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.12.B解析:B【分析】观察图形发现第2个图形中的阴影部分的面积为S 4,第3个阴影部分的面积为16S ,依此类推,得到第n 个图形的阴影部分的面积即可.【详解】解:观察图形发现:第2个图形中的阴影部分的面积为S 4, 第3个图形中的阴影部分的面积为16S , …第n 个图形中的阴影部分的面积为14n S-,故第2020个图中阴影部分的面积可以用含S 的代数式表示为20194S .故选:B .【点睛】 本题考查了图形的变化类问题,解题的关键是仔细的观察图形,找到规律用通项公式表示出来.二、填空题13.20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个, 则有1010x +=1030, 解得,x =20, 经检验x =20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.14.∠B=90°.【分析】根据旋转的性质得AB=CD ,∠BAC=∠DCA ,则AB ∥CD ,得到四边形ABCD 为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD ,∠BAC=∠DCA ,则AB ∥CD ,得到四边形ABCD 为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,∴AB=CD ,∠BAC=∠DCA ,∴AB ∥CD ,∴四边形ABCD 为平行四边形,当∠B=90°时,平行四边形ABCD 为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.15.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1a b -(本), 故答案为1a b -. 【点睛】 本题考查的是列代数式,掌握列代数式的方法是解题的关键.16.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.17..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠20.解析:0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.18.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b−3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.19.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p 的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k =1.6×60=96,∴.故答案为: 解析:96P V=【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p 的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.21.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.22.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质. 23.9【解析】【分析】【详解】在中, ,∵点、分别是、 的中点,∴是的中位线, , , ,∴的周长,故答案为:9.解析:9【解析】【分析】【详解】在Rt ABC 中,10AC cm == ,∵点E 、F 分别是AO 、AD 的中点,∴EF 是AOD △的中位线,12141452E F O D B D A C ====,11422AF AD BC cm === ,115242AE AO AC === , ∴AEF 的周长9AE AF EF cm =++=,故答案为:9.24.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB==6,∵四边形ABCD 是菱形,∴AC ⊥BD ,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB=244=6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题25.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.26.(1)见解析(2)3cm【分析】1)先根据矩形的性质得出∠ABD=∠BDC ,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH ≌△DFG ;(2)先根据勾股定理得出BD 的长,进而得出BF 的长,由图形翻折变换的性质得出CG=FG ,设FG=x ,则BG=8﹣x ,再利用勾股定理即可求出x 的值.【详解】(1)如图,ABCD 四边形是矩形,AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.DGF DGC ∆∆是翻折而成的,3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,BHE DGF ∴∆∆≌.(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==, 22=10BD BC CD ∴+=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即()22284x x -=+,3x ∴=,即3FG =.【点睛】本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理27.(1)35x =;(2)原方程无解 【分析】(1)分式方程两边同乘以(3+x )(3﹣x )去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x +1)(x ﹣1)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x )(3﹣x ),得9(3﹣x )=6(3+x ),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴x=﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.28.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.29.(1)详见解析;(2)24【分析】(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;(2)将菱形ADCF的面积转换成△ABC的面积,再用S△ABC的面积=12AB•AC,结合条件可求得答案.【详解】(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS )∴AF =DB∵D 是BC 的中点∴BD=CD=AF∴四边形ADCF 是平行四边形∵∠BAC =90°,∴AD =CD =12BC ∴四边形ADCF 是菱形;(2)解:设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8∴S 菱形ADCF =CD•h =12BC•h =S △ABC =12AB•AC =168242⨯⨯=. 【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.30.证明见解析.【解析】试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论.试题解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADE=∠CBF ,∵BE=DF ,∴DE=BF ,在△ADE 和△CBF 中, {AD CBADE CBF DE BF=∠=∠=,∴△ADE ≌△CBF (SAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定与性质.31.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.32.11x+;33【分析】通分合并同类项,再约分,代入求值.【详解】原式222111(1)x xxx x x-=⋅=+-+代入得原式33311==-+.【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(1)见解析;(2)①②③④;(3)①证明见解析;②23【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=22BD=222=1,∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC×sin30°=1,CD=AC×cos30°3∴菱形ACEF的面积=12×13×4=3【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.34.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.35.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭化简得2281920x x -+=,解得112x =,216x = 又8860%x -<⨯12.8x ∴≤ 16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.36.2316。
八年级数学下册期中复习知识点
八年级数学下册期中复习知识点一、选择题1.满足下列条件的四边形,不一定是平行四边形的是( ) A .两组对边分别平行 B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等2.“明天会下雨”这是一个( ) A .必然事件 B .不可能事件 C .随机事件D .以上说法都不对 3.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =4.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是() A .必然事件 B .不可能事件C .随机事件D .必然事件或不可能事件5.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD ,则四边形ABCD 面积的最大值是( )A .15B .16C .19D .206.已知关于x 的分式方程22x mx +-=3的解是5,则m 的值为( ) A .3 B .﹣2 C .﹣1D .87.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形8.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28°9.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( ) A .1000 B .1500 C .2000 D .2500 10.在□ ABCD 中,∠A =4∠D ,则∠C 的大小是( )A .36°B .45°C .120°D .144°11.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000B .200C .20D .212.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .二、填空题13.在平面直角坐标系中,点P (5,﹣3)关于原点对称的点的坐标是___.14.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,∠OBC =30°,则∠OCD =_____°.15.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.16.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是_____.17.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB=AD,且AC=BD;②AB⊥AD,且AC⊥BD;③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD;⑤OB=OC,且OB⊥OC.其中正确的是_____(填写序号).18.如图,在菱形ABCD中,若AC=24 cm,BD=10 cm,则菱形ABCD的高为________cm.19.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是 .20.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D、B作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.21.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为_____.22.若关于x的分式方程233x ax x+--=2a无解,则a的值为_____.23.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于___.24.如图,在□ABCD中,AB=7,AD=11,DE平分∠ADC,则BE=__.三、解答题25.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.26.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.27.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.28.已知关于x 的方程x 2﹣(k +3)x +3k =0. (1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根.29.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x +-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________. 30.(发现)(1)如图1,在▱ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F .求证:△AOE ≌△COF ;(探究)(2)如图2,在菱形ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F ,若AC =4,BD =8,求四边形ABFE 的面积. (应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹) 31.解方程(1)22(1)1x x +=+ (2)22310x x ++=(配方法)32.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.33.已知关于x 的一元二次方程x 2+(2m ﹣1)x+m 2=0有两个实数根x 1和x 2. (1)求实数m 的取值范围; (2)当x 12﹣x 22=0时,求m 的值.34.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?35.