函数单调性习题大全

合集下载

单调性常考典例好题集含详解

单调性常考典例好题集含详解

单调性好题一、单选题1 .设α∈R,函数/(幻在区间(0,+∞)上是增函数,则()(7、 ( 7、 A. ∕(α~+α + 2)>∕ — B. ∕(tz 2 +a + 2^< f —∖4√14,2 .设函数∕(x)= 2]<2,若J&+1R/(2—1 ),则实数。

的取值范围是()∖x ∖x≥2B.(-∞,2]C. [2,6]D. [2,+∞)3 .对任意x ∈R,函数f(x)表示—•¥ + 3,3%+,,一一4工+ 3中较大者,则了。

)的2 2 最小值为( )A. 2B. 3C. 4D. 5与g(x) = q≡l 在区间口,2]上都是减函数,则。

的取值范x + 1围是()A. (^2,-l)u(l.2)B. (-l,0)u(0,2]C. (1,2]5 .函数∕(x) = ∣2x+3α∣的单调增区间为[l,y),则。

为( 2 A. — 1B. 1C.一36 .函数y = χ2-2χ + 3在闭区间付,m]上有最大值3,最小值为2, m 的取值范围是()A.(-OO ,2]B.[0,2]C.[l,2]D.[l,÷∞)(a-3)x + 5 , x ≤ 17 .己知函数出X)= 2a,若对R 上的任意实数X],X2(X1≠X2),恒有V , 入,1(x]X2)[f(Xi )-f(X2)] <。

成立,那么a 的取值范围是()A∙(0,3) B.(0,3] C.(0,2) θ.(0,2]8 .若函数∕(x) = (3Z -l)x + 5在R 上是增函数,则攵的范围是()9 .已知函数1R )= 乂2 + 4μ+ 2在区间(-8,6)上单调递减,则a 的取值范围是(C. /(/+〃 + 2)≥∕5>D. ∕(∕+α + 2)≤∕任4.若∕(r) =r ⅛24一1 q D. [1,2))2 D.——3A. (-∞,-∣), 1 、 B. (--,+∞)z l 、c. (-,+∞)D. y,g )10 .已知函数∕(x ) =/_丘_6在[2, 8]上是单调函数,则4的取值范围是( )A. (4,16)B. [4,161C. fl6, ÷∞)D. (- oo,4] U 口6, + 8)11.函数∕(N ) 4Λ2〃n+5在区间[-2,+8)上是增函数,在区间(一8,-2]上 是减函数,则/⑴等于 A. -7B. 1C. 17D. 251312.若函数y = —χ + 一,定义域和值域都是“,〃],则。

函数单调性的习题及答案

函数单调性的习题及答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x=是R 上的减函数,则()3y f x =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x )∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

(完整版)函数单调性练习题

(完整版)函数单调性练习题

函数单调性练习题1. 已知函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 .2.讨论函数f(x)=21xax - (a≠0)在区间(-1,1)内的单调性.3.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数?4. 已知:f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (x 2-1)求x 的取值范围.5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.6.函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值范围是( ).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )8.已知f (x )在其定义域R +上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤39.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.10.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3.11.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -=(1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f 。

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,那么f (1)等于 〔 〕 A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的递增区间是 〔 〕 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,那么实数a 的取值范围是 〔 〕A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) 〔 〕 A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x+1)|<1的解集的补集是 〔 〕 A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞〕D .(-∞,-1)∪[2,+∞〕8.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕 A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,那么以下不等式中正确的选项是〔 〕 A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,那么 〔 〕 A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,那么()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,那么a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.函数f (x )=x ax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,那么f (1)=0.②在等式中令x=36,y=6那么.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,那么f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,那么f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,那么f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,那么f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

完整版)函数的单调性练习题及答案

完整版)函数的单调性练习题及答案

完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。

[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。

[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。

4.如果函数f(x)=kx+b在R上单调递减,则(C。

b>0)5.在区间(-∞,0)上为增函数的是(B。

y=x^2)6.函数f(x)=2x-x^2的最大值是(B。

1)7.函数y=x+x^-2的最小值是(A。

0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。

3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。

证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。

11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。

函数单调性练习题高中

函数单调性练习题高中

函数单调性练习题高中一、选择题1. 设函数f(x) = x^3 3x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,1)上单调递减,在(1,+∞)上单调递增D. f(x)在(∞,1)上单调递增,在(1,1)上单调递减,在(1,+∞)上单调递增2. 已知函数f(x) = (1/2)^x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,+∞)上单调递减D. f(x)在(∞,0)上单调递增,在(0,+∞)上单调递减二、填空题1. 已知函数f(x) = x^2 2x,求f(x)的单调递增区间:______。

2. 已知函数f(x) = 3x^3 9x,求f(x)的单调递减区间:______。

三、解答题1. 已知函数f(x) = x^3 6x^2 + 9x,求f(x)的单调区间。

2. 已知函数f(x) = (1/3)^x 2x,求f(x)的单调区间。

3. 设函数f(x) = x^2 4x + 3,求f(x)的单调区间。

4. 已知函数f(x) = 2x^3 3x^2 12x + 5,求f(x)的单调区间。

5. 设函数f(x) = (1/2)^x + x^2 4x,求f(x)的单调区间。

6. 已知函数f(x) = x^4 4x^3 + 6x^2,求f(x)的单调区间。

7. 设函数f(x) = 3x^3 9x^2 + 5,求f(x)的单调区间。

8. 已知函数f(x) = (1/3)^x x^3 + 2x^2,求f(x)的单调区间。

9. 设函数f(x) = 2x^4 8x^3 + 12x^2,求f(x)的单调区间。

10. 已知函数f(x) = x^5 5x^4 + 10x^3,求f(x)的单调区间。

四、判断题1. 函数f(x) = x^2 + 2x在整个实数域上单调递增。

函数的单调性练习题(含标准答案)

函数的单调性练习题(含标准答案)

