《函数的单调性和奇偶性》经典例题

合集下载

高一函数单调性奇偶性经典练习题

高一函数单调性奇偶性经典练习题

函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法:121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>⇒⎧<⎨-<<⇒⎩+⇒⎧-⎧⎪⇒-⇒⎨⎨-⎩⎪-⇒⎩即单调增函数定义法(重点):在其定义域内有任意,且即单调增函数复合函数快速判断:“同增异减”增为减函数基本初等函数加减(设为增函数,为减函数):增为增函数减互为反.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩函数的两个函数具有相同的单调性例1 证明函数23()4x f x x +=-在区间(4)+∞,上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设12(4)x x ∈+∞,,且12x x <,1221121212232311()()()44(4)(4)x x x x f x f x x x x x ++--=-=---- 214x x >>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3x f x x -=+在区间(3)-+∞,上为减函数(定义法)练习2证明函数2()f x x =2()3-∞,上为增函数(定义法、快速判断法)练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法)练习4求函数()f x x =定义域,并求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用⎧⎪⎨⎪⎩单独考查单调性:结合单调函数变量与其对应函数值的关系求参数定义域与单调性结合:结合定义域与变量函数值关系求参数值域与单调性结合:利用函数单调性求值域 例1 若函数()f x 是定义在R 上的增函数,且2(2)(3)f x x f a +>+恒成立,数a 的围。

高中数学《函数的单调性与奇偶性》针对练习及答案

高中数学《函数的单调性与奇偶性》针对练习及答案

第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。

函数奇偶性和单调性(包含详细答案)

函数奇偶性和单调性(包含详细答案)

函数的奇偶性和单调性1.对任意实数x,下列函数中的奇函数是()A.y=2x-3 B.y=-3x2C.y=ln5x D.y=-|x|cos x答案 C2.对于定义在R上的任意奇函数f(x),均有()A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0C.f(x)·f(-x)>0 D.f(x)·f(-x)≤0答案 D解析∵f(-x)=-f(x),∴f(-x)f(x)=-f2(x)≤0.3.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是() A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数答案 A解析由f(x)是偶函数知b=0,∴g(x)=ax3+cx是奇函数.4.(2013·山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.2 B.1C.0 D.-2答案 D解析由f(x)为奇函数知f(-1)=-f(1)=-2.5.函数f(x)在定义域R上不是常数函数,且f(x)满足:对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),则f(x)是()A.奇函数但非偶函数B.偶函数但非奇函数C.既是奇函数又是偶函数D.非奇非偶函数答案 B解析依题意,得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数,所以f(-x+2)=f(-x).又f(2+x)=f(2-x),因此有f(-x)=f(x),即f(x)是偶函数;若f(x)是奇函数,则有f(-x)=-f(x)=f(x),得f(x)=0,这与“f(x)不是常数函数”相矛盾,因此f(x)是偶函数但不是奇函数,选B.6.(2011·湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()A.e x-e-x B.12(ex+e-x)C.12(e-x-e x) D.12(ex-e-x)答案 D解析由f(x)+g(x)=e x,可得f(-x)+g(-x)=e-x.又f(x)为偶函数,g(x)为奇函数,可得f(x)-g(x)=e-x,则两式相减,可得g(x)=e x-e-x2,选D.7.(2013·辽宁)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg2)+f(lg 12)=()A.-1 B.0C.1 D.2答案 D解析由已知,得f(-x)=ln(1+9x2+3x)+1,所以f(x)+f(-x)=2.因为lg2,lg 12互为相反数,所以f(lg2)+f(lg12)=2.8.f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x-2,则f(log126)的值等于()A.-43B.-72C.12D.-12答案 C解析f(log126)=-f(-log126)=-f(log26)9.(2014·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2 013)+f(-2 014)的值为()A.-2 B.-1C.1 D.2答案 C解析依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数.因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1.10.下列判断中正确的是________.①f(x)=(x)2是偶函数;②f(x)=x3是奇函数;③y=x0及y=(x-1)0都是偶函数;④f(x)=ln(1-x2-x)是非奇非偶函数;⑤f(x)=3-x2+91-|x|是偶函数.答案⑤11.函数f(x)=x3+sin x+1的图像关于________点对称.答案(0,1)解析f(x)的图像是由y=x3+sin x的图像向上平移一个单位得到的.12.(2014·金华十校联考)定义在R上的偶函数f(x)满足对任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]时,f(x)=4-x,则f(2 015)的值为________.答案 3解析∵f(4)=0,∴f(x+8)=f(x),∴T=8.∴f(2 015)=f(7)=f(-1)=f(1)=3.13.已知定义在R上的函数f(x)满足f(x)=-f(x+32),且f(1)=3,则f(2 014)=________.答案 3解析∵f(x)=-f(x+3 2),∴f(x+3)=f[(x+32)+32]=-f(x+32)=f(x).∴f(x)是以3为周期的周期函数.则f(2 014)=f(671×3+1)=f(1)=3.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________.答案-415.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-1),f(4),f(512)的大小关系是__________.答案f(512)<f(-1)<f(4)解析∵y=f(x+2)为偶函数,∴y=f(x)关于x=2对称.又y=f(x)在(-∞,2)上为增函数,∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5),∴f(512)<f(-1)<f(4).16.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0).其中正确的序号是________.答案①②⑤解析由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x).∴f(x)是周期为2的函数,①正确.f (x )关于直线x =1对称,②正确.f (x )为偶函数,在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确.17.设函数f (x )=x 3+x ,若0≤θ≤π2时,f (m cos θ)+f (1-m )>0恒成立,求实数m 的取值范围.答案 (-∞,1)解析 f (x )=x 3是R 上的奇函数与增函数,因此,由f (m cos θ)+f (1-m )>0,得f (m cos θ)>-f (1-m )=f (m -1),m cos θ>m -1,即m (1-cos θ)<1对任意θ∈[0,π2]恒成立.而当θ=0时,不等式m (1-cos θ)<1成立,当θ∈(0,π2]时,cos θ∈[0,1),1-cos θ∈(0,1],11-cos θ∈[1,+∞).由m (1-cos θ)<1,得m <11-cos θ,即m <1.因此,m 的取值范围是(-∞,1).18.若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.答案 -4解析 由题意知,当x >0时,F (x )≤8.∵f (x ),g (x )都是奇函数,且当x <0时,-x >0.∴F (-x )=af (-x )+bg (-x )+2=-af (x )-bg (x )+2=-[af (x )+bg (x )+2]+4≤8.∴af (x )+bg (x )+2≥-4.∴F (x )=af (x )+bg (x )+2在(-∞,0)上有最小值-4.。

高一数学必修1函数的单调性和奇偶性专题训练(题型全)

高一数学必修1函数的单调性和奇偶性专题训练(题型全)