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验: 第一步:如图1在一张纸上画了一个平角∠AOB ;第二步:如图2在平角∠AOB 内画一条射线,沿着射线将平角∠AOB 裁开;第三步:如图3将∠AO'C'放在∠COB 内部,使两边分别与OB 、OC 相交,且O'A =O'C'; 第四步:连接OO', 测量∠COB 度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB . 你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB 的关系是 ;(2)线段O'A 与O'C'的关系是 . 请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知: 求证: 证明:36.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.2.C解析:C【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得.解:“明天会下雨”这是一个随机事件, 故选:C . 【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.D解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.4.C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.5.A解析:A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选A.6.C【分析】将x =5代入分式方程中进行求解即可.【详解】把x =5代入关于x 的分式方程22x m x +-=3得:25352m ⨯+=-, 解得:m =﹣1,故选:C .【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解. 7.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.8.D解析:D【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.解:∵E 、F 、G 分别是AB 、CD 、AC 的中点,∴EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,∴//EG BC ,//FG AD ,且22AD BC EG FG ===, ∴10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒,∴124EGF FGC EGC ∠=∠+∠=︒,又∵EG FG =, ∴()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒. 故本题答案为:D .【点睛】 本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角.9.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次, 故选:B .【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.10.D解析:D【解析】【分析】由四边形ABCD 是平行四边形可知∠A +∠D =180°,结合∠A =4∠D ,可求出∠D 的值,从而可求出∠C 的大小.【详解】∵四边形ABCD 是平行四边形,∴∠A +∠D =180°,∵∠A =4∠D ,∴4∠D +∠D =180°,∴∠D =36°,∴∠C =180°-36°=144°.故选D.本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.11.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B.【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.12.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大二、填空题13.(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).解析:(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).14.60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°解析:60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°,∴∠OCD=90°﹣30°=60°,故答案为:60.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.15.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒16.【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =A 解析:245【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO ,∴BC 5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24, ∴AE =24245BC =cm . 故答案为:245 cm . 【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.17.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC=BD ,∴四边形ABCD 是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 18.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.19.6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,解析:6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.20.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.21.【分析】已知S△PAB=S矩形ABCD ,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE 的长就是所求的最短距离.【详解【分析】已知S△PAB=13S矩形ABCD,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.22.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a =1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值.23.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH的长.【详解】∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH 的长.【详解】∵菱形ABCD的周长等于24,∴AB=244=6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.24.4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AB=7,AD=11,解析:4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AB=7,AD=11,∴CD=AB=7,BC=AD=11,∴BE=BC-CE=11-7=4.三、解答题25.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.26.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,1=0.25,解得x=3.+1x答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.27.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】---,根据关于原点对称的点解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)--,描点连线,的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.28.(1)k =1;(2)证明见解析.【分析】(1)把x =1代入方程,即可求得k 的值;(2)求出根的判别式是非负数即可.【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0,1﹣k ﹣3+3k =0解得k =1;(2)证明:1,(3),3a b k c k ==-+=24b ac ∆=-∴ △=(k +3)2﹣4•3k =(k ﹣3)2≥0,所以不论k 取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.29.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数(2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解.【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b=-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0.故答案为:43x ≥或x <0. 【点睛】 本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.30.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S 菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8. (3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l 即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.31.(1)11x =-,212x =-;(2)11x =-,212x =- 【分析】(1)移项,提取公因式1x +,利用因式分解法求解即可;(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.【详解】(1)22(1)1x x +=+, 移项得:22(1)10()x x -++=,提取公因式1x +得:121)()(0x x ++=,可得:10x +=或210x +=, 解得:12112x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即231()416x +=, 开方得:3144x +=±, 解得:12112x x =-=-,. 【点睛】本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.32.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人).故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.33.(1)m≤14;(2)m=14.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x12-x22=0得x1+x2=0或x1-x2=0;当x1+x2=0时,运用两根关系可以得到-2m-1=0或方。
苏科版八年级数学下册期中复习知识点
苏科版八年级数学下册期中复习知识点一、选择题1.“明天会下雨”这是一个( )A .必然事件B .不可能事件C .随机事件D .以上说法都不对 2.一个事件的概率不可能是( )A .32B .1C .23D .03.已知12x <≤ ,则23(2)x x -+-的值为( )A .2 x - 5B .—2C .5 - 2 xD .2 4.用配方法解一元二次方程2620x x --=,以下正确的是( )A .2(3)2x -=B .2(3)11x -=C .2(3)11x +=D .2(3)2x += 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( )A .1000B .1500C .2000D .25007.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( )A .12aB . 23aC .34aD .45a 8.若分式5x x -的值为0,则( ) A .x =0 B .x =5 C .x ≠0 D .x ≠59.反比例函数3y x =-,下列说法不正确的是( ) A .图象经过点(1,-3) B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大 10.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是()A.2000 B.200 C.20 D.211.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差12.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.14.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是_______.16.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.⨯的结果是_____.17.计算32618.若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是_____.19.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体V的反比例函数,其图像如图所示.则其函数解析式为_________.体积()3m20.如图,在菱形ABCD 中,8AB =,60B ∠=︒,点G 是边CD 的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF ED +的最小值是_________.21.如图,在 ABCD 中,若∠A =2∠B ,则∠D =________°.22.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .23.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为_____.24.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.三、解答题25.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组 49.5~59.559.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计频数 2 a 20 16 4 50 频率 0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a = ,b = ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.26.