函数的单调性练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2- - 3函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞- -4C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.- -520.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.- - 6参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则- -7f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.- - 8(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y=2x +1 B .y=3x2+1 C .y=x2D .y=2x2+x +1 2.函数f(x)=4x2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A .-7 B .1 C .17 D .253.函数f(x)在区间(-2,3)上是增函数,则y=f(x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a ,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f(x)=8+2x -x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f(x)在区间(-∞,5)上单调递减,对任意实数t ,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( ) A .f(-1)<f(9)<f(13) B .f(13)<f(9)<f(-1) C .f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f(x)在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f(a)+f(b)≤-f(a)+f(b)]B .f(a)+f(b)≤f(-a)+f(-b)C .f(a)+f(b)≥-f(a)+f(b)]D .f(a)+f(b)≥f(-a)+f(-b)12.定义在R 上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x +2)图象的对称轴是x=0,则( )A .f(-1)<f(3)B .f (0)>f(3)C .f (-1)=f (-3)D .f(2)<f(3) 二、填空题:13.函数y=(x -1)-2的减区间是____. 14.函数y=x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f(x) = ax2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__. 三、解答题:17.f(x)是定义在( 0,+∞)上的增函数,且f(yx) = f(x)-f(y) (1)求f(1)的值.(2)若f(6)= 1,解不等式 f( x +3 )-f(x1) <2 . 18.函数f(x)=-x3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=21x -在区间[-1,1]上的单调性.20.设函数f(x)=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m -1)-f(1-2m)>0,求实数m 的取值范围.22.已知函数f(x)=xax x ++22,x ∈[1,+∞](1)当a=21时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f(1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f[x(x +3)]<f(36), 又f(x)在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f(x)在R 上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+22x )2+43x22].∵x1<x2,∴x2-x1>0而(x1+22x )2+43x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x2-x1>0,222111x x -+->0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=21x -在区间[-1,0]上是增函数,f(x)=21x -在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+)∞且x1<x2,则f(x1)-f(x2)=121+x -122+x -a(x1-x2)=1122212221+++-x x x x -a(x1-x2)=(x1-x2)(11222121++++x x x x -a)(1)当a ≥1时,∵11222121++++x x x x <1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴a ≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x1=0,x2=212aa-,满足f(x1)=f(x2)=1 ∴0<a <1时,f(x)在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x1|≥x1;122+x >x2;③从a 的范围看还须讨论0<a <1时f(x)的单调性,这也是数学严谨性的体现.21.解析: ∵f(x)在(-2,2)上是减函数∴由f(m -1)-f(1-2m)>0,得f(m -1)>f(1-2m)∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a=21时,f(x)=x +x21+2,x ∈1,+∞) 设x2>x1≥1,则f(x2)-f(x1)=x2+1122121x x x --=(x2-x1)+21212x x x x -=(x2-x1)(1-2121x x ) ∵x2>x1≥1,∴x2-x1>0,1-2121x x >0,则f(x2)>f(x1) 可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞)上的最小值为f(1)=27. (2)在区间[1,+∞)上,f(x)=xax x ++22>0恒成立⇔x2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.。

