广东省广州市天河区2018-2019学年八年级下学期数学期末考试试卷
_广东省广州市天河区2018-2019学年八年级下学期数学期末考试试卷(含答案解析)
第1页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省广州市天河区2018-2019学年八年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 下列命题中,真命题是( ) A . 有两边相等的平行四边形是菱形 B . 有一个角是直角的四边形是矩形 C . 四个角相等的菱形是正方形D . 两条对角线互相垂直且相等的四边形是正方形2. 如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3.则AB 的长为( )A . 3B . 4C . 5D . 63. 以下列各组数据为边长作三角形,其中能组成直角三角形的是( ) A . 5,12,13 B . 3,5,2C . 6,9,14D . 4,10,134. 下列二次根式中,属于最简二次根式的是( )答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .5. 若一组数据1,4,7,x , 5的平均数为4,则x 的值时( ) A . 7 B . 5 C . 4 D . 36. 函数y =﹣x ﹣3的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. 下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差S 2:甲 乙 丙 丁 平均数 (cm ) 175 173 175 174 方差S 2(cm 2)3.5 3.5 12.5 15根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A . 甲 B . 乙 C . 丙 D . 丁8. 已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( )A .B .C .D .9. 如图,过平行四边形ABCD 对角线交点O 的线段EF , 分别交AD , BC 于点E , F , 当AE =ED 时,△AOE 的面积为4,则四边形EFCD 的面积是( )A . 8B . 12C . 16D . 3210. 如图,在平面直角坐标系中,点A 1 , A 2 , A 3在直线y = x +b 上,点B 1 , B 2 , B 3在x 轴上,△OA 1B 1 , △B 1A 2B 2 , △B 2A 3B 3都是等腰直角三角形,若已知点A 1(1,1),则点A 3的纵坐标是( )第3页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 若式子x + 在实数范围内有意义,则x 的取值范围是 .2. 若一直角三角形的两直角边长为,1,则斜边长为 .3. 把直线y =﹣x ﹣1沿着y 轴向上平移2个单位,所得直线的函数解析式为 .4. 如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是 .5. 如图,平行四边形ABCD 在平面直角坐标系中,已知△DAB =60°,A (﹣2,0),点P 在AD 上,连接PO , 当OP △AD 时,点P 到y 轴的距离为 .6. 如图,在平行四边形ABCD 中,AB =2AD , BE 平分△ABC 交CD 于点E , 作BF △AD , 垂足为F , 连接EF , 小明得到三个结论:①△FBC =90°;②ED =EB ;③S △EBF =S △EDF +S △EBC ;则三个结论中一定成立的答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………是 .评卷人 得分二、计算题(共1题)7.(1)计算:( +5)(-5).(2)计算 .评卷人 得分三、解答题(共2题), BC =4cm , 作AD △BC , 垂足为D , 若AD =4cm , 求AB 的长.9. 如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O , 且AC +BD =28,BC =12,求△AOD 的周长.第5页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分四、综合题(共7题)环数 6 7 8 9人数1 5 2(1)填空:10名学生的射击成绩的众数是 ,中位数是 .(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手? 11. 如图,△ABC 是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹); ①作线段AC 的中点M .②连接BM , 并延长到D , 使MD =MB , 连接AD , CD .(2)求证(1)中所作的四边形ABCD 是菱形.12. 在平面直角坐标系中,原点为O , 已知一次函数的图象过点A (0,5),点B (﹣1,4)和点P (m , n )(1)求这个一次函数的解析式;(2)当n =2时,求直线AB , 直线OP 与x 轴围成的图形的面积;(3)当△OAP 的面积等于△OAB 的面积的2倍时,求n 的值。
2018-2019学年广州市天河区八年级(下)期末数学试卷
2018-2019学年广州市天河区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,132.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3) D.(﹣3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.5.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为()A.y=kx﹣3 B.y=kx+1 C.y=kx+3 D.y=kx﹣18.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.49.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)10.一次函数y=kx+k的图象可能是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)13.函数的自变量x的取值范围是.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.函数y=(k+1)x+k2﹣1中,当k满足时,它是一次函数.16.菱形的周长是20,一条对角线的长为6,则它的面积为.17.若正多边形的一个内角等于140°,则这个正多边形的边数是.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an= .(用含n 的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …an三、解答题(本大题共2个小题,每小题6分,满分12分)19.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC 的度数.20.已知y+6与x成正比例,且当x=3时,y=﹣12,求y与x的函数关系式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?22.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?五、解答题(本大题共2个小题,每小题9分,满分18分)23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.