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?27.解下列方程:(1)9633x x=+- ; (2)241111x x x -+=-+ . 28.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?29.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.30.如图,在平面直角坐标系xOy 中,边长为1个单位长度的正方形ABCD 的边BC 平行于x 轴,点A 、C 分别在直线OM 、ON 上,点A 的坐标为(3,3),矩形EFGH 的顶点E 、G也分别在射线OM 、ON 上,且FG 平行于x 轴,EF :FG =3:5.(1)点B 的坐标为 ,直线ON 对应的函数表达式为 ;(2)当EF =3时,求H 点的坐标;(3)若三角形OEG 的面积为s 1,矩形EFGH 的面积为s 2,试问s 1:s 2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.31.如图,在平面直角坐标系中,点O 为坐标原点,AB // OC,点B,C 的坐标分别为(15,8),(21,0),动点M 从点A 沿A→B 以每秒1个单位的速度运动;动点N 从点C 沿C→O 以每秒2个单位的速度运动.M,N 同时出发,设运动时间为t 秒.(1)在t =3时,M 点坐标 ,N 点坐标 ;(2)当t 为何值时,四边形OAMN 是矩形?(3)运动过程中,四边形MNCB 能否为菱形?若能,求出t 的值;若不能,说明理由.32.计算:(1)2354535⨯; (2)()22360,0x yxy x y ≥≥; (3)()48274153-+÷. 33.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD 中,若∠A =∠C =90°,则四边形ABCD 是“准矩形”;如图②,在四边形ABCD 中,若AB =AD ,BC =DC ,则四边形ABCD 是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.34.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.35.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?36.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且 ,连接PD,O为AC中点.PB PE(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得.【详解】解:“明天会下雨”这是一个随机事件,故选:C.【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.2.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A 项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C 、D 选项的概率都有可能, ∵32>1, ∴A 不成立.故选:A .【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.3.C解析:C【分析】结合1 < x ≤ 2 ,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1 < x ≤ 2 ,所以3x -+32x x -+-= 5 - 2 x.故选择C .【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.4.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.【详解】解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=.故选:B.【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键. 5.B解析:B【分析】根据轴对称图形和中心对称图形的概念求解即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,又是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,不是中心对称图形,故此选项错误.故答案为B .【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.6.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次, 故选:B .【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.7.A解析:A【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案.【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD ,∴△EBK ∽△ABM ,△AEN ∽△ABM , ∴EBK ABM S S ∆∆=14,S △AEN =S △EBK ,∴EKMNABM S S ∆四边形=12, 同理可得:KFPMBCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGHABCD S S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a ,故选:A .【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.8.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】 解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0,解得:x =5.故选:B .【点睛】 本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.9.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.10.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B .【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.11.C解析:C【解析】【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;12.B解析:B【解析】设方程的两根为x 1,x 2,根据题意得x 1+x 2=0,所以a 2-2a=0,解得a=0或a=2,当a=2时,方程化为x 2+1=0,△=-4<0,故a=2舍去,所以a 的值为0.故选B .二、填空题13.5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.14.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.15.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠20.解析:0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.17.【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】=2=2×3=6.故答案为:6.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.解析:【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】===.故答案为:.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.18.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为:k<﹣1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.19.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴.故答案为:解析:96 PV =【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20.【分析】由题意,点D与点C关于AG对称,连接EC,FC,再利用垂线段最短求值即可【详解】解:连接,,如图在菱形中,,∴是边长为8的等边三角形∵是的中点∴∴是的垂直平分线∴∵,解析:43【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接EC ,FC ,如图在菱形ABCD 中,60B ∠=︒,8AB =∴ACD ∆是边长为8的等边三角形∵G 是CD 的中点∴AG CD ⊥∴AG 是CD 的垂直平分线∴EC ED =∵EF EC FC +≥,CF AD ⊥时,CF 最小∴EF ED +的最小值是等边ACD ∆的高:38432=故答案为:3【点睛】本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型. 21.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B 且是邻角,故可得∠B 的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B 且是邻角,故可得∠B 的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B ,即可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.22.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.23.①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;解析:①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为16;②面朝上的点数大于2的有4种结果,其概率为42 63 =;③面朝上的点数是奇数的有3种结果,其概率为31 62 =;∵112 623 <<,∴按从小到大的顺序排列为:①③②;故答案为:①③②.【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.24.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.三、解答题25.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.26.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE =∠GCF , GC =GC∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.27.(1)35x =;(2)原方程无解 【分析】(1)分式方程两边同乘以(3+x )(3﹣x )去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x +1)(x ﹣1)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x )(3﹣x ),得9(3﹣x )=6(3+x ),解这个方程,得x =35, 检验:当x =35时,(3+x )(3﹣x )≠0, ∴x =35是原方程的解; (2)方程两边同乘(x +1)(x ﹣1),得4+x 2﹣1=(x ﹣1)2,解这个方程,得x =﹣1,检验:当x =﹣1时,(x +1)(x ﹣1)=0,∴x =﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.28.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.29.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.30.(1)(3,2),12y x =;(2)H (16,11);(3)4415,证明见解析. 【分析】(1)先根据A 的坐标为(3,3),正方形ABCD 的边长为1求出C 点的坐标,利用待定系数法即可求出直线ON 的解析式.(2)点E 在直线OM 上,设点E 的坐标为(e ,e ),由题意F (e ,e ﹣3),G (e +5,e ﹣3),由点G 在直线ON 上,可得e ﹣3=12(e +5),解得e =11即可解决问题. (3)如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),由点G 在直线y =12x 上,可得a ﹣3m =12(a +5m ),推出a =11m ,推出E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),求出S 1,S 2即可解决问题.【详解】解:(1)∵A 的坐标为(3,3),∴直线OM 的解析式为y =x ,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a﹣3m=12(a+5m),∴a=11m,∴E(11m,11m),H(16m,11m),F(11m,8m),G(16m,8m)J(11m,0),K (16m,0),∴S△OEG=S△OEJ+S梯形EJKG﹣S△OKG=12×11m×11m+12(8m+11m)•5m•12﹣12×16m×8m=44m2,S矩形EFGH=EF•FG=15m2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.31.(1)(3,8);(15,0);(2)t =7;(3)能,t =5.【分析】(1)根据点B 、C 的坐标求出AB 、OA 、OC,然后根据路程=速度×时间求出AM 、CN,再求出ON,然后写出点M 、N 的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM =ON 时,四边形OAMN 是矩形,然后列出方程求解即可;(3)先求出四边形MNCB 是平行四边形的t 值,并求出CN 的长度,然后过点B 作BC ⊥OC 于D,得到四边形OABD 是矩形,根据矩形的对边相等可得OD =AB,BD =OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B (15,8),C (21,0),∴AB =15,OA =8,OC =21,当t =3时,AM =1×3=3,CN =2×3=6,∴ON =OC-CN =21﹣6=15,∴点M (3,8),N (15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN 是矩形时,AM =ON,∴t =21-2t,解得t =7秒,故t =7秒时,四边形OAMN 是矩形;(3)存在t =5秒时,四边形MNCB 能否为菱形.理由如下:四边形MNCB 是平行四边形时,BM =CN,∴15-t =2t,解得:t =5秒,此时CN =5×2=10,过点B 作BD ⊥OC 于D,则四边形OABD 是矩形,∴OD =AB =15,BD =OA =8,CD =OC-OD =21-15=6,在Rt △BCD 中,BC=10,∴BC =CN,。
八年级数学下册期中复习知识点