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)一、选择题1.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x) ( )A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定2.下列函数中,在区间(0,1)上是增函数的是( )A.y=|x|B.y=3-xC.y=D.y=-x2+43下列函数中,在区间(0,2)上为增函数的是( )①y=-x+1;②y=-;③y=x2-4x+5;④y=.A.①B.②C.③D.④4.函数f(x)在区间(-2,3)上是增函数,则y=f(x+4)的递增区间是( )A.(2,7)B.(-2,3)C.(-6,-1)D.(0,5)5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不正确的是( )A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)<f(x1)<f(x2)<f(b)D.>06.函数f(x)=x2-2(a-1)x+1在区间[5,+∞)上是增函数,则实数a的取值范围是( )A.[6,+∞)B.(6,+∞)C.(-∞,6]D.(-∞,6).7.函数f(x)=2x2-mx+3,当x∈(-∞,-2]时是减函数,x∈[-2,+∞)时是增函数,则f(1)等于( )A.-3B.13C.7D.由m而定的常数8.设函数f(x)在(-∞,+∞)上为减函数,则( )A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)二、填空题9.函数f(x)=的减区间是.10.设函数f(x)满足:对任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,则f(-3)与f(-π)的大小关系是.11.已知函数f(x)在R上是减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式-2<f(x)<2的解集为.12.函数y=在(-2,+∞)上为增函数,则a的取值范围是.13.f(x)是定义在[0,+∞)上的减函数,则不等式f(x)<f(-2x+8)的解集是.三、解答题14.如图分别为函数y=f(x)和y=g(x)的图象,试写出函数y=f(x)和y=g(x)的单调增区间.15.已知函数f(x)=.(1)求f(x)的定义域.(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.16.设函数f(x)是R上的单调增函数,F(x)=f(x)-f(2-x).求证:函数F(x)在R上是单调增函数.17.定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m,n∈R恒成立.当x>0时,f(x)>2.(1)证明f(x)在R上是增函数.(2)已知f(1)=5,解关于t的不等式f(t-1)≤8.参考答案与解析1【解析】选D.由单调性定义可知,不能用特殊值代替一般值.【误区警示】本题易错选A,原因是对增函数概念理解不到位,用特殊值代替一般值,因而是错误的.2【解析】选A.B在R上为减函数;C在(-∞,0)和(0,+∞)上为减函数;D在(-∞,0)上为增函数,在(0,+∞)上为减函数.3【解析】选B.结合函数的图象可知②在区间(0,2)上为增函数,而①③④在区间(0,2)上均为减函数.4【解析】选C.函数y=f(x+4)是函数f(x)向左平移4个单位得到,因为函数f(x)在区间(-2,3)上是增函数,所以y=f(x+4)的增区间为(-2,3)向左平移4个单位,即增区间为(-6,-1).5【解析】选C.由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D正确;对于C,若x1<x2时,可能有x1=a或x2=b,即f(x1)=f(a)或f(x2)=f(b),故C不成立.6【解析】选C.函数f(x)的对称轴x=a-1,因为函数f(x)在[5,+∞)上是增函数,所以a-1≤5,所以a≤67【解析】选B.由题意知=-2,所以m=-8,所以f(x)=2x2+8x+3,f(1)=2+8+3=13. 8【解析】选D.因为a2+1-a=+>0,所以a2+1>a,又因为函数f(x)在(-∞,+∞)上为减函数,所以f(a2+1)<f(a).9【解题指南】本题可先作出函数图象,由图象观察减区间.【解析】函数f(x)的图象如图所示.则减区间是(0,1].答案:(0,1]10【解析】由(x1-x2)[f(x1)-f(x2)]>0,可知函数f(x)为增函数,又因为-3>-π,所以f(-3)>f(-π).答案:f(-3)>f(-π)11【解析】因为A(0,-2),B(-3,2)在函数y=f(x)的图象上,所以f(0)=-2,f(-3)=2,故-2<f(x)<2可化为f(0)<f(x)<f(-3),又f(x)在R上是减函数,因此-3<x<0. 答案:(-3,0)【解析】因为y==1-,所以函数的单调增区间为(-∞,-a),(-a,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a,即a≥2.答案:a≥213【解析】依题意,得不等式组解得<x≤4.答案:【误区警示】解答本题时易忽视函数定义域而出错.14【解题指南】根据函数的图象写出函数的单调区间,主要是观察图象,找到最高点或最低点的横坐标,便可得到一个单调区间,由图象的上升或下降的趋势确定是递增还是递减的区间.【解析】由题意,确定函数y=f(x)和y=g(x)的单调增区间,即寻找图象中呈上升趋势的一段图象.由图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的.由图(2)可知,在和内,y=g(x)是单调递增的.15【解析】(1)由x2-1≠0,得x≠±1,所以函数f(x)=的定义域为{x∈R|x≠±1}.(2)函数f(x)=在(1,+∞)上是减函数.证明:任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=-=.因为x2>x1>1,所以-1>0,-1>0,x2-x1>0,x2+x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=在(1,+∞)上是减函数.16【证明】任取x1,x2∈R,且x1<x2,因为函数f(x)是R上的单调增函数,所以f(x1)<f(x2),f(2-x1)>f(2-x2),即f(x1)-f(x2)<0,f(2-x1)-f(2-x2)>0,所以F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)]<0,即F(x1)-F(x2)<0,所以F(x1)<F(x2).所以函数F(x)在R上是单调增函数.17【解析】(1)对任意x1,x2∈R,且x1<x2,所以x2-x1>0,所以f(x2-x1)>2,f(x1)-f(x2)=f(x1)-f(x2-x1+x1)=f(x1)-f(x2-x1)-f(x1)+2=2-f(x2-x1)<0,所以f(x1)<f(x2),所以f(x)在R上是增函数.(2)因为f(1)=5,所以f(2)=f(1)+f(1)-2=8,由f(t-1)≤8得f(t-1)≤f(2).因为f(x)在R上为增函数,所以t-1≤2,即t≤3, 故不等式的解集为{t|t≤3}.。

函数的单调性练习题

函数的单调性练习题

函数的单调性练习题高一数学同步测试(6)—函数的单调性1.在区间(0.+∞)上不是增函数的函数是:B。

y=3x^2+1.2.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。

-2)上是减函数,则f(1)等于:C。

17.3.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:A。

(3.8)。

4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。

(0.+∞)。

5.已知函数f(x)在区间[a。

b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。

b]内:A。

至少有一实根。

6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):B。

在区间(0.1)上是减函数。

7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。

(-∞。

-1)∪[2.+∞)。

8.已知定义域为R的函数f(x)在区间(-∞。

5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:C。

f(9)<f(-1)<f(13)。

9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:B。

(-∞。

]。

[1.+∞)。

10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。

4]上是减函数,则实数a的取值范围是:C。

[-1.1]。

1.已知函数 $f(x)$ 在区间 $(-\infty,+\infty)$ 上是增函数,实数 $a,b\in \mathbb{R}$ 且 $a+b\leq 0$,则下列不等式中正确的是()A。

$f(a)+f(b)\leq -f(a)+f(b)$B。

$f(a)+f(b)\leq f(-a)+f(-b)$C。

$f(a)+f(b)\geq -f(a)+f(b)$D。

函数单调性的七类经典题型(可编辑修改word版)

函数单调性的七类经典题型(可编辑修改word版)