专题 抽象函数的单调性和奇偶性一、选择题1.设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,32.若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( ) A . 2 B . 4 C . 6 D . 83.已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( )学=科网A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 4.已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( ) A . ()()()201f f f ->> B . ()()()102f f f >>- C . ()()()210f f f ->> D . ()()()120f f f >-> 5.已知偶函数在区间上单调递减,则满足的的取值范围是( )A .B .C .D .6. ()(),f x g x 是定义在R 上的函数, ()()()h x f x g x =+若()(),f x g x 均为奇函数则下列说法不正确的是( )A . 一定是奇函数B . 不可能是偶函数C . 可以是偶函数D . 不可能是非奇非偶函数7.若偶函数()f x 在(],0-∞上单调递减, ()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a <<8.已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1-D . 13,22⎡⎤⎢⎥⎣⎦9.【河北省定州市2016-2017学年期末】已知函数()f x 是定义在R 上的偶函数,在(],0-∞上有单调性,且()()21f f -<,则下列不等式成立的是 ( )A . ()()()123f f f -<<B . ()()()234f f f <<-C . ()()1202f f f ⎛⎫-<< ⎪⎝⎭D . ()()()531f f f <-<-二、填空题10.已知函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减,且()10f =. 若实数a满足()515log log f a f a ⎛⎫≥ ⎪⎝⎭, 则实数a 的取值范围是____________.11.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足的x 的取值范围是______________. 12.已知定义在上的函数满足,且,若,则实数的取值范围为______.学*科网13.定义在区间[]2,2-上的偶函数()g x ,当0x ≥时()g x 单调递减,若()()1g m g m -<,则实数m 的取值范围是____________.14.定义在R 上的偶函数()f x 在(),0-∞上是减函数且()10f =,则不等式12log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.15.已知()f x 是定义在R 上的偶函数,在[)0,+∞上单调增,且()21f =,则满足()11f x ->的x 的取值范围是_______________.16.已知定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-.若1132f ⎛⎫-= ⎪⎝⎭, 182log 1f x ⎛⎫< ⎪⎝⎭,则x 的取值范围为__________.三、解答题17.已知函数()y f x =是定义在()0,+∞上的增函数,对于任意的0,0x y >>,都有()()()f xy f x f y =+,且满足()21f =. (1)求()()14f f 、的值;(2)求满足()()32f x f x +->的x 的取值范围.18.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数; (3)解关于t 的不等式()221f t t -<.19.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数; (3)解关于t 的不等式()221f t t -<.20.若()f x 是定义在()0,+∞上的增函数,且对一切x , 0y >,满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭.(1)求()1f 的值;(2)若()61f =,解不等式()1323f x f ⎛⎫+-< ⎪⎝⎭.21.已知()f x 是定义在[]1,1-上的奇函数,且()11f =,若m , []1,1n ∈-, 0m n +≠时,有()()0f m f n m n+>+.(1)证明()f x 在[]1,1-上是增函数;(2)解不等式1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (3)若()221f x t at ≤-+对任意[]1,1x ∈-, []1,1a ∈-恒成立,求实数t 的取值范围. 22.函数()f x 的定义域为{|0}D x x =≠,且满足对任意12,x x D ∈,有()()1212f x x f x x ⋅=+)(. (1)求()1f 的值;(2)判断()f x 的奇偶性并证明你的结论;(3)如果()41f =, ()12f x -<,且()f x 在()0,+∞上是增函数,求x 的取值范围. 23.设函数()y f x =是定义在R 上的函数,并且满足下面三个条件:①对任意正数,x y ,都有()()()f xy f x f y =+;②当1x >时, ()0f x <;③()31f =-.(1)求()1f , 19f ⎛⎫⎪⎝⎭的值;(2)证明()f x 在()0,+∞上是减函数;(3)如果不等式()()22f x f x +-<成立,求x 的取值范围.24.已知函数()f x 满足:对任意,x y R ∈,都有()()()()()2f x y f x f y f x f y +=--+成立,且0x >时, ()2f x >,(1)求()0f 的值,并证明:当0x <时, ()12f x <<. (2)判断()f x 的单调性并加以证明.学-科网(3)若函数()()g x f x k =- 在(),0-∞上递减,求实数k 的取值范围. 25.已知函数的定义域为,若对于任意的实数,都有,且时,有.(1)判断并证明函数的奇偶性; (2)判断并证明函数的单调性;(3)设,若对所有,恒成立,求实数的取值范围.26.设()f x 是定义在R 上的奇函数,且对任意a b R ∈、,当0a b +≠时,都有()()0f a f b a b +>+.(1)若a b >,试比较()f a 与()f b 的大小关系;(2)若()()923290x x x f f k -+->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.专题7 抽象函数的单调性和奇偶性一、选择题1.【湖北省荆门市2016-2017学年期末】设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,3 【答案】D【解析】由题意可得()11,f -=,不等式()121f x -≤-≤可化为()()()121f f x f ≤-≤-,又因为()f x 是定义在(),-∞+∞上的单调递减函数,所以121,x ≥-≥-即13x ≤≤,选D .2.【山东省烟台市2016-2017学年期末】若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( ) A . 2 B . 4 C . 6 D . 8 【答案】C3.【内蒙古赤峰市2016-2017学年期末】已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( ) A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 【答案】B【解析】试题分析:偶函数()f x 在[)0,+∞上是减函数,则在(],0-∞上为增函数,由()()lg 1f x f >可知,得,故选项B 正确.考点:偶函数的单调性及其运用.【易错点睛】解答本题时考生容易错误的理解为:偶函数在整个定义域上的单调性是一致的,而列出不等式,解得,没有正确的选项可选.偶函数的图象关于y 轴对称,则其在原点两侧对称区间的单调性也是不同的,即一侧为单调增函数,则对称的另一侧为单调减函数.只有清楚了函数的单调性,才能正确的列出不等式,进而求出正确的解.4.【海南省东方中学2016-2017学年期中】已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( )A . ()()()201f f f ->>B . ()()()102f f f >>-C . ()()()210f f f ->>D . ()()()120f f f >-> 【答案】A5.【江西省玉山县第一中学2016-2017学年期中考】已知偶函数在区间上单调递减,则满足的的取值范围是( )A .B .C .D .【答案】B 【解析】,所以 的取值范围是,选B .点睛:利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内6.【安徽省蚌埠市2015-2016学年期中】()(),f x g x 是定义在R 上的函数, ()()()h x f x g x =+若()(),f x g x 均为奇函数则下列说法不正确的是( )A . 一定是奇函数B . 不可能是偶函数C . 可以是偶函数D . 不可能是非奇非偶函数 【答案】B【解析】选项A 中,当()3f x x =-, ()3g x x =时,则()0h x =既是奇函数也是偶函数;选项B 中,两个奇函数的和不能成为偶函数,显然成立;则选项C 、D 均不正确,故选B .点睛:此题主要考查两个函数的和的奇偶性判断,属于中高档题型,也是常考知识点.函数的奇偶性的判断应从两个方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性),二是看()f x 与()f x -的关系,对于两个函数的和或差的奇偶性的判断,需要对特殊情况进行考虑,如解析中的两个函数等.7.【青海省西宁市2017届检测】若偶函数()f x 在(],0-∞上单调递减,()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a << 【答案】B【解析】∵偶函数f (x )在(−∞,0]上单调递减, ∴f (x )在[0,+∞)上单调递增, ∵3224422log 3log 9log 5>>=>,∴()()3242log 5log 32f f f ⎛⎫<< ⎪⎝⎭,∴b <a <c . 本题选择B 选项.8.【江西省抚州市临川区第一中学2017届检测】已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1- D . 13,22⎡⎤⎢⎥⎣⎦【答案】C【解析】由函数奇偶性的定义可知2101b b b +-=⇒=-,所以函数()f x 在[]0,2单调递增,则不等式可化为1{1102x x x ≤⇒-≤≤≤≤,应选答案C 。

《函数的单调性和奇偶性》经典例题解析

《函数的单调性和奇偶性》经典例题解析

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

函数的单调性与奇偶性(基础题)

函数的单调性与奇偶性(基础题)

函数的单调性与奇偶性一、选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( )A .增函数B .减函数C .先减后增D .先增后减2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( )A .(-∞,5)B .(5,+∞)C .),53(+∞ D .)53,(-∞3.下列函数中,在区间(1,+∞)上为增函数的是( )A .y =-3x +1B .x y 2=C .y =x 2-4x +5D .y =|x -1|+24.设函数y =(2a -1)x 在R 上是减函数,则有( )A .21≥aB .21≤a C .21>a D .21<a1.二次函数y =ax 2+bx +c 的值如果总是负数,那么a ,b ,c 满足( ).A .a >0,b 2-4ac <0B .a >0,b 2-4ac >0C .a <0,b 2-4ac >0D .a <0,b 2-4ac <03、 下面哪个点不在函数y =-2x +3的图象上 ( )A 、(-5,13)B 、(0.5,2)C 、(3,0)D 、(1,1)4、下列各图表示的函数是y 是x 的函数的 ( )5、直线y =kx +b 经过一、二、四象限,则k 、b 应满足 ( )A 、k >0, b <0B 、k >0, b >0C 、k <0, b <0D 、k <0, b >06、关于函数12+-=x y ,下列结论正确的是 ( )A 、图象必经过点(﹣2,1)B 、图象经过第一、二、三象限C 、当21>x 时,0<y D 、y 随x 的增大而增大7、已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb <0,则在直角坐标系内它的图象是()A B C D9、一次函数y =x +1不经过的象限是( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限11、直线y =-x -2与直线y =x +3的交点为( )A 、(27,21) B 、(-25,21) C 、(0,-2) D 、(0,3) x y O A x y O B xyO D x y O12、一次函数b kx y +=,经过(1,1)、(2,4-) ,则k 与b 的值为 ( )A 、⎩⎨⎧-==23b kB 、⎩⎨⎧=-=43b kC 、⎩⎨⎧=-=65b kD 、⎩⎨⎧-==56b k5.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |; ;1)(xx x f +=③ ④y =x 3(x ∈R ) 奇函数的个数是( )A .1个B .2个C .3个D .4个6.对于定义域为R 的任意奇函数f (x )一定有( )A .f (x )-f (-x )>0B .f (x )-f (-x )≤0C .f (x )·f (-x )<0D .f (x )·f (-x )≤07.下面四个结论中,正确命题的个数是( )①偶函数的图象一定与y 轴相交②奇函数的图象一定通过原点③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A .1B .2C .3D .4二、填空题5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____.6.函数])2,1[(12∈-=x x x y 的值域是______.17、函数y =x 的取值范围是 ,y =中自变量x 的取值范围是 ,11y x =-的自变量的取值范围是_________; 19、一次函数y =-3x +6的图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 ;23、已知)2()3(m x m y -+-=,y 随x 的增大而减少,并且与y 轴的交点在y 轴的负半轴,则m 的取值范围是 ;7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有0)()(<--y x y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数).8.若函数y =ax 和x b y -=在区间(0,+∞)上都是减函数,则函数1+=x ab y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.10.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。