八年级数学下册期中复习知识点一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°4.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定5.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为()A.15°B.22.5°C.30°D.45°6.下列调查中,适宜采用普查方式的是()A.一批电池的使用寿命B.全班同学的身高情况C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家7.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差8.如图所示,在矩形ABCD中,E为AD上一点,EF CE⊥交AB于点F,若2DE=,矩形ABCD的周长为16,且CE EF=,求AE的长( )A .2B .3C .4D .6 9.关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或010.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .二、填空题11.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.12.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.13.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.14.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有_____个.15.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.16.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.17.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.18.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.19.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.20.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.三、解答题21.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.22.如图1,矩形的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(6,8).D 是AB 边上一点(不与点A 、B 重合),将△BCD 沿直线CD 翻折,使点B 落在点E 处. (1)求直线AC 所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.24.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?25.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.26.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.27.如图1,在正方形ABCD 中,点E 是边AB 上的一个动点(点E 与点A ,B 不重合)连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE ;(2)如图2,连接EF 、CF ,若CE =8,求四边形BEFC 的面积;(3)如图3,当点E 运动到AB 中点时,连接DG ,求证:DC =DG .28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=12BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.4.D解析:D由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.5.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.6.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A.调查一批电池的使用寿命适合抽样调查;B.调查全班同学的身高情况适合普查;C.调查一批食品中防腐剂的含量适合抽样调查;D.调查全市中小学生最喜爱的数学家适合抽样调查;故选:B.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C解析:C【解析】【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;8.B解析:B【分析】易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度.【详解】∵四边形ABCD 为矩形,∴∠A=∠D=90°,∵EF ⊥CE ,∴∠CEF=90°,∴∠CED+∠AEF=90°,∵∠CED+∠DCE=90°,∴∠DCE=∠AEF ,在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DCE(AAS),∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2,∴2AE=6,∴AE=3;故选:B .本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.9.B解析:B【解析】设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2-2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=-4<0,故a=2舍去,所以a的值为0.故选B.10.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大二、填空题11.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×20=10(cm2).故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.12.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒13.3【解析】【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.14.3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点睛】本题考查解析:3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形, 故答案为:3.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.18【分析】根据直角三角形的性质得到DF =8,根据EF =1,得到DE =9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,解析:18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.17.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】 解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16, 所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.18.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 19.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角 解析:103或5 【分析】 当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB ′E=∠B=90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,所以点A 、B ′、C 共线,即ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB=EB ′,AB=AB ′=5,可计算出CB ′=8,设BE=a ,则EB ′=a ,CE=12-a ,然后在Rt △CEB ′中运用勾股定理可计算出a .②当点B ′落在AD 边上时,如图2所示.此时ABEB ′为正方形.【详解】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示,连结AC ,在Rt △ABC 中,AB=5,BC=12,∴=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+, 解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5,故答案为103或5.【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.20.【分析】已知S△PAB=S矩形ABCD ,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE 的长就是所求的最短距离.【详解41【分析】已知S△PAB=13S矩形ABCD,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE22225441+=+=AB AE即PA+PB4141【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.三、解答题21.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC ,设对角线交于点O .∵四边形ABCD 是平行四边形,∴OA=OD ,OB=OC .∵AE=DF ,OA ﹣AE=OD ﹣DF ,∴OE=OF .∴四边形BEDF 是平行四边形.22.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】 (1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.见解析【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明.【详解】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠ABC =∠ADC ,∴∠ADF =∠DFC ,ED ∥BF ,∵∠ABE =∠CDF ,∴∠ABC -∠ABE =∠ADC -∠CDF ,即∠EBC =∠ADF ,∴∠EBC =∠DFC ,∴EB ∥DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.24.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m ÷每批粒数n 即可得到发芽的频率m n; (2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n 很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.25.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN =90°,∴∠EFB =90°,即DF ⊥ON ;(3)过D 点作DG 垂直于OM ,交点为G ,∵四边形ABCD 是正方形,∴AD=AB ,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO ,又∵∠MON=90°,DG ⊥OM ,∴△ADG ≌△ABO ,∴DM=AO ,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF ⊥ON ,又∵∠MON=90°,DG ⊥OM ,∴四边形OFDM 是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE =DE ,∴△BEF 的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.26.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】 解:原式=()()232211x x x x x +-+⋅++-()()12211x x x x x -+=⋅++- 11x =+ 当x =4时,原式=15. 【点睛】 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.27.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8=32;(3)证明:如图3,过点D 作DH ⊥CE 于H ,设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE =225BE BC a +=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG =25CB EB a CE ⋅=, ∴CG =22455BC BG a -=, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°,∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BG =25a , ∴GH =CG ﹣CH =25a =CH , ∵CH =GH ,DH ⊥CE ,∴CD =GD ;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t≤时,由题意有832382tt at-⎛⎫+=+⎪⎝⎭,解得3/a cm s=,②当83t≥时,由题意有382382tt at-⎛⎫-=+⎪⎝⎭,解得3/a cm s=,∴综上所述,存在3/a cm s=时,BPQ∆恒为以BP为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
八年级下册数学期中考试知识点复习
书山有路勤为径;学海无涯苦作舟
八年级下册数学期中考试知识点复习
【摘要】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。
在此为您提供八年级下册数学期中考试知识点复习
”,希望给您学习带来帮助,使您学习更上一层楼!
八年级下册数学期中考试知识点复习
一. 不等关系
※1. 一般地,用符号小于”(或小于等于”),大于”(或≥”)连接的式子叫做不等式.
※2. 准确翻译”不等式,正确理解非负数”、不小于”等数学术语.
非负数:大于等于0(≥0) 、0 和正数、不小于0
非正数:小于等于0(小于等于0) 、0 和负数、不大于0
二. 不等式的基本性质
※1. 掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,
即:如果a 大于b,那幺a+c 大于b+c,a-c 大于b-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,
即如果a 大于b,并且c 大于0,那幺ac 大于bc,.