3 单调性类型一:三角函数单调区间⎛ ⎫1. 函数 y = tan x - ⎪ 的单调增区间为.⎝ ⎭⎛5⎫ 【答案】 k - 6 , k + 6 ⎪ , k ∈ Z⎝⎭【解析】试题分析: 因为 k - < x - 2 < k + 3 ,所以 k - 2 < x < k + 6 5, k ∈ Z ,故应填答 6⎛5⎫ 案 k - 6 , k + 6 ⎪ , k ∈ Z .⎝⎭2. 已知函数 f (x )= x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)解析:选 B 设 t =x 2-2x -3, 由 t ≥0, 即 x 2-2x -3≥0, 解 得 x ≤-1 或 x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数 t =x 2-2x -3 的图象的对称轴为 x =1,所以函数 t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数 f (x )的单调递增区间为[3,+∞).3. 设函数 f (x )=Error!g (x )=x 2f (x -1),则函数 g (x )的递减区间是.g (x )=Error!如图所示,其递减区间是[0,1). 答案:[0,1)22 2 2 2类型二:对数函数单调区间1. 函数 f(x)=ln(4+3x -x2)的单调递减区间是()A.(-∞,3] B.[3,+∞) C.(-1,3] D.[3,4)解析:函数 f(x)的定义域是(-1,4),u(x)=-x2+3x +4=-(x -3)2+25的减区间为[3,4), ∵e >1,∴函数 f(x)的单调减区间为[3,4).2 4 22. 函数 f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选 A 由于 f (x )=|x -2|x =Error! 结合图象可知函数的单调减区间是[1,2].类型三:分段函数单调性⎧(a - 2)x -1, x ≤ 11.已知函数 f(x)= ⎨⎩ log a x , x >1 ,若 f(x)在(-∞,+∞)上单调递增,则实数 a 的取值范 围为( ) A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)解析:要保证函数 f (x)在(-∞,+∞)上单调递增,则首先分段函数应该在各自定义域内分别单调递增.2 2 2 2 3若 f(x)=(a -2)x -1 在区间(-∞,1]上单调递增,则 a -2>0,即 a >2.若 f(x)=logax 在区间(1,+∞)上单调递增,则 a >1.另外,要保证函数 f(x)在(-∞,+∞)上单调递增还必须满足(a -2)×1-1≤loga1=0,即 a≤3. 故实数 a 的取值范围为 2<a≤3.答案:C类型四:利用单调性求参数范围1. 已知函数 f( x ) 为定义[2 - a , 3] 在上的偶函数,在[0, 3] 上单调递减,并且f ⎛-m 2 - a ⎫ > f (-m 2 + 2m - 2) ,则 m 的取值范围是 .5 ⎪ ⎝⎭【答案】1- ≤ m < 12【解析】试题分析: 由偶函数的定义可得2 - a + 3 = 0 ,则 a = 5 ,因为m 2 + 1 > 0, m 2 - 2m + 2 = (m - 1)2 + 1 > 0 ,且f (-m 2 - 1) = f (m 2 + 1), f (-m 2 + 2m - 2) = f (m 2 - 2m + 2) ,所以m 2 + 1 < m 2 - 2m + 2 ≤ 3 ,解之得1- ≤ m < 1 .故应填答案1- ≤ m < 1 .2 22. 已知 y =f(x)是定义在(-2,2)上的增函数,若 f(m -1)<f(1-2m),则 m 的取值范围是.1 2解析:依题意,原不等式等价于Error!⇒Error!⇒- <m < .2 3答案:(-1,2)3. 已知函数 f (x )=|x +a |在(-∞,-1)上是单调函数,则 a 的取值范围是.10 10 102 2解析:因为函数 f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得 a ≤1.答案:(-∞,1]a 4.若 f (x )=-x 2+2ax 与 g (x )= +在区间[1,2]上都是减函数,则a 的取值范围是 .x 1解析:∵函数 f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.a 又∵函数 g (x )= +在区间[1,2]上也是减函数,x1∴a >0.∴a 的取值范围是(0,1].5.若函数 f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数 a 的取值范围是.1 2解析:由于 f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有 0<a <3a -1≤1,解得 <a ≤ .2 3答案:(1,2]2 3类型五:范围问题1. 设函数 f (x )是定义在 R 上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式 f (1)<f (lgx )的 x 的取值范围是 .10押题依据 利用函数的单调性、奇偶性求解不等式是高考中的热点,较好地考查学生思维的灵活性.答案 (0,1)∪(100,+∞)xx x x解析 由题意得,f (1)<f (|lg 10|)⇒1<|lg |⇒lg >1 或 lg <-1⇒x >100 或 0<x <1.2. 已知 f (x )是定义在 R 上的偶函数,且在区间(-∞,0)上单调递增.若实数 a 满足 f (2|a -1|)>f (-2),则 a 的取值范围是 .答案(1,3)解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,22 ∴在(0,+∞)上单调递减,f(-2)=f( 2),∴f(2|a-1|)>f( 2),∴2|a-1|< 2=1,21 1 1 1 3 ∴|a-1|< ,即-<a-1< ,即<a< .2 2 2 2 23.设函数f(x)=x|x-a|,若对∀x1,x2∈[3,+∞),x1≠x2,不等式实数a 的取值范围是.答案(-∞,3] f(x1)-f(x2)x1-x2>0 恒成立,则解析由题意分析可知条件等价于f(x)在[3,+∞)上单调递增,又因为f(x)=x|x-a|,所以(a)(a )当a≤0 时,结论显然成立,当a>0 时,f(x)=Error!所以f(x)在-∞,上单调递增,在,a2上单调递减,在(a,+∞)上单调递增,所以0<a≤3.综上,实数a 的取值范围是(-∞,3].类型六:综合题1.(作图)已知f(x)是定义在实数集R 上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于( )A.{x|x≤0或1≤x≤4}B.{x|0≤x≤4}C.{x|x≤4}D.{x|0≤x≤1 或x≥4}解析:画出函数f(x)和g(x)的草图如图,由图可知当f(x)g(x)≥0 时,x 的取值范围是x≤0 或1≤x≤4,即{x|f(x)g(x)≥0}={x|x≤0 或1≤x≤4},故选A.1+1722.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f x(x-1)<0若f x(x-1)<0=f(1),∴Error!2 2 4 4f x(x-1)<0=f(-1),∴Error!( 2 )的解集.(数形结合)解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.又∵y=f(x)在(0,+∞)上是增函数,∴y=f(x)在(-∞,0)上是增函数,( 2 )1 1 1-17即0<x(x-)<1,解得<x< 或<x<0.( 2 )∴x(x-1)<-1,解得x∈∅.∴原不等式的解集是Error!.3.已知函数f(x)=Error!则不等式f(a2-4)>f(3a)的解集为( )A.(2,6) B.(-1,4)C.(1,4) D.(-3,5)解析:作出函数f(x)的图象如,图所示则,函数f(x)在R 上是单调递减的由.f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4,所以不等式的解集为(-1,4).答案:Bf(x)4.如果函数y=f(x)在区间I 上是增函数,且函数y=x在区间I 上是减函数,那么称函数y=3 3 1 3f (x )是区间 I 上的“缓增函数”,区间 I 叫作“缓增区间”.若函数 f (x )= x 2-x + 是区间 I 上2 2 的“缓增函数”,则“缓增区间”I 为() A .[1,+∞) B .[0, 3] C .[0,1]D .[1, 3]1 3解析:因为函数 f (x )= x 2-x + 的对称轴为 x =1,所以函数 y =f (x )在区间[1,+∞)上2 2 f (x ) 13 1 3 1 3是增函数,又当 x ≥1 时, = x -1+ ,令 g (x )= x -1+ (x ≥1),则 g ′(x )= - =x 2-3x 2 2x 2 2x f (x ) 1 3 2 2x 22x 2 ,由 g ′(x )≤0 得 1≤x ≤ ,即函数 x =2x -1+2x 在区间[1, ]上单调递减,故“缓增区间”I 为[1, 3].答案:D6. 若函数 f (x )=Error!(a >0,且 a ≠1)的值域是[4,+∞),则实数 a 的取值范围是.解析:因为 f (x )=Error!所以当 x ≤2 时,f (x )≥4;又函数 f (x )的值域为[4,+∞),所以Error! 解得 1<a ≤2,所以实数 a 的取值范围为(1,2].答案:(1,2]7. 已知函数 f (x )是定义在 R 上的奇函数,且当 x >0 时,f (x )=|x -a |-a (a ∈R ).若∀x ∈R ,f (x +2016)>f (x ),则实数 a 的取值范围是 . 数形结合当 a =0 时,f (x )=x ,x ∈R ,满足条件;当 a <0 时,f (x )=Error!为 R 上的单调递增函数,也满足条件;当 a >0 时,f (x )=Error!要满足条件,需 4a <2 016 ,即 0<a <504, 综上实数 a 的取值范围是 a <504.。