《函数的单调性和奇偶性》经典例题

《函数的单调性和奇偶性》经典例题

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

函数的奇偶性与单调性经典练习题

函数的奇偶性与单调性经典练习题

函数的奇偶性与单调性【基础训练】1.在下列命题中,正确的是 ( )A .函数y = 1x 是奇函数,且在定义域内为减函数B .函数y =3x 3(x -1)0是奇函数,且在定义域内为增函数C .函数y = x 2是偶函数,且在(-3,0)上为减函数D .函数y = ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数2.定义在(a ,c )上的函数f (x ),在区间(a ,b )及(b ,c )上均为增函数,函数f (x )在区间(a ,c )上是否为增函数如何?请举例说明 .3.下列函数中是偶函数的为 ( ) A .f (x ) = x 2|x |(x ∈(-1,1]) B .f (x ) = xx +21C .f (x ) = lgxx-+11 D .f (x ) = ⎩⎨⎧x ,x ≥0-x ,x <04.给出下列四个函数:①f (x )=1-x 2;②f (x )= -3x +1;③f (x )=x 2;④f (x )=12--x x x .其中既是奇函数又是定义域上的减函数的函数个数是 ( )A .0B .1C .2D .35.已知xa x a x f -+-=2log )(3是奇函数,则a a20032003+= . 【例题讲解】 例1 试判断下列函数的奇偶性:(1)f (x )=|x +2| + |x -2|;(2)f (x )2|2|22-+-=x x ;(3)0)1(||)(-=x x x x f .变题1 函数2)1ln()(xe xf x-+=是 ( ) A .奇非偶函数 B .偶非奇函数 C .既奇又偶函数 D .非奇非偶函数变题2: 定义在R 上的任意函数f (x )都可以表示为一个奇函数g (x )和一个偶函数h (x )之和,若f (x )=lg(10x +1),则 ( )A .g (x ) = x ,h (x ) = lg(10x+ 10– x+2)B .g (x ) = ])110[lg(21x x++,h (x ) = ])110[lg(21x x-+C .g (x ) =2x ,h (x ) = lg(10x+1) - 2xD .g (x ) = -2x ,h (x ) = lg(10x+1) - 2x 例2 已知定义在(-∞,+∞)上的函数f (x )的图像关于原点对称,且当x >0时,f (x )= x 2-2x +2,求函数f (x )的解析式.变题1 已知函数211)(xa x x f ---=是奇函数,则实数a 的值为 ( )A .1-B .1C .21-D .21变题2 )(x f 是定义域为R 的奇函数,方程0)(=x f 的解集为M ,且M 中有有限个元素,则M ( )A .可能是∅B .中元素个数是偶数C .中元素个数是奇数D .中元素个数可以是偶数,也可以是奇数 例3 函数f (x ) = log 3(x 2-2x -8)的单调减区间为__________。

函数的单调性及奇偶性经典练习及答案

函数的单调性及奇偶性经典练习及答案

[基础巩固]1.(多选)下面四个选项,不正确的有( )A .偶函数的图象一定与y 轴相交B .奇函数的图象一定通过原点C .偶函数的图象关于y 轴对称D .既是奇函数又是偶函数的函数一定是f (x )=0(x ∈R ).解析 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x 2,故A 错误,C 正确.奇函数的图象关于原点对称,但不一定经过原点,如y =1x,故B 错误.若y =f (x )既是奇函数又是偶函数,由定义可得f (x )=0,但未必x ∈R ,如f (x )=1-x 2+x 2-1,其定义域为{-1,1},故D 错误.故选A 、C 、D.答案 ACD2.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1解析 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数.∴f (-x )=-f (x )=x +1,∴f (x )=-x -1(x <0).答案 B3.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=________. 解析 当x >0时,f (x )=x 2+1x, ∴f (1)=12+11=2. ∵f (x )为奇函数,∴f (-1)=-f (1)=-2.答案 -24.若f (x )为R 上的奇函数,给出下列四个说法:①f (x )+f (-x )=0;②f (x )-f (-x )=2f (x );③f (x )·f (-x )<0;④f (x )f (-x )=-1. 其中一定正确的为________.(填序号)解析 ∵f (x )在R 上为奇函数,∴f (-x )=-f (x ).∴f (x )+f (-x )=f (x )-f (x )=0,故①正确.f (x )-f (-x )=f (x )+f (x )=2f (x ),故②正确.当x =0时,f (x )·f (-x )=0,故③不正确.当x =0时,f (x )f (-x )分母为0,无意义,故④不正确. 答案 ①②5.函数f (x )=x 3-x 图象的一部分如图所示,根据f (x )的奇偶性画出它在y 轴左侧的图象.解析 函数f (x )=x 3-x 的定义域是R ,定义域关于坐标原点对称,对任意的x ∈R ,都有f (-x )=(-x )3-(-x )=-(x 3-x )=-f (x ),∴f (x )=x 3-x 是奇函数.∴函数的图象关于原点对称.将函数f (x )=x 3-x 图象上位于y 轴右侧的部分作关于原点对称的对称图象,得函数f (x )=x 3-x 在y 轴左侧的图象,如图所示.[能力提升]6.(2022·珠海模拟)已知f ()x 是R 上的偶函数,在(-∞,0]上单调递增,且f (2)=0,则下列不等式成立的是( )A .0<f ()1<f ()5<f ()-3B .f ()5<f ()-3<0<f ()1C .f ()-3<f ()-1<0<f ()1D .f ()-3<0<f ()1<f ()5解析 因为f ()x 是R 上的偶函数,在(-∞,0]上单调递增,所以f ()x 在()0,+∞上单调递减,f ()-3=f (3).又f (2)=0,且1<2<3<5,f ()x 在(0,+∞]上单调递减,所以f ()1>f ()2>f ()3>f ()5,即f ()5<f ()-3<0<f ()1.故选B.答案 B7.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析 因为f (x )为奇函数,f (x )-f (-x )x<0, 即f (x )x<0, 因为f (x )在(0,+∞)上为减函数且f (1)=0,所以当x >1时,f (x )<0.因为奇函数图象关于原点对称,所以在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上,使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 答案 C8.已知函数f (x )=x +m x 2+nx +1是定义在(-1,1)上的奇函数,则常数m ,n 的值分别为________.解析 由题意知f (0)=0,故得m =0.由f (x )是奇函数知f (-x )=-f (x ),即-x x 2-nx +1=-x x 2+nx +1, ∴x 2-nx +1=x 2+nx +1,∴n =0.答案 0,09.已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 取值范围是________.解析 偶函数f (x )在区间[0,+∞)上单调递增,所以函数f (x )在区间(-∞,0]上单调递减.由于f (x )是偶函数,所以f (-x )=f (x ),则f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫13. 由f (2x -1)<f ⎝⎛⎭⎫13,得⎩⎪⎨⎪⎧ 2x -1≥0,2x -1<13①或⎩⎪⎨⎪⎧ 2x -1<0,2x -1>-13②, 解①得12≤x <23,解②得13<x <12. 综上,得13<x <23,故x 的取值范围是⎝⎛⎭⎫13,23. 答案 ⎝⎛⎭⎫13,2310.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数. (1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].[探索创新]11.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0.(1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解析 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f(x)为R上的增函数,因为f(1+m)+f(3-2m)≥0,所以f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),所以1+m≥2m-3,所以m≤4.所以实数m的取值范围为(-∞,4].。

函数单调性及奇偶性练习(含答案)

函数单调性及奇偶性练习(含答案)

1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 2、已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)3、函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数4、若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-35、已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <, 则 ( )A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-6、定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( )A.(0,1) B.(-2,1) C.[0,1] D.[-2,1]7、已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x) 是减函数,如果不等式f(1-m)<f(m)成立,求实数m的取值范围.( ) A.1[1,)2- B.[1,2] C.[-1,0] D.(11,2-) 8、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 ( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞9、已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根 之和为________10、已知偶函数y =f(x)在区间[0,4]上是单调增函数,则f(-3)与f(π)的大小关系是__________11、若定义在R 上的函数f(x)满足:对任意x 1、x 2∈R 有f(x 1+x 2)=f(x 1)+f(x 2)+1,则下列 说法一定正确的序号是__________.①f(x)为奇函数 ;②f(x)为偶函数 ;③f(x)+1为奇函数 ;④f(x)+1为偶函数12、若(1)()()x x a f x x++=是奇函数,则a =___13、已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是________.14、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为15、 设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.16、设函数f(x)=21xb ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f ( t -1)+ f (t) < 0。

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。

8函数的单调性、奇偶性(习题课)

8函数的单调性、奇偶性(习题课)

函数的单调性、奇偶性〔习题课〕教学目标:理解函数的单调性与奇偶性的概念,会判断一些简单函数的单调性与奇偶性。

能利用函数的单调性与奇偶性解决相关问题。

进一步强化数形结合思想。

教学重点:函数单调性与奇偶性的灵活应用教学难点:函数单调性与奇偶性的灵活应用教学过程:一、基础训练:1、f〔x〕=ax5+bx3+cx+2,且f〔2〕=3,那么f〔-2〕=_______________.2、设f〔x〕是定义在R上的偶函数,当x>0时,f〔x〕=x2+1,那么f〔-2〕=______________3、〔1〕f〔x〕=x2+mx+2在[ 1,+∞]上单调递增,那么m∈__________.〔2〕f〔x〕=ax,g〔x〕=bx-在〔-∞,0〕上都是减函数,那么h〔x〕= ax2+bx在〔0,+∞〕上是________函数〔增或减〕.4、设奇函数f〔x〕的定义域为[-5,5 ],假设x∈[ 0,5 ] 时,f〔x〕的图象如图所示,那么不等式f〔x〕<0的解集是_______________________________.二、例题讲解:例1、f〔x〕为〔-∞,+∞〕上单调增函数,且f〔m+1〕-f〔2m-1〕>0,求m的范围。

小结:例2、函数f〔x〕=x2+mx+1是偶函数,求实数m的值。

小结:*例3、f〔x〕为定义在R上的偶函数,且在[0,+∞〕上为单调增函数,试判断f〔x〕在〔-∞,0〕上的单调性,并证明。

小结:三、练习巩固:1、假设函数f〔x〕是定义在R上的偶函数,在〔-∞,0]上是减函数,且f 〔2〕=0,那么使得f〔x〕< 0 的x的取值范围是________________________.2、〔1〕f〔x〕、g〔x〕都为R上的奇函数,那么f〔x〕+g〔x〕为________函数。