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,
即:如果a 大于b,并且c 小于0,那幺ac
※2. 比较大小:(a、b 分别表示两个实数或整式)
一般地:
如果a 大于b,那幺a-b 是正数;反过来,如果a-b 是正数,那幺a 大于b;今天的努力是为了明天的幸福。
苏科版八年级数学下册期中复习知识点
苏科版八年级数学下册期中复习知识点一、选择题1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定2.下列图标中,是中心对称图形的是()A.B.C.D.3.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为()A.15°B.22.5°C.30°D.45°4.下列式子为最简二次根式的是()A.22a bB.2a C.12a D.1 25.在□ABCD中,∠A=4∠D,则∠C的大小是()A.36°B.45°C.120°D.144°6.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20 B.25 C.30 D.1008.在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直 D.一组邻边相等,对角线互相平分9.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A .485 cmB .245cmC .125cmD .105cm 10.要反应一周气温的变化情况,宜采用( )A .统计表B .条形统计图C .扇形统计图D .折线统计图二、填空题11.若菱形的两条对角线分别为2和3,则此菱形的面积是 .12.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.13.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.14.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.15.若关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,则k 的取值范围是_____.16.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____.17.在函数y =1x x +中,自变量x 的取值范围是_____. 18.如图是某市连续5天的天气情况,最大的日温差是________℃.19.若正方形的对角线长为2,则该正方形的边长为_____.20.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题21.用适当的方法解方程:(1)x 2﹣4x ﹣5=0;(2)y (y ﹣7)=14﹣2y ;(3)2x 2﹣3x ﹣1=0.22.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.23.计算:242933x x x x x ----- 24.如图,反比例函数k y x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数k y x=的图像上另一点(,2)C n -.(1)求反比例函数k y x =与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0k ax b x +-≥的解集为_________ (4)若()11,D x y 在k y x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.25.如图,在ABC 中,∠BAC =90°,DE 是ABC 的中位线,AF 是ABC 的中线.求证DE =AF .证法1:∵DE 是ABC 的中位线,∴DE = .∵AF 是ABC 的中线,∠BAC =90°,∴AF = ,∴DE =AF .请把证法1补充完整,连接EF ,DF ,试用不同的方法证明DE =AF证法2:26.如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F .(1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由;(3)△BEF 的周长为 .27.(方法回顾)(1)如图1,过正方形ABCD 的顶点A 作一条直l 交边BC 于点P ,BE ⊥AP 于点E ,DF ⊥AP 于点F ,若DF =2.5,BE =1,则EF = .(问题解决)(2)如图2,菱形ABCD 的边长为1.5,过点A 作一条直线l 交边BC 于点P ,且∠DAP =90°,点F 是AP 上一点,且∠BAD +∠AFD =180°,过点B 作BE ⊥AB ,与直线l 交于点E ,若EF =1,求BE 的长.(思维拓展)(3)如图3,在正方形ABCD 中,点P 在AD 所在直线上的上方,AP =2,连接PB ,PD ,若△PAD 的面积与△PAB 的面积之差为m (m >0),则PB 2﹣PD 2的值为 .(用含m 的式子表示)28.解方程(1)22(1)1x x +=+(2)22310x x ++=(配方法)【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.2.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.3.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方4.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C=D=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.D解析:D【解析】【分析】由四边形ABCD是平行四边形可知∠A+∠D=180°,结合∠A=4∠D,可求出∠D的值,从而可求出∠C的大小.【详解】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,∵∠A=4∠D,∴4∠D +∠D=180°,∴∠D=36°,∴∠C=180°-36°=144°.故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.6.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A 、是中心对称图形,也是轴对称图形,故此选项符合题意;B 、不是中心对称图形,是轴对称图形,故此选项不合题意;C 、是中心对称图形,不是轴对称图形,故此选项不合题意;D 、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A .【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.7.B解析:B【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数.【详解】解:∵容量是50的,某一组的频率是0.5,∴样本数据在该组的频数0.55025⨯== .故答案为B .【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.8.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A 选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B 选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C 选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D 选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形; 故选C .9.B解析:B【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===,设菱形的高为h,则菱形的面积12AB h AC BD =⋅=⋅,即15862h=⨯⨯,解得24.5 h=即菱形的高为245cm.故选B.10.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D.【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.二、填空题11.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.12.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴△OEG≌△OFH,四边形OMAH解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴△OEG ≌△OFH ,四边形OMAH ≌四边形ONCG ,四边形OEDM ≌四边形OFBN , ∴阴影部分的面积=12S 菱形ABCD =12×20=10(cm 2). 故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键. 13.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为. 解析:1a b 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为1a b -(本), 故答案为1a b -. 【点睛】 本题考查的是列代数式,掌握列代数式的方法是解题的关键.14.5.【分析】由四边形ABCD 是正方形,可得AB=BC ,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C 的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD 是正方形,可得AB=BC ,∠CBD=45°,又由折叠的性质可得:A′B=AB ,根据等边对等角与三角形内角和定理,即可求得∠BA′C 的度数.【详解】解:因为四边形ABCD 是正方形,所以AB=BC ,∠CBD=45°,根据折叠的性质可得:A′B=AB ,所以A′B=BC ,所以∠BA′C=∠BCA′=1801804522CBD -∠-==67.5°. 故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用. 15.k <﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x 的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k <﹣1【分析】根据判别式的意义得到△=(2k +4)2﹣4k 2<0,然后解不等式即可.【详解】∵关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,∴△=(2k +4)2﹣4k 2<0,解得k <﹣1.故答案为:k <﹣1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.17.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.18.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.19.【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt解析:【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt△ADC中,∵AD2+CD2=AC2即x2+x2=(2)2解得:x=1,(x=﹣1舍去)所以该正方形的边长为1故答案为:1.