函数单调性测试题及答案

函数单调性测试题及答案

函数单调性测试题及答案一、选择题1. 函数 \( f(x) = -x^2 + 2x \) 在区间 (-∞, 1] 上是单调递增的,那么在区间[1, +∞) 上是单调递减的,这种说法是否正确?A. 正确B. 错误2. 函数 \( g(x) = 3x^3 - 2x^2 + x \) 的导数 \( g'(x) \) 为:A. \( 9x^2 - 4x + 1 \)B. \( 9x^2 + 4x + 1 \)C. \( -9x^2 + 4x - 1 \)D. \( -9x^2 - 4x - 1 \)3. 如果 \( h(x) \) 是一个在区间(0, +∞) 上单调递增的函数,且\( h(2) = 4 \),那么 \( h(4) \) 一定:A. 大于 4B. 等于 4C. 小于 4D. 无法确定二、填空题4. 函数 \( f(x) = x^3 - 6x^2 + 9x + 2 \) 的导数 \( f'(x) \)为 \( ________ \)。

5. 若 \( k \) 为正常数,函数 \( y = kx \) 在整个定义域上是单调递增的,那么 \( k \) 的取值范围是 \( ________ \)。

三、解答题6. 已知函数 \( f(x) = \frac{2}{x} \),请讨论其在区间 (-∞, 0) 和(0, +∞) 上的单调性,并证明。

7. 函数 \( g(x) = x^4 - 4x^3 + 4x^2 \),请找出其在定义域上的极值点,并判断其单调性。

四、证明题8. 证明函数 \( h(x) = x^3 - 3x \) 在区间 (-∞, 1) 上是单调递减的。

答案:1. A2. A3. A4. \( f'(x) = 3x^2 - 12x + 9 \)5. \( k > 0 \)6. 函数 \( f(x) = \frac{2}{x} \) 在区间 (-∞, 0) 上单调递增,在区间(0, +∞) 上单调递减。