六、综合探究题(本大题共2个小题,每小题10分,满分20分)25.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2018-2019学年广州市天河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3) D.(﹣3,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标是(2,3),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.4.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对【考点】矩形的性质.【分析】首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【解答】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=2,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选:B.【点评】此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为()A.y=kx﹣3 B.y=kx+1 C.y=kx+3 D.y=kx﹣1【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:原直线的k=k,b=﹣1;向上平移2个单位长度,得到了新直线,那么新直线的k=k,b=﹣1+2=1.∴新直线的解析式为y=kx+1.故选B.【点评】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.8.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.4【考点】一次函数的性质.【分析】根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,当(k﹣3)>0时,即k>3时,y随x的增大而增大,分析选项可得D选项正确.答案为D.【点评】本题考查一次函数的性质,掌握一次项系数及常数项与图象间的关系.9.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据“两点法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.【解答】解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A、当x=4时,y=×4+3=9≠6,点不在直线上;B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;C、当x=6时,y=×6+3=12≠9,点不在直线上;D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;故选B.【点评】本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标.10.一次函数y=kx+k的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b <0时,函数图象经过二、三、四象限是解答此题的关键.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为100 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.【解答】解:由题意可得:AB=200m,∠A=30°,则BC=AB=100(m).故答案为:100.【点评】此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件AD=BC (写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)【考点】平行四边形的判定.【专题】开放型.【分析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC故答案为:AD=BC(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.13.函数的自变量x的取值范围是x≥2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是0.1 .【考点】频数与频率.【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.【点评】本题是对频率=频数÷总数这一公式的灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.15.函数y=(k+1)x+k2﹣1中,当k满足k≠﹣1 时,它是一次函数.【考点】一次函数的定义.【专题】计算题;一次函数及其应用.【分析】利用一次函数定义判断即可求出k的值.【解答】解:函数y=(k+1)x+k2﹣1中,当k满足k≠﹣1时,它是一次函数.故答案为:k≠﹣1【点评】此题考查了一次函数的定义,熟练掌握一次函数定义是解本题的关键.16.菱形的周长是20,一条对角线的长为6,则它的面积为24 .【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据周长可求得其边长,再根据勾股定理可求得另一条对角线的长,从而利用面积公式即可求得其面积.【解答】解:∵菱形的周长是20∴边长=5∵一条对角线的长为6∴另一条对角线的长为8∴菱形的面积=×6×8=24.故答案为24.【点评】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.17.若正多边形的一个内角等于140°,则这个正多边形的边数是9 .【考点】多边形内角与外角.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an= 3n+1 .(用含n的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …an【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.【点评】此类题的属于找规律,从所给数据中,很容易发现规律,再分析整理,得出结论.三、解答题(本大题共2个小题,每小题6分,满分12分)19.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC 的度数.【考点】直角三角形的性质.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.20.已知y+6与x成正比例,且当x=3时,y=﹣12,求y与x的函数关系式.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】先根据y+6与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.【解答】解:∵y+6与x成正比例,∴设y+6=kx(k≠0),∵当x=3时,y=﹣12,∴﹣12+6=3k,解得k=﹣2∴y+6=﹣2x,∴函数关系式为y=﹣2x﹣6.【点评】本题主要考查了待定系数法求一次函数解析式,解题时注意:求正比例函数,只要一对x,y的对应值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的对应值.四、解答题(本大题共2个小题,每小题8分,满分16分)21.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?【考点】频数(率)分布直方图.