【点睛】本题考查正方形的性质,一元二次方程的应用和勾股定理的应用,根据题意列出方程求解是解题的关键.20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH的长.【详解】∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB =244=6, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∵H 为AB 边中点,∴在Rt △AOB 中,OH 为斜边上的中线,∴OH =12AB =3. 故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12x x == 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 1=34,x 2=34.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.证明见解析【分析】连接AE 、CF ,证明四边形AECF 为平行四边形即可得到AC 、EF 互相平分.【详解】解:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD ﹦BC ,又∵DF ﹦BE ,∴AF ﹦CE ,又∵AF ∥CE ,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.23.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】 解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.24.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数(2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0.【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.25.2BC ,2BC ,证明见解析 【分析】 证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论;证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.【详解】证法1:∵DE 是△ABC 的中位线,∴DE=12BC , ∵AF 是△ABC 的中线,∠BAC=90°, ∴AF=12BC , ∴DE=AF ,证法2:连接DF 、EF ,∵DE 是△ABC 的中位线,AF 是△ABC 的中线,∴DF 、EF 是△ABC 的中位线,∴DF ∥AC ,EF ∥AB ,∴四边形ADFE 是平行四边形,∵∠BAC=90°,∴四边形ADFE 是矩形,∴DE=AF .故答案为:12BC ;12BC . 【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.26.(1)见解析;(2)DF ⊥ON ,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE ≌△DCE 即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO ,又∵∠MON=90°,DG ⊥OM ,∴△ADG ≌△ABO ,∴DM=AO ,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF ⊥ON ,又∵∠MON=90°,DG ⊥OM ,∴四边形OFDM 是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE =DE ,∴△BEF 的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.27.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△, ∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.28.(1)11x =-,212x =-;(2)11x =-,212x =- 【分析】(1)移项,提取公因式1x +,利用因式分解法求解即可;(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.【详解】(1)22(1)1x x +=+, 移项得:22(1)10()x x -++=,提取公因式1x +得:121)()(0x x ++=,可得:10x +=或210x +=, 解得:12112x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即231()416x +=, 开方得:3144x +=±, 解得:12112x x =-=-,. 【点睛】 本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.。
苏科版八年级数学下册期中复习知识点
苏科版八年级数学下册期中复习知识点一、选择题1.下面的图形中,是中心对称图形的是()A.B.C.D.2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组3.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等4.“明天会下雨”这是一个()A.必然事件B.不可能事件C.随机事件D.以上说法都不对5.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD 面积的最大值是()A.15B.16C.19D.206.如果a=32,b=3﹣2,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b7.若顺次连接四边形ABCD各边的中点得到一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.下列事件为必然事件的是()A.射击一次,中靶B.12人中至少有2人的生日在同一个月C.画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上9.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.10.在四边形中,能判定这个四边形是正方形的条件是()A .对角线相等,对边平行且相等B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分二、填空题11.不透明的袋子里装有3只相同的小球,给它们分别标上序号1、2、3后搅匀.事件“从中任意摸出1只小球,序号为4”是_____事件(填“必然”、“不可能”或“随机”).12.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.13.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.14.在一次数学测试中 ,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.15.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值=___.16.要使代数式5x -有意义,字母x 必须满足的条件是_____.17.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”)18.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.19.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.20.如图,已知22AB =,C 为线段AB 上的一个动点,分别以AC ,CB 为边在AB 的同侧作菱形ACED 和菱形CBGF ,点C ,E ,F 在一条直线上,120D ∠=︒,P 、Q 分别是对角线AE ,BF 的中点,当点C 在线段AB 上移动时,线段PQ 的最小值为________.三、解答题21.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.22.如图,在平面直角坐标系xOy 中,边长为1个单位长度的正方形ABCD 的边BC 平行于x 轴,点A 、C 分别在直线OM 、ON 上,点A 的坐标为(3,3),矩形EFGH 的顶点E 、G 也分别在射线OM 、ON 上,且FG 平行于x 轴,EF :FG =3:5.(1)点B 的坐标为 ,直线ON 对应的函数表达式为 ;(2)当EF =3时,求H 点的坐标;(3)若三角形OEG 的面积为s 1,矩形EFGH 的面积为s 2,试问s 1:s 2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.23.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.24.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.25.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.26.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD 的边长为1.5,过点A 作一条直线l 交边BC 于点P ,且∠DAP =90°,点F 是AP 上一点,且∠BAD +∠AFD =180°,过点B 作BE ⊥AB ,与直线l 交于点E ,若EF =1,求BE 的长.(思维拓展)(3)如图3,在正方形ABCD 中,点P 在AD 所在直线上的上方,AP =2,连接PB ,PD ,若△PAD 的面积与△PAB 的面积之差为m (m >0),则PB 2﹣PD 2的值为 .(用含m 的式子表示)27.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.28.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中心对称图形与轴对称图形的概念依次分析即可.【详解】解:A 、B 、C 只是轴对称图形,D 既是轴对称图形又是中心对称图形,故选D.【点睛】本题考查的是中心对称图形与轴对称图形,解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.C解析:C【解析】如图,(1)∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形;(2)∵AB ∥CD ,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD ,∴∠BAD+∠ABC=180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形;(3)∵在四边形ABCD 中,AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形;(4)∵在四边形ABCD 中,AB ∥CD ,AD =BC ,∴四边形ABCD 可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD 是平行四边形的有3组.故选C.3.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.4.C解析:C【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得.【详解】解:“明天会下雨”这是一个随机事件,故选:C.