函数单调性的习题及答案

函数单调性的习题及答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

(完整版)函数的单调性课后练习题

(完整版)函数的单调性课后练习题

函数的单调性课后练习题1.下列函数中,在(-∞,0)上为减函数的是( ) A .y =1x 2B .y =x 3C .y =x 0D .y =x 2答案:D2.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1、x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( )A.f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>0 解析:由增函数的定义易知A 、B 、D 正确,故选C. 答案:C3.若区间(0,+∞)是函数y =(a -1)x 2+1与y =ax 的递减区间,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1 解析:由二次函数及反比例函数的性质可得⎩⎪⎨⎪⎧a -1<0,a >0,∴0<a <1. 答案:D4.若二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1)上为减函数,那么( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:函数的对称轴x =1-a 3,由题意得1-a3≥1时,函数y =3x 2+2(a -1)x +b 在区间(-∞,1)上为减函数,故得a ≤-2.答案:C5.已知函数f (x )在区间[a ,b ]上具有单调性,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )A .至少有一个实根B .至多有一个实根C .没有实根D .有唯一的实根解析:∵f (x )是单调函数,且图象是连续不断的,又f (a )f (b )<0,则f (x )的图象必与x 轴相交,因此f (x )在[a ,b ]上必存在一点x 0,使f (x 0)=0成立,故答案D 正确.答案:D6.已知函数f (x )在区间[0,+∞)上为减函数,那么f (a 2-a +1)与f ⎝⎛⎭⎫34的大小关系是__________.解析:∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34,又f (x )在[0,+∞)上为减函数,∴f (a 2-a +1)≤f ⎝⎛⎭⎫34. 答案:f (a 2-a +1)≤f ⎝⎛⎭⎫347.(2011·潍坊模拟)函数y =2x 2-mx +3,当x ∈[-2,2]时,是增函数,则m 的取值范围是________.解析:∵函数y =2x 2-mx +3是开口向上的抛物线,要使x ∈[-2,2]时为增函数,只要对称轴x =--m 2×2≤-2,即m ≤-8.答案:m ≤-88.函数y =|3x -5|的递减区间是________.解析:y =|3x -5|=⎩⎨⎧3x -5,x ≥53,-3x +5,x <53.作出y =|3x -5|的图象,如图所示,函数的单调减区间为⎝⎛⎦⎤-∞,53. 答案:⎝⎛⎦⎤-∞,53 9.判断函数f (x )=x +1x -1在(-∞,0)上的单调性,并用定义证明.解:f (x )=x +1x -1=x -1+2x -1=1+2x -1,函数f (x )=x +1x -1在(-∞,0)上是单调减函数.证明:设x 1,x 2是区间(-∞,0)上任意两个值, 且x 1<x 2,则f (x 2)-f (x 1)=1+2x 2-1-⎝⎛⎭⎫1+2x 1-1=2(x 1-x 2)(x 1-1)(x 2-1), ∵x 1<x 2<0,∴x 1-x 2<0,x 1-1<0,x 2-1<0, ∴2(x 1-x 2)(x 1-1)(x 2-1)<0.∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).∴函数f (x )=x +1x -1在(-∞,0)上是单调减函数.10.已知f (x )是定义在[-1,1]上的增函数, 且f (x -2)>f (1-x ),求x 的取值范围.解:由题意知⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,解得1≤x ≤2.∵f (x )在[-1,1]上是增函数,且f (x -2)>f (1-x ), ∴x -2>1-x ,∴x >32.由⎩⎪⎨⎪⎧1≤x ≤2,x >32,得32<x ≤2.故满足条件的x 的取值范围是32<x ≤2.品位高考1.(全国卷)设f (x ),g (x )都是单调函数,下列四个命题,正确的是( )①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增;②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增;③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减A .①②B .①④C .②③D .②④答案:C2.(湖南高考)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:f (x )=-x 2+2ax =-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=a x +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.答案:D备课资源1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上不是单调函数; ③函数y =-1x 在定义域内是增函数;④y =1x 的单调区间是(-∞,0)∪(0,+∞)A .0个B .1个C .2个D .3个解析:函数的单调性定义是指定义在I 上任意两个值x 1,x 2,强调的是任意性,从而①不对;y =x 2在(-∞,0]上是减函数,在[0,+∞)上是增函数,从而y =x 2在整个定义域上不具有单调性,故②正确.y =-1x 在整个定义域内不是单调递增函数,如-3<5,而f (-3)>f (5),从而③不对;y =1x 的单调区间为(-∞,0)和(0,+∞),而不是(-∞,0)∪(0,+∞),从而④不对.答案:B2.(2007·福建)已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:依题意得⎪⎪⎪⎪1x >1,∴|x |<1,且x ≠0, ∴-1<x <1且x ≠0,因此答案C 正确. 答案:C3.函数f (x )=⎩⎪⎨⎪⎧2x +1,(x ≥1),5-x ,(x <1),则f (x )的递减区间是________.答案:(-∞,1)4.已知函数f (x )是定义在(0,+∞)上的减函数,且f (x )<f (2x -3),求x 的取值范围.解:由题意知⎩⎨⎧x >2x -3x >02x -3>0⇒32<x <3. 5.已知f (x )=x 3+x ,x ∈R ,判断f (x )的单调性并证明. 解:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=x 13+x 1-(x 23+x 2)=(x 1-x 2)(x 12+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+x 22)2+34x 22+1]<0∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2). 因此f (x )=x 3+x 在R 上是增函数.。