【专题】图表型.【分析】(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;(3)利用总人数乘以一等奖的人数,据此即可判断.【解答】解:(1)200﹣(35+40+70+10)=45,如下图:(2)设抽了x人,则,解得x=8;(3)依题意知获一等奖的人数为200×25%=50(人).则一等奖的分数线是80分.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC===10m,故小鸟至少飞行10m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.五、解答题(本大题共2个小题,每小题9分,满分18分)23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是108 元;(2)第二档的用电量范围是180<x≤450 ;(3)“基本电价”是0.6 元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?【考点】一次函数的应用.【分析】(1)通过函数图象可以直接得出用电量为180千瓦时,电费的数量;(2)从函数图象可以看出第二档的用电范围;(3)运用总费用÷总电量就可以求出基本电价;(4)结合函数图象可以得出小明家8月份的用电量超过450千瓦时,先求出直线BC的解析式就可以得出结论.【解答】解:(1)由函数图象,得当用电量为180千瓦时,电费为:108元.故答案为:108;(2)由函数图象,得设第二档的用电量为x千瓦时,则180<x≤450.故答案为:180<x≤450;(3)基本电价是:108÷180=0.6;故答案为:0.6(4)设直线BC的解析式为y=kx+b,由图象,得,解得:,y=0.9x﹣121.5.y=328.5时,x=500.答:这个月他家用电500千瓦时.【点评】本题考查了运用函数图象求自变量的取值范围的运用,待定系数法求一次函数的解析式的运用,由解析式通过自变量的值求函数值的运用,解答时读懂函数图象的意义是关键.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.六、综合探究题(本大题共2个小题,每小题10分,满分20分)25.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,即∠ABC=120°;(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD 的长是关键.。
广东省广州市2018-2019学年八年级数学下册期末考试试卷(含答案解析)
广东省广州市2018-2019学年八年级数学下册期末考试试卷(含答案解析)2018-2019学年下学期期末考试八年级数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)点()在函数y=2x﹣1的图象上.A.(1,3)B.(﹣2.5,4)C.(﹣1,0)D.(3,5)【专题】一次函数及其应用.【分析】将各点坐标代入函数y=2x-1,依据函数解析式是否成立即可得到结论.【解答】解:A、当x=1时,y=2-1=1≠3,故(1,3)不在函数y=2x-1的图象上.B、当x=-2.5时,y=-5-1=-6≠4,故(-2.5,4)不在函数y=2x-1的图象上.C、当x=-1时,y=-2-1=-3≠0,故(-1,0)不在函数y=2x-1的图象上.D、当x=3时,y=6-1=5,故(3,5)在函数y=2x-1的图象上.故选:D.【点评】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.2.(2分)当a满足条件()时,式子在实数范围内有意义()A.a<﹣3 B.a≤﹣3 C.a>﹣3 D.a≥﹣3【专题】常规题型;二次根式.【分析】根据二次根式的意义即可求得答案.【解答】解:根据题意知,要使在实数范围内有意义,则a+3≥0,解得:a≥-3,故选:D.【点评】本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.3.(2分)计算:÷=()(a>0,b>0)A. B. C.2a D.2a2【专题】计算题;二次根式.【分析】根据二次根式的除法法则计算可得.【解答】故选:C.【点评】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.4.(2分)把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形 C.矩形 D.正方形【专题】矩形菱形正方形.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等5.(2分)下列各图象中,()表示y是x的一次函数.A.B.C.D.【专题】函数思想.【分析】一次函数的图象是直线.【解答】解:表示y是x的一次函数的图象是一条直线,观察选项,只有A选项符合题意.故选:A.【点评】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.6.(2分)如图,直线y=﹣x+2与x轴交于点A,则点A 的坐标是()A.(2,0)B.(0,2)C.(1,1)D.(2,2)【专题】函数及其图像.【分析】一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是【解答】解:直线y=-x+2中,令y=0,则0=-x+2,解得x=2,∴A(2,0),故选:A.【点评】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是,与y轴的交点坐标是(0,b).7.(2分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86 B.88 C.90 D.92【专题】常规题型;统计的应用.【分析】根据加权平均数的计算公式,列出算式,再进行计算即可【解答】解:小云这学期的体育成绩是84×60%+94×40%=88(分),故选:B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.8.(2分)下列说法中,正确的是()A.对角线互相平分的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.对角线互相垂直的四边形一定是菱形D.对角线相等的四边形一定是正方形【专题】矩形菱形正方形.【分析】根据平行四边形、矩形、正方形、菱形的判定方法即可判定.【解答】解:A、对角线互相平分的四边形一定是平行四边形,正确,符合题意;B、对角线相等的四边形一定是矩形,错误,比如等腰梯形的对角线相等,表示平行四边形,不符合题意;C、对角线互相垂直的四边形一定是菱形,错误.不符合题意;D、对角线相等的四边形一定是正方形,错误,不符合题意;故选:A.。
2018-2019学年人教版八年级(下册)期末数学考试试题及答案
2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t2.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣14.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。
广东省广州市八年级下学期数学期末试卷