【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.5.A解析:A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选A.6.A解析:A【分析】先利用分母有理化得到a32),从而得到a与b的关系.【详解】∵a32+3(32)(32)+-32),而b32,∴a=﹣b,即a+b=0.故选:A.【点睛】本题考查了分母有理化,找出分母有理化因式3﹣2是解答本题的关键.7.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.8.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A .射击一次,中靶是随机事件;B .12人中至少有2人的生日在同一个月是随机事件;C .画一个三角形,其内角和是180°是必然事件;D .掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C .【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.10.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.二、填空题11.不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点解析:不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点睛】本题考查了事件发生的可能性.一定不可能发生的事件是不可能事件;一定会发生的事件是必然事件;有可能发生,也有可能不发生的事件是随机事件.12.90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而解析:90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.13.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒14.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率15.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解解析:【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为5【点睛】本题考查轴对称-最短路线问题;菱形的性质.16.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】5x∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.必然根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是解析:必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是必然事件,故答案为:必然.【点睛】本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.18.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.19.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.20.【分析】连接QC、PC,先证明∠PCQ=90°,设AC=,则BC=,PC=,CQ=(),构建二次函数,利用二次函数的性质即可解决问题.【详解】连接PC、CQ.∵四边形ACED,四边形CB解析:6 2【分析】连接QC、PC,先证明∠PCQ=90°,设AC=2a,则BC=222a-,PC=a,CQ=3(2a-),构建二次函数,利用二次函数的性质即可解决问题.【详解】连接PC、CQ.∵四边形ACED,四边形CBGF是菱形,∠D=120°,∴∠ACE=120°,∠FCB=60°,∵P,Q分别是对角线AE,BF的中点,∴∠ECP=∠ACP=12∠ACE=60°,∠FCQ=∠BCQ=12∠BCF=30°, ∴∠PCQ=90°, 设AC=2a ,则BC=222a -,PC=12AC=a ,CQ=BC cos30⋅︒=3(2a -), ∴()2222232332442PQ PC QC a a a ⎛⎫⎡⎤=+=+-=-+ ⎪ ⎪⎣⎦⎝⎭, ∴当324a =时,线段PQ 有最小值,最小值为3622=. 故答案为:6. 【点睛】 本题考查了菱形的性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题21.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC ,设对角线交于点O .∵四边形ABCD 是平行四边形,∴OA=OD ,OB=OC .∵AE=DF ,OA ﹣AE=OD ﹣DF ,∴OE=OF .∴四边形BEDF 是平行四边形.22.(1)(3,2),12y x =;(2)H (16,11);(3)4415,证明见解析. 【分析】 (1)先根据A 的坐标为(3,3),正方形ABCD 的边长为1求出C 点的坐标,利用待定系数法即可求出直线ON 的解析式.(2)点E 在直线OM 上,设点E 的坐标为(e ,e ),由题意F (e ,e ﹣3),G (e +5,e ﹣3),由点G 在直线ON 上,可得e ﹣3=12(e +5),解得e =11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2, ∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11x =0.25,解得x =3. 答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.24.(1)AP=EF ,AP ⊥EF ,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS 证明△AMO ≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP ≌△FPE (SAS ),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.25.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.26.(1)1.5;(2)58;(3)4m.【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠, ()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE = 2.51 1.5EF DF BE ∴=-=-=. 故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.27.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=,2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.28.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,2BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴= ②而32DCBC BD ≥-=-BE 最小值为32-,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭((33,3P ∴-或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。
八年级下数学中期知识梳理
知识梳理一、分式1. 分式的定义:如果A 、B 表示两个整式,并且B中含有字母,那么式子B A叫做分式。
使分式有意义的条件是分母不为零,无意义的条件是分母为零,分式值为零的条件是分子为零且分母不为零。
2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3. 分式的通分和约分:关键是先分解因式 4. 分式的运算法则:分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,。
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,。
分式的乘方法则:要把分子、分母分别乘方,。
分式的加减法法则:同分母的分式相加减,分母不变,把分子相加减,异分母的分式相加减,先通分,变为同分母分式,然后再把分子相加减,运算的结果,能约分的一定要约分,将结果化为最简形式.分式的混合运算:分式的混合运算关键是弄清运算顺序,与分数的加、减、乘、除混合运算一样,也是先算乘除,再算加减,有括号的先算括号内的.但应注意纵观算式全貌,能否用变形、构造公式等方法进行简便计算. 5. 负整数指数幂和0指数幂的意义(1)任何一个不等于零的数的零次幂都等于1,即)0(10≠=a a ;当n 为正整数时,nna a 1=-()0≠a 。
把分式写成不含分母的形式,如=ab-1,注意:ab-m形式的式子属于分式,a m与a-m互为倒数.(2)指数由正整数扩大到全体整数①am·a n =a m +n (m ,n 是整数);②(a m )n =a mn (m ,n 是整数); ③(ab )n =a n b n (n 是整数)特别需要指出的是:同底数幂的除法可转化为同底数幂的乘法来计算. 如:am÷a n =a m ·a -n =a m +(-n )=a m -n ;分式的乘方运算可转化为积的乘方运算来计算,如:()n=(ab ﹣1)n =a n ·b (﹣1)·n=a n b ﹣n=6. 分式方程:含分式,并且分母中含未知数的方程。
八级下册数学期中考试知识点复习
一. 不等关系※. 一般地,用符号“<”(或“≤”),“>”(或“≥”)连接地式子叫做不等式.※. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数:大于等于(≥)、和正数、不小于非正数:小于等于(≤)、和负数、不大于二. 不等式地基本性质※. 掌握不等式地基本性质,并会灵活运用:()不等式地两边加上(或减去)同一个整式,不等号地方向不变,即:如果>,那么>,>.()不等式地两边都乘以(或除以)同一个正数,不等号地方向不变,即如果>,并且>,那么>,.()不等式地两边都乘以(或除以)同一个负数,不等号地方向改变,即:如果>,并且<,那么<,※. 比较大小:(、分别表示两个实数或整式)一般地:如果>,那么是正数;反过来,如果是正数,那么>;如果,那么等于;反过来,如果等于,那么;如果<,那么是负数;反过来,如果是正数,那么<;即:>,则>,则<,则<(由此可见,要比较两个实数地大小,只要考察它们地差就可以了.三. 不等式地解集:※. 能使不等式成立地未知数地值,叫做不等式地解;一个不等式地所有解,组成这个不等式地解集;求不等式地解集地过程,叫做解不等式.文档来自于网络搜索※. 不等式地解可以有无数多个,一般是在某个范围内地所有数.※. 不等式地解集在数轴上地表示:用数轴表示不等式地解集时,要确定边界和方向:①定点:有等号地是实心圆点,无等号地是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:※. 只含有一个未知数,且含未知数地式子是整式,未知数地次数是. 像这样地不等式叫做一元一次不等式.文档来自于网络搜索※. 解一元一次不等式地过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.文档来自于网络搜索※. 