(完整版)高中数学函数的单调性练习题及其答案

(完整版)高中数学函数的单调性练习题及其答案

函数的单调性一、选择题:1.在区间 (0,+∞ ) 上不是增函数的函数是()A . y=2x + 1B . y=3x 2+ 12D . y=2x 2+ x + 1C . y=x2.函数 f(x)=4 x 2 -mx + 5 在区间[- 2,+∞]上是增函数,在区间(-∞,- 2)上是减函数,则 f(1)等于( ) A .- 7B . 1C . 17D . 253.函数 f( x)在区间 (- 2, 3)上是增函数,则 y=f(x +5)的递加区间是 ()A . (3, 8)B . (-7,- 2)C . (- 2,3)D . (0, 5)4.函数 f( x)=ax1在区间 (- 2,+∞ )上单调递加,则实数 a 的取值范围是()x2A . (0, 1 )B . (1,+∞ )22C . (- 2,+∞ )D . (-∞,- 1)∪(1,+∞ )5.已知函数 f(x)在区间 [a , b] 上单调 ,且 f(a)f(b)< 0,则方程 f(x)=0 在区间 [a , b]内()A .最少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数 f(x)=8+ 2x - x 2,若是 g(x)=f( 2-x 2 ),那么函数 g( x)()A .在区间 (- 1, 0)上是减函数B .在区间 (0, 1)上是减函数C .在区间 (- 2, 0)上是增函数D .在区间 (0 ,2)上是增函数7.已知函数f(x)是 R 上的增函数, A(0 ,- 1) 、 B(3 , 1)是其图象上的两点,那么不等式|f(x + 1)|< 1 的解集的补集是()A . (- 1,2)B . (1, 4)C . (-∞,- 1)∪ [4,+∞)D . (-∞,- 1)∪[2,+∞)8.已知定义域为 R 的函数 f(x)在区间 (-∞, 5)上单调递减,对任意实数t ,都有 f(5+ t)= f(5- t),那么以下式子必然成立的是()A . f(- 1)< f(9) <f(13)B . f(13)< f(9) < f(- 1)C . f(9) <f(- 1)< f(13)D . f(13)< f(- 1)< f(9)9.函数 f ( x) | x | 和 g (x) x( 2 x) 的递加区间依次是()A . ( ,0], (,1] B . ( ,0], [1, )C . [0,), (,1]D [0,), [1,)10.已知函数f x x2 2 a 1 x 2 在区间,4 上是减函数,则实数 a 的取值范围是()A . a≤ 3B . a≥- 3C. a≤ 5D. a≥ 311.已知 f(x)在区间 (-∞,+∞)上是增函数,a、b∈R 且 a+b≤0,则以下不等式中正确的选项是()A . f(a)+ f(b)≤- f(a)+ f(b)]B. f(a)+ f(b)≤f(- a)+ f(- b)C. f(a) +f(b)≥- f(a)+ f(b)]D. f(a)+ f(b)≥ f(- a)+ f(- b)12.定义在 R 上的函数 y=f(x)在(-∞,2)上是增函数,且 y=f(x+2)图象的对称轴是 x=0,则()A . f(- 1)< f(3)B . f (0)> f(3)C. f (- 1)=f (- 3)D. f(2) < f(3)二、填空题:13.函数 y=(x- 1)-2的减区间是 ____.14.函数 y=x- 21x +2的值域为_____.15、设y f x是 R 上的减函数,则 y f x 3 的单调递减区间为.16、函数 f(x) = ax2+4(a+1)x- 3 在 [2,+∞ ] 上递减,则 a 的取值范围是 __.三、解答题:17. f(x)是定义在 ( 0,+∞ )上的增函数,且f(x) = f(x)- f(y) y(1)求 f(1)的值.1(2)若 f(6)= 1,解不等式 f( x+ 3 )- f() < 2 .x18.函数 f(x)=- x3+ 1 在 R 上可否拥有单调性?若是拥有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试谈论函数f(x)=1x 2在区间[-1,1]上的单调性.20.设函数 f(x)=x 2 1 - ax ,(a > 0),试确定:当 a 取什么值时,函数 f(x)在 0,+∞ )上为单调函数.21.已知 f(x)是定义在 (- 2,2)上的减函数,并且f(m -1) -f(1-2m)> 0,求实数 m 的取值范围.2 22.已知函数 f(x)=x2xa,x ∈[1,+∞]x( 1)当 a= 1时,求函数 f(x)的最小值;2(2)若对任意 x ∈ [ 1,+∞ ) , f(x) >0 恒成立,试求实数 a 的取值范围.参照答案一、选择题: CDBBD ADCCABA二、填空题: 13. (1,+∞ ), 14. (-∞, 3), 15. 3,,,12三、解答题: 17.剖析:①在等式中 令 xy 0 ,则 f(1)=0 .②在等式中令 x=36 , y=6 则 f (36 f (36) f (6),f (36) 2 f (6) 2.)6故原不等式为:f ( x 3)f ( 1 ) f (36), 即 f[x(x + 3)] < f(36) ,x又 f(x)在 (0,+∞ )上为增函数,x 3 0故不等式等价于:1 00 x153 3 .x20 x(x 3)3618.剖析: f(x)在 R 上拥有单调性,且是单调减函数,证明以下:设 x 1、x 2∈( -∞,+∞ ), x 1 <x 2 ,则 f(x 1)=- x 13+ 1, f(x 2)=- x 23+1.f(x 1) -f(x 2)=x 2 3- x 13=(x 2- x 1)(x 12+ x 1x 2+ x 22)=( x 2- x 1)[ (x 1+ x 2 )2+ 3x 22]. 2 4∵ x 1< x 2,∴ x 2- x 1> 0 而 (x 1+x 2)2+ 3x 22>0,∴ f( x 1)> f(x 2 ).24∴函数 f(x)= - x 3+1 在 (-∞,+∞ )上是减函数.19.剖析: 设 x 、x ∈- 1, 1]且 x < x ,即- 1≤ x < x ≤ 1.1 2 1 2 1 21212-12 (1 x 1 2 ) (1 x 2 2) ( x 2 x 1 )( x 2 x 1)f(x ) -f(x )=x 1x 2=1 x2 2 =1 x 221 x 12 1 x 12 ∵x 2 - x 1>0, 1 x 1 21 x2 2 > 0,∴当 x 1> 0,x 2 > 0 时,x 1 + x 2 > 0,那么 f(x 1) > f(x 2).当 x 1<0, x 2< 0 时, x 1+x 2<0,那么 f(x 1) <f(x 2).故 f(x)= 1x 2 在区间[- 1,0]上是增函数, f(x)= 1 x 2 在区间[ 0,1]上是减函数.20.剖析:任取 x 1、x 2∈0,+且 x 1< x 2,则f(x 1)- f(x 2)=x 1 2 1 - x 2 2 1 - a(x 1- x 2)=x 1 2x 2 2 - a(x 1- x 2)x 121 x2 2112x 1x 2- a)=( x - x )(x 1 2 1x 221(1) 当 a ≥ 1 时,∵x 1x 2< 1,22x 1 1 x 21又∵ x 1- x 2< 0,∴ f(x 1)-f(x 2)> 0,即 f(x 1)> f(x 2)∴ a ≥ 1 时,函数 f(x)在区间[ 0,+∞ )上为减函数.(2) 当 0< a < 1 时,在区间[ 0,+∞]上存在x 1=0, x 2=2a,满足 f(x 1)=f(x 2)=11 a2∴ 0< a <1 时, f(x) 在[0,+上不是单调函数注: ①判断单调性老例思路为定义法;②变形过程中x 1x 2< 1 利用了21 >1 ≥ 121> x 2;x 1 2 1x 2 21x 1|x | x ;x 2③从 a 的范围看还须谈论 0< a <1 时 f(x)的单调性,这也是数学慎重性的表现.21.剖析: ∵ f(x)在 (- 2, 2)上是减函数∴由 f(m - 1)- f(1- 2m) >0,得 f(m - 1)> f(1- 2m)2 m 1 21 m 31 31212∴解得m21即m,∴ m 的取值范围是 (-, )2m 2,22 2 2 m 1 12m233m322.剖析:(1) 当 a= 1 时, f(x)= x +1+ 2, x ∈ 1,+∞ )22 x设 x 2 >x 1≥1,则 f(x 2 )- f(x 1)= x 2+ 1x1 =(x2 -x 1 )+ x1x 2=(x 2- x 1)(1 - 1 )2x 212 x 1 2 x 1 x 22 x 1 x 2∵x 2> x 1≥1, ∴ x 2- x 1> 0, 1- 1> 0,则 f(x 2)>f(x 1)2 x 1 x 2可知 f(x)在[ 1,+∞ )上是增函数.∴ f(x)在区间[ 1,+∞ ) 上的最小值为 f(1)=7 .2x22x a > 0恒成立x2+ 2x +a > 0 恒成立(2)在区间[ 1,+∞ ) 上, f(x)=x设 y=x 2+ 2x + a ,x ∈1,+∞ ) ,由 y=(x + 1)2+ a - 1 可知其在 [1,+∞ ) 上是增函数,当 x=1 时, y min =3+ a ,于是当且仅当 y min =3+ a > 0 时函数 f(x)> 0 恒成立.故 a >- 3.。