〔2〕f〔x〕、g〔x〕都为R上的增函数,那么f〔x〕+g〔x〕为________函数,f [ g〔x〕]为_________函数。

专题18 函数单调性和奇偶性的综合应用(解析版)

专题18 函数单调性和奇偶性的综合应用(解析版)

专题17 函数单调性和奇偶性的综合应用1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|【答案】B【解析】∵y=x3在定义域R上是奇函数,∴A不对;y=-x2+1在定义域R上是偶函数,但在(0,+∞)上是减函数,故C不对;D中y=2-|x|=|x|虽是偶函数,但在(0,+∞)上是减函数,只有B对.2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数【答案】D3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数【答案】C【解析】因为f(-x)=-3x+=-(3x-)=-f(x),又因为f(x)在(0,+∞)上是增函数,所以f(x)是奇函数,且在(0,+∞)上是增函数.4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数【答案】A【解析】因为f(1+x)=f(1-x),所以函数f(x)的图象关于直线x=1对称,又f(x)为偶函数,且在[1,2]上是增函数,所以f(x)在[-1,0]上是增函数.5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数【答案】C【解析】A错误.设f(x)=x,是增函数,但f(x)+f(-x)=x-x=0是常数函数;同理B错误;C正确.设g(x)=f(x)-f(-x),则g(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-g(x),函数g (x)是奇函数.任取x1,x2∈R,且x1<x2,则-x1>-x2,g(x1)=f(x1)-f(-x1),g(x2)=f(x2)-f(-x2),因为f(x)是定义在R上的增函数,所以f(x1)<f(x2),f(-x1)>f(-x2),即-f(-x1)<-f(-x2).所以f(x1)-f(-x1)<f(x2)-f(-x2),即g(x1)<g(x2).所以函数g(x)=f(x)-f(-x)是增函数;D错误.故选C.6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)【答案】D【解析】∵当x≥0时,f(x)=x+1是增函数,∴f(1)<f(2),又∵f(x)为偶函数,∴f(1)=f(-1),f(2)=f(-2),∴D对.7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)【答案】B【解析】∵对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,∴函数f(x)在(-∞,-1]上单调递减,∴f(-2)>f>f(-1).又∵f(x)是偶函数,∴f(-2)=f(2).∴f(-1)<f<f(2).8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合.设a>b>0,给出下列不等式()①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④【答案】C【解析】因为函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,所以函数g(x)在[0,+∞)上是增函数,在(-∞,0)上是减函数.a>b>0,f(a)>f(b),g(a)>g(b),所以f(a)+g(a)>f(b)+g(b);对于①:f(b)-f(-a)>g(a)-g(-b),即f(b)+f(a)>g(a)-g(b).正确;则②错误;对于③:f(a)-f(-b)>g(b)-g(-a),即f(a)+f(b)>g(b)-g(a).正确;则④错误.故选C.9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)【答案】C【解析】由(x2-x1)[f(x2)-f(x1)]>0,得f(x)在x∈(-∞,0]上为增函数.又f(x)为偶函数,∴f(x)在x∈[0,+∞)上为减函数.又f(-n)=f(n)且0≤n-1<n<n+1,∴f(n+1)<f(n)<f(n-1),即f(n+1)<f(-n)<f(n-1).10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】A【解析】因为函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,所以可画出符合条件的奇函数f(x)的图象,如图所示.因为x·f(x)<0,所以或结合图象,得到答案为A.11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)【答案】C【解析】g(x)=f(x-2)是把函数f(x)向右平移2个单位得到的,且g(2)=f(0),f(-4)=g(-2)=-g(2)=0,f(-2)=g(0)=0,所以函数f(x)的图象关于点(-2,0)对称,所以当x≤-4或x≥-2时xf(x)≤0成立.12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)【答案】C【解析】因为函数f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,所以函数f(x)在(0,+∞)内也是减函数,且f(2)=0.则不等式x·f(x)<0可化为或解得x<-2或x>2.13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).【答案】③【解析】将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n 的大小关系是________.【答案】m≥n【解析】因为a2+2a+=(a+1)2+≥,又f(x)在[0,+∞)上是减函数,所以f≤f=f.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.【答案】(-∞,0]【解析】∵f(x)为偶函数,∴图象关于y轴对称,即k=1,此时f(x)=-x2+3,其单调递增区间为(-∞,0].17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.【答案】(1)因为函数f(x)的图象关于原点对称,所以f(x)为奇函数,则f(0)=0.设x<0,则-x>0,因为x>0时,f(x)=x2-2x+3.所以f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3.于是有f(x)=(2)先画出函数在y轴右侧的图象,再根据对称性画出y轴左侧的图象,如图.由图象可知函数f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式. 【答案】∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.【答案】(1)显然f(x)的定义域是R.设任意x∈R,因为f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),所以函数f(x)是奇函数.(2)在区间(-1,1)上任取x1,x2,且x1<x2,则f(x2)-f(x1)=-(x2-x1)(+x2x1+)+3(x2-x1)=(x2-x1)(3--x2x1-).因为-1<x1<x2<1,所以x2-x1>0,(3--x2x1-)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.【答案】(1)∵f(x)为奇函数,∴f(-x)=-f(x),∴-ax-+c=-ax--c,∴c=0,∴f(x)=ax+.又∵f(1)=,f(2)=,∴∴a=2,b=.综上,a=2,b=,c=0.(2)由(1)可知f(x)=2x+.函数f(x)在区间上为减函数.证明如下:任取0<x1<x2<,则f(x1)-f(x2)=2x1+-2x2-=(x1-x2)=(x1-x2).∵0<x1<x2<,∴x1-x2<0,2x1x2>0,4x1x2-1<0.∴f(x1)-f(x2)>0,f(x1)>f(x2).∴f(x)在上为减函数.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.【答案】(1)如图.单调增区间:[-1,0],[1,+∞),单调减区间(-∞,-1],[0,1].(2)在同一坐标系中同时作出y=f(x),y=-2a的图象,由图可知f(x)+2a=0有两个解,须-2a=0或-2a>1,即a=0或a<-.(3)当x<0时,-x>0,所以g(-x)=(-x)2-(-2x)+1=x2+2x+1,因为g(x)为奇函数,所以g(x)=-g(-x)=-x2-2x-1,且g(0)=0,所以g(x)=22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.【答案】(1)定义域(-∞,0)∪(0,+∞),关于原点对称.当a=0时,f(x)=,满足对定义域上任意x,f(-x)=f(x),∴当a=0时,f(x)是偶函数;当a≠0时,f(1)=a+1,f(-1)=1-a,若f(x)为偶函数,则a+1=1-a,a=0矛盾;若f(x)为奇函数,则1-a=-(a+1),1=-1矛盾,∴当a≠0时,f(x)是非奇非偶函数.(2)任取x1>x2≥3,f(x1)-f(x2)=ax1+-ax2-=a(x1-x2)+=(x1-x2)(a-). ∵x1-x2>0,f(x)在[3,+∞)上为增函数,∴a>,即a>+在[3,+∞)上恒成立.∵x1>x2≥3,+<+=,∴a≥.。

函数单调性与奇偶性典型例题讲解

函数单调性与奇偶性典型例题讲解
精品课件
1.函数 y=f(x)在区间[2a-3,a]上具有奇偶性,则 a= ________.
解:由题意知,区间[2a-3,a]关于原点对称, ∴2a-3=-a,且 2a-3<-a,解之得 a=1.
【答案】 1
精品课件
3.已知函数 y=f(x)是 R 上的奇函数,且当 x>0 时,f(x) =1,则 f(-2)的值为________. 解:∵当 x>0 时,f(x)=1,∴f(2)=1,
精品课件
1.利用奇偶函数图象的对称性,我们可以作出函 数的大致图象,然后观察图象得出结论.
2.已知奇偶函数在某个区间上的解析式,我们利 用对称性可求出这个区间的对称区间上的解析式.要注 意“求谁设谁”.
精品课件
3.解含“f”的不等式,应具备两个方面: 一是能转化为 f(x1)<f(x2)或 f(x1)>f(x2)的形式; 二是 f(x)的单调性已知.特别是 f(x)为偶函数时, 应把不等式 f(x1)<f(x2)转化为 f(|x1|)<f(|x2|)的形 式,利用 x∈[0,+∞)的单调性求解.
又 f(x)是奇函数, ∴f(-2)=-f(2)=-1. 【答案】 -1
精品课件
4.已知 f(x)=ax3-bx+1(a,b∈R),若 f(-2)=-1, 则 f(2)的值=___3______.
解:易见 f(2)=8a-2b+1,………① f(-2)=-8a+2b+1,……②
x<0 x=0

x3+x+1, x>0
精品课件
1.本题在求 x<0 时,f(x)的解析式,用了化归的思想, 即把待求 x<0 的范围向已知范围 x>0 转化.
2.如果奇函数 f(x)在原点处有定义,则 f(0)=0.
精品课件

(完整版)函数的单调性和奇偶性练习题

(完整版)函数的单调性和奇偶性练习题

—函数的单调性和奇偶性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在(0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈[-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高中数学函数的奇偶性与单调性练习试题