解一元一次不等式地步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为(注意不等号方向改变地问题)※. 不等式应用地探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中地不等关系,要抓住题中地关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;文档来自于网络搜索②设:设出适当地未知数;③列:根据题中地不等关系,列出不等式;④解:解出所列地不等式地解集;⑤答:写出答案,并检验答案是否符合题意.五. 一元一次不等式与一次函数六. 一元一次不等式组※. 定义:由含有一个相同未知数地几个一元一次不等式组成地不等式组,叫做一元一次不等式组.※. 一元一次不等式组中各个不等式解集地公共部分叫做不等式组地解集.如果这些不等式地解集无公共部分,就说这个不等式组无解.几个不等式解集地公共部分,通常是利用数轴来确定.※. 解一元一次不等式组地步骤:()分别求出不等式组中各个不等式地解集;()利用数轴求出这些解集地公共部分,()写出这个不等式组地解集.两个一元一次不等式组地解集地四种情况(、为实数,且<)(同大取大;同小取小;大小小大中间找;大大小小无解)第二章分解因式一. 分解因式※. 把一个多项式化成几个整式地积地形式,这种变形叫做把这个多项式分解因式.※. 因式分解与整式乘法是互逆关系.因式分解与整式乘法地区别和联系:()整式乘法是把几个整式相乘,化为一个多项式;()因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法※. 如果一个多项式地各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积地形式.这种分解因式地方法叫做提公因式法.文档来自于网络搜索※. 概念内涵:()因式分解地最后结果应当是“积”;()公因式可能是单项式,也可能是多项式;()提公因式法地理论依据是乘法对加法地分配律,• ••()※. 易错点点评:()注意项地符号与幂指数是否搞错;()公因式是否提彻底;()多项式中某一项恰为公因式,提出后,括号中这一项为,不漏掉.三. 运用公式法※. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式地方法叫做运用公式法.※. 主要公式:()平方差公式:①应是二项式或视作二项式地多项式;②二项式地每项(不含符号)都是一个单项式(或多项式)地平方;③二项是异号.()完全平方公式:①应是三项式;②其中两项同号,且各为一整式地平方;③还有一项可正负,且它是前两项幂地底数乘积地倍.※. 因式分解地思路与解题步骤:()先看各项有没有公因式,若有,则先提取公因式;()再看能否使用公式法;()因式分解地最后结果必须是几个整式地乘积;()因式分解地结果必须进行到每个因式在有理数范围内不能再分解为止.第三章分式一. 分式※. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式除以整式,可以表示成地形式.如果除式中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.文档来自于网络搜索※. 进行分数地化简与运算时,常要进行约分和通分,其主要依据是分数地基本性质:分式地分子与分母都乘以(或除以)同一个不等于零地整式,分式地值不变.※. 一个分式地分子、分母有公因式时,可以运用分式地基本性质,把这个分式地分子、分母同时除以它地们地公因式,也就是把分子、分母地公因式约去,这叫做约分.文档来自于网络搜索※. 分子与分母没有公因式地分式,叫做最简分式.二. 分式地乘除法法则两个分式相乘,把分子相乘地积作为积地分子,把分母相乘地积作为积地分母;两个分式相除,把除式地分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数地倒数)文档来自于网络搜索三. 分式地加减法※. 分式与分数类似,也可以通分.根据分式地基本性质,把几个异分母地分式分别化成与原来地分式相等地同分母地分式,叫做分式地通分.※. 分式地加减法:分式地加减法与分数地加减法一样,分为同分母地分式相加减与异分母地分式相加减. ()同分母地分式相加减,分母不变,把分子相加减;()异号分母地分式相加减,先通分,变为同分母地分式,然后再加减;※. 概念内涵:通分地关键是确定最简分母,其方法如下:()最简公分母地系数,取各分母系数地最小公倍数;()最简公分母地字母,取各分母所有字母地最高次幂地积,()如果分母是多项式,则首先对多项式进行因式分解.四. 分式方程※. 解分式方程地一般步骤:①在方程地两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程地根代入原方程检验.※. 列分式方程解应用题地一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学期中考试知识点复习
【】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。
在此查字典数学网为您提供八年级下册数学期中考试知识点复习,希望给您学习带来帮助,使您学习更上一层楼!
八年级下册数学期中考试知识点复习
一. 不等关系
※1. 一般地,用符号(或), (或)连接的式子叫做不等式. ※2. 准确翻译不等式,正确理解非负数、不小于等数学术语.
非负数:大于等于0(0) 、0和正数、不小于0
非正数:小于等于0(0) 、0和负数、不大于0
二. 不等式的基本性质
※1. 掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,
即:如果ab,那么a+cb+c, a-cb-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,
即如果ab,并且c0,那么acbc, .
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,
即:如果ab,并且c0,那么ac
※2. 比较大小:(a、b分别表示两个实数或整式)
一般地:
如果ab,那么a-b是正数;反过来,如果a-b是正数,那么a
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
ab,则a-b0
a=b,则a-b=0
a
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三. 不等式的解集:
※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数.
※3. 不等式的解集在数轴上的表示:
用数轴表示不等式的解集时,要确定边界和方向:
①定点:有等号的是实心圆点,无等号的是空心圆圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.
※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.
※3. 解一元一次不等式的步骤:
①去分母;
②去括号;
③移项;
④合并同类项;
⑤系数化为1(注意不等号方向改变的问题)
※4. 不等式应用的探索(利用不等式解决实际问题)
列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;
②设:设出适当的未知数;
③列:根据题中的不等关系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:写出答案,并检验答案是否符合题意.
五. 一元一次不等式与一次函数
六. 一元一次不等式组
※1. 定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.
※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.
如果这些不等式的解集无公共部分,就说这个不等式组无解.
几个不等式解集的公共部分,通常是利用数轴来确定.
※3. 解一元一次不等式组的步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些解集的公共部分,
(3)写出这个不等式组的解集.
两个一元一次不等式组的解集的四种情况(a、b为实数,且a
(同大取大;同小取小;大小小大中间找;大大小小无解)
第二章分解因式
一. 分解因式
※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
※2. 因式分解与整式乘法是互逆关系.
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘.
二. 提公共因式法
※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.
※2. 概念内涵:
(1)因式分解的最后结果应当是积
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,ab
+ac=a(b+c)
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提彻底;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.
三. 运用公式法
※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.
※2. 主要公式:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的
平方;
③二项是异号.
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍. ※5. 因式分解的思路与解题步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后结果必须是几个整式的乘积;
(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
第三章分式
一. 分式
※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.
整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.
※2. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,
分式的值不变.
※3. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.
※4. 分子与分母没有公因式的分式,叫做最简分式.
二. 分式的乘除法法则
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)
三. 分式的加减法
※1. 分式与分数类似,也可以通分.
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加减法:
分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.
(1)同分母的分式相加减,分母不变,把分子相加减;
(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;
※3. 概念内涵:
通分的关键是确定最简分母,其方法如下:
(1)最简公分母的系数,取各分母系数的最小公倍数;
(2)最简公分母的字母,取各分母所有字母的最高次幂的积,
(3)如果分母是多项式,则首先对多项式进行因式分解.
四. 分式方程
※1. 解分式方程的一般步骤:
①在方程的两边都乘以最简公分母,约去分母,化成整式方程;
②解这个整式方程;
③把整式方程的根代入原方程检验.
※2. 列分式方程解应用题的一般步骤:
①审清题意;
②设未知数;
③根据题意找相等关系,列出(分式)方程;
④解方程,并验根;
⑤写出答案.。