函数单调性__经典习题

函数单调性__经典习题

函数单调性一、 证明函数单调性解:解: )1)(1()(2)1)(1()1)(1()1)(1(1111)()(2112211221221121---=---+--+=-+--+=-x x x x x x x x x x x x x x x f x f 证明抽象函数单调性.,],[)()(.0)()()2(;0)()()1(],[)(),(3并给出证明上的单调性在判断减函数,为为增函数,间上:上都有意义,且在此区在区间、函数b a x g x f x g x g x f x f b a x g x f <> 解:.0)()(),()(00)()(),()(0],[212121212121>->><-<<<∈x g x g x g x g x f x f x f x f x x b a x x 即同理即,则有且、任取)]()()[()]()()[()()()()()()()()()()()()(212211222121112211x f x f x g x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f -+-=-+-=-从而.],[)()()()()()(0)()()()(0)]()()[(0)]()()[(22112211212211上的减函数为故函数,即则;显然b a x g x f x g x f x g x f x g x f x g x f x f x f x g x g x g x f >>->->- 4. 已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减 证明:(1)由f (x )+f (y )=f (xyyx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x x x --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减. 令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0, 即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数. 二、 求函数的单调区间)1(1)()(112212x x x x x f x f +-+=-.]1,0(1)(1上是减函数在、证明函数例xx x f +=.)(,]5,3[)2(),1()()1(.)1(11)(2的最小值和最大值求时当上是减函数;在证明、已知函数x f x x f x x x x f ∈+∞≠-+=1.的单调递;函数的单调递减区间是函数xy x y +==11______________1减区间是__________________. 解:的单调递减区间求得,利用设为的单调递减区间可将函数接ty t x x y 1,111.=++=.11得到的图象,从图象上观察也可画出xy +=2. .322的单调区间求函数+--=x x y解:∵-x 2-2x+3≥0 ∴x 2+2x-3≤0 ∴(x-1)(x+3)≤0 ∴-3≤x ≤1 32,2+--==x x u u y 设 则当x ∈[-3,-1]时,u=-x 2-2x+3单调递增 当x ∈[-1,1]时,u=-x 2-2x+3单调递减.]1,1[,32]1,3[02是它的单调递减区间的单调递增区间是时单调递增当又-+--=--∴≥=x x y u u y3. .log log 31231的单调区间求函数x x y += 解: .),3[,.log log ]3,0(,0log ,41)21(,30,21log ,2141)21(log 41)21(log 3123131231231231是函数的单调递增区间同理的单调递减区间是时单调递减当而单调递增时即当则设+∞+=∴>=-+=≤<-≥-≥-+==-+=x x y x x u u y x x u u y x u x y4. 函数f (x )(x ∈R )的图象如右图所示,求函数g (x )=f (log a x )(0<a <1)的单调减区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性
一、选择题
1. 下列函数中,在区间
上为增函数的是( ).
A .
B .
C .
D .
2.函数 的增区间是( )。

A .
B .
C .
D .
3. 在
上是减函数,则a 的取值范围是( )。

A .
B .
C .
D .
4.当
时,函数
的值有正也有负,则实数a 的取值范围是( )
A .
B .
C .
D .
5.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( )
(A )必是增函数 (B )必是减函数 (C )是增函数或是减函数
(D )无法确定增减性
6.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 ( )
A )2()3()(->->f f f π
B )3()2()(->->f f f π
C )2()3()(-<-<f f f π
D )3()2()(-<-<f f f π
7.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1
()3f 的x 取值范围是
A .(
13

23
) B .(∞-,
23
) C .(
12

23
) D .⎪⎭

⎝⎛+∞,32
8.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2
)<0, 则a 的取
值范围是( ) A.(22,3)
B.(3,10)
C.(22,4)
D.(-2,3)
9.若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩
是R 上的减函数,那么a 的取值范围是( )
A.(0,1)
B.1(0,)3
C.11
[,)73
D.1
[,1)7
10.已知函数f (x )=⎩
⎪⎨
⎪⎧
a x
, x <0,
(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2)
x 1-x 2
<0成
立,则a 的取值范围是
( )
A .(0,3)
B .(1,3)
C .(0,1
4
]
D .(-∞,3)
二、填空题
1.函数
,当
时,是增函数,当
时是减函数,则
f(1)=_____________ 2.已知
在定义域内是减函数,且
,在其定义域内判断下列函数的单调性:

( 为常数)是___________; ②
( 为常数)是___________;

是____________; ④
是__________.
3.函数f (x ) = ax 2
+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .
三、解答题
1.求函数
的单调递减区间.
2.证明函数x x x f 3)(3
+=在),(+∞-∞上是增函数
3.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

4.定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若
0)54()1(2
>-+--a f a a f ,求实数a 的范围。

5.设 是定义在
上的增函数, ,且
,求满
足不等式 的x 的取值范围.
6.已知f (x )的定义域为(0,+∞),且在其定义域内为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )-f (x -2)>3.
7.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1. (1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.。

相关文档
最新文档