高中数学函数的奇偶性与单调性练习试题

函数的奇偶性与单调性一.选择题1.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)2.已知f(x)为R上的减函数,则满足f()>f(1)的实数x的取值范围是()A.(﹣∞,2) B.(2,+∞)C.(﹣∞,1)∪(1,2) D.(﹣∞,1)∪(2,+∞)3.若函数y=f(x)+cosx在[﹣]上单调递减,则f(x)可以是()A.1 B.﹣sinx C.cosx D.sinx4.已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ) B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ) D.f(sinα)<f(cosβ)5.已知函数f(x)=x在[0,1)上的最大值为m,在(1,2]上的最小值为n,则m+n=()A.﹣2 B.﹣1 C.1 D.22≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()6.若xlog5A.﹣4 B.﹣3 C.﹣1 D.0二.填空题7.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a>),当x ∈(﹣2,0)时,f(x)的最小值为1,则a的值等于.8.设f(x)是R上的奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是.9.奇函数f(x)的定义域为(﹣5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为.10.设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].如果f(x)=为闭函数,那么k的取值范围是.11.如果对定义在R上的函数f(x),以任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sin x﹣cos x);③y=e x+1;④f(x)=以上函数是“H函数”的所有序号为.12.已知函数f(x)=在区间(﹣∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是.13.13.若函数f(x)=|e x+|在[0,1]上单调递减,则实数a的取值范围是.14.已知函数为减函数,则a的取值范围是.15.设奇函数f(x)在[﹣1,1]上是增函数,f(﹣1)=﹣1.若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是.三.解答题16.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2018(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.17.已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=﹣x2+bx+c,若f(1)=f(3),f(2)=2.(1)求b,c的值;(2)求f(x)在x<0时的表达式.18.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).(1)求f(0),f(1);(2)求函数f(x)的解析式.19.已知函数f(x)=kx+log(9x+1)(k∈R)是偶函数.9(1)求k的值;(a•3x﹣a)的图象与f(x)的图象有且只有一个公(2)若函数g(x)=log9共点,求a的取值范围.20.已知函数f(x)=e x﹣e﹣x(x∈R,e=2.71828…)(Ⅰ)求证:函数f(x)为奇函数;(Ⅱ)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.21.已知定义在实数集上的奇函数f(x),当x∈(0,1)时,f(x)=.(1)求函数f(x)在(﹣1,1)上的解析式;(2)判断函数f(x)在(0,1)上的单调性并加以证明;(3)当λ取何值时,方程f(x)=λ在上(﹣1,1)有实数解?22.已知函数是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并用定义证明;(3)求函数的值域.23.已知定义在R上的函数f(x)=2x﹣a•2﹣x为奇函数.(1)求a的值,并判断f(x)的单调性(不用给证明);(2)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.24.如果奇函数f(x)是定义域(﹣1,1)上的减函数,且f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围.25.已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.26.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.27.已知定义域为R的单调函数f(x)是奇函数,当x>0时,f(x)=﹣2x (Ⅰ)求f(﹣1)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k 的取值范围.28.已知函数.(1)判断函数f(x)的奇偶性,并给出证明;(2)解不等式:f(x2+x+3)+f(﹣2x2+4x﹣7)>0;(3)若函数g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,比较f(2)+f (4)+…+f(2n)与2n(n∈N*)的大小关系,并说明理由.29.已知函数f(x)=的定义域上的奇函数,且f(2)=﹣,函数g(x)是R上的增函数,g(1)=1且对任意x,y∈R,总有g(x+y)=g(x)+g(y)(Ⅰ)求函数f(x)的解析式(Ⅱ)判断函数f(x)在(1,+∞)上的单调性,并加以证明(Ⅲ)若g(2a)>g(a﹣1)+2,求实数a的取值范围.(1﹣x).30.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og2(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.函数的奇偶性与单调性参考答案与试题解析一.选择题(共6小题)1.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.2.已知f(x)为R上的减函数,则满足f()>f(1)的实数x的取值范围是()A.(﹣∞,2) B.(2,+∞)C.(﹣∞,1)∪(1,2)D.(﹣∞,1)∪(2,+∞)【分析】由f(x)为R上的减函数便可根据条件得出,这样解该不等式即可得出实数x的取值范围.【解答】解:∵f(x)为R上的减函数;∴由得:;解得x<1,或x>2;∴x的取值范围是(﹣∞,1)∪(2,+∞).故选D.【点评】考查减函数的定义,根据减函数定义解不等式的方法,以及分式不等式的解法.3.若函数y=f(x)+cosx在[﹣]上单调递减,则f(x)可以是()A.1 B.﹣sinx C.cosx D.sinx【分析】显然y=cosx在上没有单调性,从而说明y=1+cosx和y=2cosx在[]上没有单调性,即说明选项A,C错误.而f(x)=﹣siinx 时,可以得到y=,可换元令=t,,可以说明在[]上单调递减,从而得出选项B正确,同样的方法说明选项D错误.【解答】解:A.若f(x)=1,则y=1+cosx,显然cosx在[]上没有单调性;∴y=1+cosx在[]上没有单调性,即该选项错误;B.若f(x)=﹣sinx,则y=﹣sinx+cosx=﹣sin();令,,则:sint在上单调递增;∴y=在上单调递减;∴y=﹣sinx+cosx在[]上单调递减,即该选项正确;C同A,可说明C选项错误,D同B可说明D选项错误.故选B.【点评】考查正、余弦函数的单调性,根据图象判断函数单调性的方法,要熟悉正余弦函数的图象,以及换元法判断函数单调性.4.已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【分析】由“奇函数y=f(x)在[﹣1,0]上为单调递减函数”可知f(x)在[0,1]上为单调递减函数,再由“α、β为锐角三角形的两内角”可得到α+β>,转化为>α>﹣β>0,两边再取正弦,可得1>sinα>sin(﹣β)=cosβ>0,由函数的单调性可得结论.【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.【点评】题主要考查奇偶性和单调性的综合运用,还考查了三角函数的单调性.属中档题.5.已知函数f(x)=x在[0,1)上的最大值为m,在(1,2]上的最小值为n,则m+n=()A.﹣2 B.﹣1 C.1 D.2【分析】通过变形可知f(x)=1++sinπx,进而可知当x∈[0,1)时,函数g(x)=+sinπx满足g(2﹣x)=﹣g(x),由此可知在区间[0,1)∪(1,2]上,函数f(x)关于点(1,1)中心对称,利用对称性即得结论.【解答】解:f(x)=x=1++sinπx,记g(x)=+sinπx,则当x∈[0,1)时,g(2﹣x)=+sinπ(2﹣x)=﹣sinπx,即在区间[0,1)∪(1,2]上,函数f(x)关于点(1,1)中心对称,∴m+n=2,故选:D.【点评】本题考查函数的最值及其几何意义,考查函数的奇偶性,考查运算求解能力,注意解题方法的积累,属于中档题.6.(2017•广西一模)若xlog52≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4 B.﹣3 C.﹣1 D.0【分析】由条件求得x≥﹣log25,令t=2x(t≥),即有y=t2﹣2t﹣3,由二次函数的最值求法,即可得到最小值.【解答】解:xlog52≥﹣1,即为x≥﹣log25,2x≥,令t=2x(t≥),即有y=t2﹣2t﹣3=(t﹣1)2﹣4,当t=1≥,即x=0时,取得最小值﹣4.故选:A.【点评】本题考查可化为二次函数的最值的求法,注意运用换元法和指数函数的单调性,考查运算能力,属于中档题.二.填空题(共9小题)7.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a>),当x ∈(﹣2,0)时,f(x)的最小值为1,则a的值等于 1 .【分析】根据函数的奇偶性,确定f(x)在(0,2)上的最大值为﹣1,求导函数,确定函数的单调性,求出最值,即可求得a的值.【解答】解:∵f(x)是奇函数,x∈(﹣2,0)时,f(x)的最小值为1,∴f(x)在(0,2)上的最大值为﹣1,当x∈(0,2)时,f′(x)=﹣a,令f′(x)=0得x=,又a>,∴0<<2,令f′(x)>0,则x<,∴f(x)在(0,)上递增;令f′(x)<0,则x>,=f()=ln﹣a•=﹣1,∴ln=0,∴f(x)在(,2)上递减,∴f(x)max得a=1.故答案为:1.【点评】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.8.设f(x)是R上的奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是(﹣3,0)∪(0,3).【分析】由x•f(x)<0对x>0或x<0进行讨论,把不等式x•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,把函数值不等式转化为自变量不等式,求得结果.【解答】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴x•f(x)<0的解集是(﹣3,0)∪(0,3)故答案为:(﹣3,0)∪(0,3).【点评】考查函数的奇偶性和单调性解不等式,体现了分类讨论的思想方法,属基础题.9.(2017•陕西校级模拟)奇函数f(x)的定义域为(﹣5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为(﹣2,0)∪(2,5).【分析】由奇函数的图象关于原点对称便可得出f(x)在(﹣5,0]上的图象,这样根据f(x)在(﹣5,5)上的图象便可得出f(x)<0的解集.【解答】解:根据奇函数的图象关于原点对称得出f(x)在(﹣5,0]上的图象如下所示:∴f(x)<0的解集为(﹣2,0)∪(2,5).故答案为:(﹣2,0)∪(2,5).【点评】考查奇函数的概念,奇函数图象的对称性,由函数图象解不等式f(x)<0的方法.10.设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].如果f(x)=为闭函数,那么k的取值范围是.【分析】函数f(x)=是[,+∞)上的增函数,因此若函数f(x)=为闭函数,则可得函数y=f(x)的图象与直线y=x相交于点(a,a)和(b,b).因此方程k=x﹣在[,+∞)上有两个不相等的实数根a、b.最后采用换元法,讨论二次函数的单调性,可得f(x)=为闭函数时,实数k的取值范围是:.【解答】解:∵k是常数,函数y=是定义在[,+∞)上的增函数,∴函数f(x)=是[,+∞)上的增函数,因此,若函数f(x)=为闭函数,则存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].可得函数y=f(x)的图象与直线y=x相交于点(a,a)和(b,b)(如图所示)∴,可得方程k=x﹣在[,+∞)上有两个不相等的实数根a、b令t=,得x=,设函数F(x)═x﹣=g(t),(t≥0)即g(t)=t2﹣t﹣,在t∈[0,1]时,g(t)为减函数﹣1≤g(t)≤;在t∈[1,+∞)时,g(t)为增函数g(t)≥﹣1;∴当时,有两个不相等的t值使g(t)=k成立,相应地有两个不相等的实数根a、b满足方程k=x﹣,当f(x)=为闭函数时,实数k的取值范围是:.故答案为:【点评】本题以含有根式的函数为例,探求函数为闭函数时参数k的取值范围,着重考查了函数的单调性、换元法讨论二次函数等知识点,属于中档题.11.如果对定义在R上的函数f(x),以任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sin x﹣cos x);③y=e x+1;④f(x)=以上函数是“H函数”的所有序号为②③.【分析】不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.【解答】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数.对于①y=﹣x3+x+1;y′=﹣3x2+1,则函数在定义域上不单调;对于②y=3x﹣2(sinx﹣cosx);y′=3﹣2(cosx+sinx)=3﹣2sin(x+)>0,函数单调递增,满足条件;对于③y=e x+1为增函数,满足条件;④f(x)=,当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.【点评】本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.12.已知函数f(x)=在区间(﹣∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是[﹣1,0] .【分析】根据二次函数的性质以及对数函数的性质求出a的范围即可.【解答】解:由y=x2在(﹣∞,0)递减,故a≤0,由x+1>0,解得:x>﹣1,故a≥﹣1,故答案为:[﹣1,0].【点评】本题考查了二次函数以及对数函数的性质,考查函数的单调性问题,是一道基础题.13.若函数f(x)=|e x+|在[0,1]上单调递减,则实数a的取值范围是(﹣∞,﹣e2]∪[e2,+∞).【分析】可看出,为去掉绝对值号,需讨论a:(1)a>0时,得出,求导数,根据题意f′(x)≤0在x∈[0,1]上恒成立,从而得到a≥e2x在x∈[0,1]上恒成立,从而得出a≥e2;(2)a=0时,显然不满足题意;(3)a<0时,可看出函数在R上单调递增,而由可解得,从而得出f(x)在上单调递减,从而便可得出,这又可求出一个a的范围,以上a的范围求并集便是实数a的取值范围.【解答】解:(1)当a>0时,,;∵f(x)在[0,1]上单调递减;∴x∈[0,1]时,f′(x)≤0恒成立;即x∈[0,1]时,a≥e2x恒成立;y=e2x在[0,1]上的最大值为e2;∴a≥e2;(2)当a=0时,f(x)=e x,在[0,1]上单调递增,不满足[0,1]上单调递减;∴a≠0;(3)当a<0时,在R上单调递增;令得,;∴f(x)在上为减函数,在上为增函数;又f(x)在[0,1]上为减函数;∴;∴a≤﹣e2;∴综上得,实数a的取值范围为(﹣∞,﹣e2]∪[e2,+∞).故答案为:(﹣∞,﹣e2]∪[e2,+∞).【点评】本题考查指数函数的值域,函数单调性和函数导数符号的关系,考查增函数和减函数的定义、反比例函数的单调性、以及对数的运算性质.14.已知函数为减函数,则a的取值范围是(0,] .【分析】由题意可知,y=a x递减,y=(a﹣3)x+4a递减,且a0≥(a﹣3)×0+4a,由此可得关于a的不等式组,解出即可.【解答】解:因为函数f(x)为减函数,所以y=a x递减,y=(a﹣3)x+4a递减,且a0≥(a﹣3)×0+4a,所以,解得0<a,故答案为:(0,].【点评】本题考查函数单调性的性质,考查学生分析解决问题的能力,属中档题.15.设奇函数f(x)在[﹣1,1]上是增函数,f(﹣1)=﹣1.若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是t≤﹣2或t=0或t≥2 .【分析】有f(﹣1)=﹣1得f(1)=1,f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,只需要比较f(x)的最大值与t2﹣2at+1即可.【解答】解:若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,由已知易得f(x)的最大值是1,∴1≤t2﹣2at+1⇔2at﹣t2≤0,设g(a)=2at﹣t2(﹣1≤a≤1),欲使2at﹣t2≤0恒成立,则⇔t≥2或t=0或t≤﹣2.答案:t≤﹣2或t=0或t≥2【点评】本题把函数的奇偶性,单调性与最值放在一起综合考查,是道函数方面的好题.三.解答题(共15小题)16.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2018(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.【分析】(1)根据函数关系进行求解即可.(2)根据函数奇偶性的性质,结合函数的值域关系进行求解即可.【解答】解:(1)因为,故对任意的n∈N•,有f3n+i (x)=fi(x)(i=2,3,4),于是;..由g(x)为偶函数,..…(6分)(2)由于y=g(x)的定义域为(﹣∞,0)∪(0,+∞),又a<b,mb<ma,可知a与b同号,且m<0;进而g(x)在[a,b]递减,且a <b<0.…(8分)函数y=g(x)的图象,如图所示.由题意,有…(10分)故a,b是方程的两个不相等的负实数根,即方程mx2﹣x﹣1=0在(﹣∞,0)上有两个不相等的实根,于是…(12分)综合上述,得:实数m的取值范围为.…(14分)注:若采用数形结合,得出直线y=mx与曲线有两个不同交点,并进行求解也可.【点评】本题主要考查函数解析式的求解以及函数奇偶性的应用,考查学生的运算和推理能力.17.已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=﹣x2+bx+c,若f(1)=f(3),f(2)=2.(1)求b,c的值;(2)求f(x)在x<0时的表达式.【分析】(1)根据f(1)=f(3)得函数图象关于直线x=2对称,结合抛物线对称轴的公式列式得到b的值,再由f(2)=2列式,解出c的值.(2)当x<0时,﹣x是正数,代入题中正数范围内的表达式得到f(﹣x)的式子,再结合f(x)是奇函数,取相反数即可得到f(x)在x<0时的表达式.【解答】解:(1)∵f(1)=f(3),∴函数图象的对称轴x==2,得b=4又∵f(2)=﹣4+4×2+c=2,∴c=﹣2(2)由(1)得当x>0时f(x)=﹣x2+4x+2,当x<0时,f(﹣x)=﹣(﹣x)2+4(﹣x)+2=﹣x2﹣4x+2,∵f(x)是奇函数,∴当x<0时,f(x)=﹣f(﹣x)=x2+4x﹣2.【点评】本题给出二次函数的对应值,求函数表达式,并且在函数为奇函数的情况下求x<0时的表达式.着重考查了函数奇偶性的性质和函数解析式的求解及常用方法,属于基础题.18.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).(1)求f(0),f(1);(2)求函数f(x)的解析式.【分析】(1)利用函数的奇偶性的性质,求解函数值即可.(2)利用函数的奇偶性以及已知条件真假求解函数的解析式即可.【解答】解:(1)f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).f(0)=0,f(1)=f(﹣1)=log(1+1)=﹣1.(2)f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).x>0时,f(x)=f(﹣x)=log(1+x).可得:f(x)=.【点评】本题考查函数的性质,函数值以及函数的解析式的求法,考查计算能力.19.已知函数f(x)=kx+log9(9x+1)(k∈R)是偶函数.(1)求k的值;(2)若函数g(x)=log(a•3x﹣a)的图象与f(x)的图象有且只有一个公9共点,求a的取值范围.【分析】(1)根据函数奇偶性的性质建立方程进行求解.(2)根据函数g(x)和f(x)图象的交点个数进行讨论求解.(9﹣x+1)【解答】解:(1)∵f(x)是偶函数,∴由f(﹣x)=f(x)得﹣kx+log9=kx+log(9x+1),9整理得;(2)由题意知,方程只有一解,即有且只有一个实根,令t=3x,则t∈(0,+∞),从而方程有且只有一个正实根t,当a﹣1=0时,(舍去),当a﹣1≠0时,若判别式△=0,即+4a﹣4=0,即4a2+9a﹣9=0得a=﹣3或a=,当a=时,t<0,不满足条件.舍去,若△>0,则t1t2<0,得,则a>1,从而所求a的范围是{﹣3}∪(1,+∞).【点评】本题主要考查函数奇偶性的应用以及函数图象的应用,利用分类讨论的数学思想是解决本题的关键.考查学生的运算能力.20.已知函数f(x)=e x﹣e﹣x(x∈R,e=2.71828…)(Ⅰ)求证:函数f(x)为奇函数;(Ⅱ)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.【分析】(Ⅰ)求得f(x)的定义域,计算f(﹣x)与f(x)的关系,即可得证;(Ⅱ)f(x﹣t)+f(x2﹣t2)≥0,即为f(x2﹣t2)≥﹣f(x﹣t)=f(t﹣x),判断f(x)在R上递增,去掉f,运用参数分离,求得右边二次函数的最小值,计算即可得到所求值.【解答】解:(Ⅰ)证明:f(x)的定义域为R,f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),即有函数f(x)为奇函数;(Ⅱ)f(x﹣t)+f(x2﹣t2)≥0,即为f(x2﹣t2)≥﹣f(x﹣t)=f(t﹣x),由f(x)=e x﹣e﹣x在R上为增函数,可得x2﹣t2≥t﹣x,即有t2+t≤x+x2,由x+x2=(x+)2﹣,可得t2+t≤﹣,即有(t+)2≤0,但(t+)2≥0,则t=﹣.【点评】本题考查函数的奇偶性的判断和运用:解不等式,考查恒成立问题的解法,注意运用函数的性质和参数分离,以及二次函数的最值的求法,考查运算能力,属于中档题.21.已知定义在实数集上的奇函数f(x),当x∈(0,1)时,f(x)=.(1)求函数f(x)在(﹣1,1)上的解析式;(2)判断函数f(x)在(0,1)上的单调性并加以证明;(3)当λ取何值时,方程f(x)=λ在上(﹣1,1)有实数解?【分析】(1)利用函数奇偶性的性质进行转化求解即可.(2)根据函数单调性的定义,利用定义法进行证明.(3)根据函数奇偶性和单调性的关系求出函数在(﹣1,1)上的值域即可得到结论.【解答】解:(1)∵函数f(x)是奇函数,∴f(0)=0,当x∈(﹣1,0)时,﹣x∈(0,1),则f(﹣x)===﹣f(x),则f(x)=﹣.x∈(﹣1,0),故函数f(x)在(﹣1,1)上的解析式为f(x)=;(2)设0<x1<x2<1,则f(x1)﹣f(x2)=﹣=,∵0<x1<x2<1,∴>2,﹣2>0,则f(x1)﹣f(x2)>0,即f(x1)>f(x2),即函数f(x)在(0,1)上的单调递减;(3)∵f(x)在(0,1)上的单调递减,∴当0<x<1时,f(1)<f(x)<f(0),即<f(x)<,∵f(x)是奇函数,∴当﹣1<x<0时,﹣<f(x)<﹣,∵f(0)=0,∴在(﹣1,1)上函数f(x)的取值范围是(,)∪(﹣,﹣)∪{0},则若方程f(x)=λ在上(﹣1,1)有实数解,则λ∈(,)∪(﹣,﹣)∪{0}.【点评】本题主要考查函数奇偶性的应用以及函数单调性和值域的判断和应用,利用定义法以及函数单调性和值域之间的关系是解决本题的关键.22.()已知函数是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并用定义证明;(3)求函数的值域.【分析】(1)根据函数f(x)为定义域为R的奇函数,则f(0)=0,代入解析式可求出a的值;(2)由(1)知,所以f(x)为增函数,任取x1<x2∈R,然后判定f(x1)﹣f(x2)的符号,根据函数单调性的定义即可判定;(3)令,求出2x,根据2x的范围可求出y的范围,从而求出函数的值域.【解答】解:(1)f(x)的定义域为R,且为奇函数,∴f(0)=0,∴a=1(2)由(1)知,所以f(x)为增函数证明:任取x1<x2∈Rf(x1)﹣f(x2)=1﹣﹣1+=∵x1<x2∈R∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)为R上的增函数.(3)令则而2x>0∴∴﹣1<y<1所以函数f(x)的值域为(﹣1,1)【点评】本题主要考查了函数的奇偶性,以及函数的单调性和函数的值域,属于中档题.23.已知定义在R上的函数f(x)=2x﹣a•2﹣x为奇函数.(1)求a的值,并判断f(x)的单调性(不用给证明);(2)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.【分析】(1)根据奇函数的性质:f(0)=0,列出方程求出a,利用指数函数的单调性判断f(x)的单调性;(2)由奇函数f(x)的单调性转化不等式,由二次函数的恒成立列出不等式求出t的值.【解答】解:(1)∵f(x)=2x﹣a•2﹣x为奇函数,∴f(0)=0,则1﹣a=0,解得a=1,即f(x)=2x﹣2﹣x=2x﹣,∵函数y=2x、y=﹣在定义域上是增函数,∴f(x)=2x﹣在R上单调递增;(2))∵f(x)是奇函数,且在R上是增函数,∴f(x﹣t)+f(x2﹣t2)≥0化为:f(x2﹣t2)≥﹣f(x﹣t)=f(﹣x+t),∴x2﹣t2≥﹣x+t,则x2+x﹣t2﹣t≥0对一切实数x恒成立,∴△=12﹣4×1×(﹣t2﹣t)≤0,则(2t+1)2≤0,解得t=,∴t的值是.【点评】本题考查函数单调性与奇偶性综合应用,以及二次函数的性质,考查转化思想,属于中档题.24.如果奇函数f(x)是定义域(﹣1,1)上的减函数,且f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围.【分析】根据定义域先建立两个不等关系式,再结合函数的单调性和奇偶性建立关系式,解之即可.【解答】解:因为函数f(x)的定义域是(﹣1,1)所以有﹣1<1﹣m<1 ①﹣1<1﹣m2<1 ②又f(x)是奇函数,所以f(1﹣m)+f(1﹣m2)<0可变为f(1﹣m)>f(m2﹣1)又f(x)在(﹣1,1)内是减函数,所以1﹣m<m2﹣1 ③由①、②、③得.【点评】本题主要考查了函数单调性与奇偶性的应用,以及不等式的求解,属于中档题.25.已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.【分析】(1)由题意可得,,由此解不等式组求得m的范围.(2)由题意可得f(x+1)>f(﹣2),所以,即可得出结论.【解答】解:由题意可得,,求得﹣1≤m<2,即m的范围是[﹣1,2).(2)∵函数f(x)是奇函数,且f(2)=1,∴f(﹣2)=﹣f(2)=﹣1,∵f(x+1)+1>0,∴f(x+1)>﹣1,∴f(x+1)>f(﹣2),∴,∴﹣3<x≤2.∴不等式的解集为{x|﹣3<x≤2}.【点评】本题主要考查函数的单调性的应用,考查学生分析解决问题的能力,正确转化是关键,属于中档题.26.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.【分析】(1)由a>b,得,所以f(a)+f(﹣b)>0,由f(x)是定义在R上的奇函数,能得到f(a)>f(b).(2)由f(x)在R上是单调递增函数,利用奇偶性、单调性可把f(9x﹣2•3x)+f(2•9x﹣k)>0中的符号“f”去掉,分离出参数k后转化为函数最值即可解决.【解答】解:(1)∵对任意a,b,当a+b≠0,都有.∴,∵a>b,∴a﹣b>0,∴f(a)+f(﹣b)>0,∵f(x)是定义在R上的奇函数,∴f(﹣b)=﹣f(b),∴f(a)﹣f(b)>0,∴f(a)>f(b);(2)由(1)知f(x)在R上是单调递增函数,又f(9x﹣2•3x)+f(2•9x﹣k)>0,得f(9x﹣2•3x)>﹣f(2•9x﹣k)=f (k﹣2•9x),故9x﹣2•3x>k﹣2•9x,即k<3•9x﹣2•3x,令t=3x,则t≥1,所以k<3t2﹣2t,而3t2﹣2t=3﹣在[1,+∞)上递增,所以3t2﹣2t≥3﹣2=1,所以k<1,即所求实数k的范围为k<1.【点评】本题考查解函数恒成立问题的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易出错.解题时要认真审题,注意转化思想的灵活运用.27.已知定义域为R的单调函数f(x)是奇函数,当x>0时,f(x)=﹣2x (Ⅰ)求f(﹣1)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k 的取值范围.【分析】(I)根据题意得,f(﹣1)=﹣f(1),结合当x>0时,f(x)=﹣2x 即可求出f(﹣1);(II)由定义域为R的函数f(x)是奇函数,知f(0)=0.当x<0时,f(﹣x)=﹣2﹣x,由函数f(x)是奇函数,知f(x)=+2﹣x,由此能求出f(x)的解析式.(III)由f(1)=﹣<f(0)=0且f(x)在R上单调,知f(x)在R上单调递减,由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),再由根的差别式能求出实数k的取值范围.【解答】解:(I)f(﹣1)=﹣f(1)=﹣(﹣2)=;(II)∵定义域为R的函数f(x)是奇函数,∴f(0)=0,当x<0时,﹣x>0,f(﹣x)=﹣﹣2﹣x,又∵函数f(x)是奇函数,∴f(﹣x)=﹣f(x),∴f(x)=+2﹣x,综上所述f(x)=.(III)∵f(1)=﹣<f(0)=0,且f(x)在R上单调,∴f(x)在R上单调递减,由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),又∵f(x)是减函数,∴t2﹣2t>k﹣2t2即3t2﹣2t﹣k>0对任意t∈R恒成立,∴△=4+12k<0得k<﹣,即为所求.【点评】本题考查函数的恒成立问题,解题时要认真审题,仔细解答,注意合理地进行等价转化,同时注意函数性质的灵活运用.28.已知函数.(1)判断函数f(x)的奇偶性,并给出证明;(2)解不等式:f(x2+x+3)+f(﹣2x2+4x﹣7)>0;(3)若函数g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,比较f(2)+f (4)+…+f(2n)与2n(n∈N*)的大小关系,并说明理由.【分析】(1)根据函数奇偶性的定义进行判断即可.(2)根据函数奇偶性和单调性的关系将不等式进行转化即可.(3)根据函数单调性的性质结合对数函数的运算法则进行求解即可.【解答】解:(1)函数f(x)为奇函数.…1分证明如下:由,解得x<﹣1或x>1,所以函数的定义域为(﹣∞,﹣1)∪(1,+∞)…2分对任意的x∈(﹣∞,﹣1)∪(1,+∞),有,所以函数f(x)为奇函数.…4分(2)任取x1,x2∈(1,+∞),且x1<x2,则==,…5分因为 x2>x1>1,所以 x1•x2+x2﹣x1﹣1>x1•x2﹣(x2﹣x1)﹣1>0,所以,所以 f(x1)﹣f(x2)>0,所以f(x1)>f(x2),所以函数y=f(x)在(1,+∞)单调递减;…7分由f(x2+x+3)+f(﹣2x2+4x﹣7)>0得:f(x2+x+3)>﹣f(﹣2x2+4x﹣7),即f(x2+x+3)>f(2x2﹣4x+7),又,2x2﹣4x+7=2(x﹣1)2+5>1,所以 x2+x+3<2x2﹣4x+7,…9分解得:x<1或x>4,所以原不等式的解集为:(﹣∞,1)∪(4,+∞).…10分(3)f(2)+f(4)+…+f(2n)<2n(n∈N*).理由如下:…11分因为,所以 f(2)+f(4)+…+f(2n)﹣2n=ln(2n+1)﹣2n=ln(2n+1)﹣[(2n+1)﹣1],…13分又 g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,所以当x>1时,g(x)<g(1)=0,所以 g(2n+1)<0,…15分即 ln(2n+1)﹣[(2n+1)﹣1]<0,故 f(2)+f(4)+…+f(2n)<2n(n∈N*).…16分【点评】本题主要考查函数奇偶性的判断,以及不等式的求解,结合对数的运算法则是解决本题的关键.29.已知函数f(x)=的定义域上的奇函数,且f(2)=﹣,函数g(x)是R上的增函数,g(1)=1且对任意x,y∈R,总有g(x+y)=g(x)+g(y)(Ⅰ)求函数f(x)的解析式(Ⅱ)判断函数f(x)在(1,+∞)上的单调性,并加以证明(Ⅲ)若g(2a)>g(a﹣1)+2,求实数a的取值范围.【分析】(Ⅰ)由题意可得f(﹣x)=﹣f(x),可得n,利用f(2)=﹣,求出m,即可求函数f(x)的解析式(Ⅱ)利用导数判断证明判断函数f(x)在(1,+∞)上的单调性;(Ⅲ)确定g(x)为奇函数,g(2)=g(1)+g(1)=2,g(2a)>g(a﹣1)+2,化为g(2a)>g(a+1),利用函数g(x)是R上的增函数,可得不等式,解不等式即可得到a的范围.【解答】解:(Ⅰ)由定义域为R的函数f(x)=是奇函数,可得=﹣,即n+3x=﹣n+3x,解得n=0,∵f(2)=﹣,∴=﹣,∴m=2,∴f(x)=;(Ⅱ)函数f(x)在(1,+∞)上单调递减.∵f(x)==﹣(x+),∴f′(x)=﹣,∵x>1,∴f′(x)<0,∴函数f(x)在(1,+∞)上单调递减;(Ⅲ)令x=y=0,得g(0)=0,令y=﹣x,可得g(0)=g(x)+g(﹣x),∴g(﹣x)=﹣g(x),∴g(x)为奇函数,∵g(1)=1,∴g(2)=g(1)+g(1)=2,∵g(2a)>g(a﹣1)+2,∴g(2a)>g(a+1),∵函数g(x)是R上的增函数,∴2a>a+1,∴a>1.【点评】本题考查函数的奇偶性和单调性的判断及应用:解不等式,考查二次不等式恒成立问题的解法,考查运算能力,属于中档题和易错题.30.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og(1﹣x).2(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.(1+x),【分析】(1)根据f(x),g(x)的奇偶性便有﹣f(x)+g(x)=2log2联立f(x)+g(x)=2log(1﹣x)便可解出f(x)=,g(x)=;2(2)根据减函数的定义,设任意的x1,x2∈(0,1),且x1<x2,然后作差,可以得出,根据对数函数的单调性便可得出g(x1)>g(x2),从而得出g(x)在(0,1)上单调递减;(3)求出,根据1﹣2x>0便可得出1+2x的范围,从而得出﹣1+的范围,根据对数函数的单调性便可得出f(2x)的范围,从而便可得出m的取值范围.【解答】解:(1)根据题意:f(﹣x)+g(﹣x)=2log2(1+x);∴﹣f(x)+g(x)=2log2(1+x),联立f(x)+g(x)=2log2(1﹣x)得:f(x)=log2(1﹣x)﹣log2(1+x)=,g(x)=log2(1+x)+log2(1﹣x)=;即;(2)设x1,x2∈(0,1),且x1<x2,则:;∵0<x1<x2<1;∴;∴;∴;∴g(x1)>g(x2);∴g(x)在(0,1)上是减函数;(3);∵1﹣2x>0;∴0<2x<1;∴;∴;∴f(2x)<0;∴m<0;∴m的取值范围为(﹣∞,0).【点评】考查奇函数、偶函数的定义,对数的运算,以及减函数的定义,根据减函数的定义证明一个函数为减函数的方法和过程,作差的方法比较g(x1),g(x2),对数函数的单调性,分离常数法的运用.。

函数单调性奇偶性经典例题

函数单调性奇偶性经典例题

[例1]已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.技巧与方法:对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21xx x --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数.3.函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是_________.解析:令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减. 答案:(-∞,-1]4.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0. 答案:(-∞,0)三、解答题 5.已知函数f (x )=a x +12+-x x (a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明方程f (x )=0没有负数根.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0, ∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根.证法二:设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根. 6.求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数.证明:∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数.8.已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0. (1)求证:f (x )是单调递增函数; 证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0, ∴f (x )是单调递增函数.[例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x 不等式,利用数形结合进行集合运算和求最值. 解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.一、选择题1.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( ) A.0.5B.-0.5C.1.5D.-1.5解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5. 答案:B2.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( ) A.(22,3) B.(3,10) C.(22,4)D.(-2,3)解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0.∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A 二、填空题3.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3) 答案:(-3,0)∪(0,3)4.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1).答案:f (31)<f (32)<f (1)三、解答题5.已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明. 解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c=0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22ba =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x 1.(2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.3.函数单调性与奇偶性的综合运用例6.甲、乙两地相距Skm ,汽车从甲地匀速行驶到乙地,速度不得超过c km /h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km /h)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(km /h)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶.分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.故所求函数及其定义域为但由于题设条件限制汽车行驶速度不超过ckm /h ,所以(2)的解决需要论函数的增减性来解决.由于v1v2>0,v2-v1>0,并且又S>0,所以即则当v=c时,y取最小值.说明:此题是1997年全国高考试题.由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.。

函数的奇偶性和单调性

函数的奇偶性和单调性

函数的单调性和奇偶性(一)阅读课本P58-P59,答复以下问题1、增函数,减函数的定义;2、单调性,单调区间的定义.3、函数图象如以下图,说出单调区间及其单调性.5X练习一1、求以下函数的单调区间f(x)=x-l;f(x)=-2x+3;f(x)=2x2-x+2f(x)=-x2-2x+l1 (5)f(x)=—-x+1在7?上是增函数在7?上是减函数在(-00,-1]上是增函数,在[-1,+00)上是减函数在(-00广1]上是增函数,在[-1,+oc)上是减函数AH—2在(-00广1]上是增函数,在[-1,+oc)上是减函数练习二证明函数/3)="3在(-oo,+oo)上是减函数•证明:在(-oo,+oo)上设xl,x2,且xl<x2,那么•f(xl)-f(x2)=xl3-x23=(xl-x2)(xl2+xlx2+x22)・项工1)顶工2)>。

,即照1)项电,故/3)在(-3,+3)上是减函数练习三1、已知川)=-2x-3,则〃2)V只_1);2、已知二次函数/3)的图像是一条开口向下且对称轴为x=3的抛物线,则(1)犬6)V只4)(2)犬2)—/(V15)3、已知函数人^=^切国3__土/£巨13练习四求以下函数的增区间与减区间:y=|x2+2x-3|——2v-+3•(1)增区间有[-3,-1]、[1,+8),减区间有(-3,-3]、[-1,1]»(2)增区间有[-3,-1],减区间[-1,1]小结.11、如果对于属于定义域I内某个区间的任意两个自变量的值判吟当七<工2时,都有汽工1)寸(工2),那么就说大工)在这个区间上是增函数.网2、如果对于属于定义域I内某个区间的任意两个自变量的值工1,工2,当工1〈工2时,都有731)项工2),那么就说/(工)在这个区间上是减函数.43、如果函数在某个区间是增函数或减函数,那么就说函数在这一区间具有单调性,这一区间叫做的单调区间.(7)鼎9宾鱼£9d演&宾地#9d幸漂。

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。

2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。

) 3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴abx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

4.证明方法和步骤:1、设元:设21,x x 是给定区间上任意两个值,且21x x <;2、作差:)()(21x f x f -;3、变形:(如因式分解、配方等);4、定号:即0)()(0)()(2121<->-x f x f x f x f 或;5、根据定义下结论。

例2、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。

例3:函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞ 6.函数的单调性的应用:判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。

例4:求函数12-=x y 在区间]6,2[上的最大值和最小值.二、奇偶性1.定义:如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数;(等价于:0)()()()(=--⇔=-x f x f x f x f )如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0则∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0∴上递减.总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间上的任意实数,且x1<x2,则∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1 ∵0<x1x2<1故,即f(x1)-f(x2)>0∴x1<x2时有f(x1)>f(x2) 上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞).总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2-1的符号的确定,如何分段.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

相关文档
最新文档