广东省广州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·福田期中) 将一元二次方程化为一般形式后,二次项系数和一次项系数分别为()A . 5,-6B . 5,6C . 5,1D . ,-6x【考点】2. (2分)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x 之间的关系是()A . y=xB . y=90–xC . y=180–xD . y=180+x【考点】3. (2分) (2019九上·深圳期中) 已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A .B .C .D .【考点】4. (2分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A . 70分,70分B . 80分,80分C . 70分,80分D . 80分,70分【考点】5. (2分) (2020九上·龙岗期中) 方程x(x-2)=x的解是()A . x1=0,x2=2B . x1=x2=2C . x1=1,x2=3D . x1=0,x2=3【考点】6. (2分) (2019九下·黄石月考) 如图,菱形ABCD的两个顶点B,D在反比例函数y= 的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A . ﹣5B . ﹣4C . ﹣3D . ﹣2【考点】7. (2分) (2019八上·沙坪坝月考) 五一小长假的某一天,亮亮全家上午 8 时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A . 景点离亮亮的家 180 千米B . 亮亮到家的时间为 17 时C . 小汽车返程的速度为 60 千米/时D . 10时至 14 时,小汽车匀速行驶【考点】8. (2分) (2020九上·昌平期末) 函数y=a +c与y=-ax+c(a≠0)在同一坐标系内的图像是图中的()A .B .C .D .【考点】9. (2分) (2016九上·连城期中) 在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1 ,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A . (1,2)B . (2,﹣1)C . (﹣2,1)D . (﹣2,﹣1)【考点】10. (2分)(2020·南山模拟) 如图,等腰直角三角形ABC ,∠BAC=90°,D、E是BC上的两点,且BD=CE ,过D、E作DM、EN分别垂直AB、AC ,垂足为M、N ,交与点F ,连接AD、AE .其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD .符合题意结论有()A . 1个B . 2个C . 3个D . 4个【考点】11. (2分)若反比例函数的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限【考点】12. (2分)已知抛物线 y=-x2+1,下列结论:①抛物线开口向上;②抛物线与x轴交于点(-1,0)和点(1,0);③抛物线的对称轴是y轴;④抛物线的顶点坐标是(0,1);⑤抛物线y=-x2+1是由抛物线向上平移1个单位得到的.其中正确的个数有A . 5个B . 4个C . 3个D . 2个【考点】二、填空题 (共4题;共4分)13. (1分) (2017九上·乐清期中) 一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是________.【考点】14. (1分) (2019九上·江油期中) 校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度与水平距离之间的函数关系式为,小明这次试掷的成绩是________.【考点】15. (1分) (2019八下·北京期中) 已知点A(2,﹣4),直线y=﹣x﹣2与y轴交于点B ,在x轴上存在一点P ,使得PA+PB的值最小,则点P的坐标为________.【考点】16. (1分)(2020·郑州模拟) 如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.【考点】三、解答题 (共6题;共65分)17. (10分) (2020九上·巢湖月考) 已知:关于x的一元二次方程:x2-6x+m=0(1)当m=0时,求原方程的解:(2)若方程有一个实数根为3- ,求方程另一根及m的值。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
2018-2019学年广东省广州市白云区八年级(下)期末数学试卷
2018-2019学年广东省广州市白云区八年级(下)期末数学试卷一、选择题1.下列根式中,属于最简二次根式的是()A.B.C.D.2.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.283.下列各式中,计算正确的是()A.3+3=6 B.=1 C.÷=4 D.×2=44.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.4,5,6 B.6,8,9 C.6,12,13 D.8,15,175.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁6.已知k<0,b>0,则直线y=kx+b的图象只能是如图中的()A.B.C.D.7.一次函数y=3x﹣6的图象与x轴的交点坐标是()A.(0,﹣6) B.(0,6)C.(2,0)D.(﹣2,0)8.▱ABCD中,∠A=30°,AB边上的高为6,则BC的长为()A.12 B.6 C.6D.69.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形10.如图,正方形ABCD的边长为8,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.2 B.2C.8﹣4 D.8﹣8二、填空题11.计算: =______.12.代数式在实数范围内有意义,则x的取值范围是______.13.若直线y=kx经过点(2,6),则它的解析式是______.14.若一次函数y=kx+b的图象经过点A(x1,1),B(x2,﹣2),已知x1<x2,则k______0.(填“>”、“<”或“=”)15.▱ABCD的对角线AC、BD相交点O,△OAB是等边三角形,且AB=3,则▱ABCD 的面积是______.16.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=6,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△AnBnCn的周长=______.三、解答题17.计算:2×÷10.18.如图,已知菱形ABCD的对角线交于点O,周长是16,BD=2,求AC.19.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.应聘者面试笔试甲 87 90乙 91 82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?四、解答题20.已知一次函数的图象经过点A(1,1)和点B(2,7),求这个一次函数的解析式.21.如图已知∠AOB,OA=OB,点F在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).22.市政府决定对市直机关800户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的中位数和众数,并求出平均数;(3)请根据这800户家庭中月平均用水量不超过12吨的家庭数.五、解答题23.某市创建文明城区的活动中,有两段长度相等的彩色道转铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设彩色道转的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在0≤x≤2的时段内的施工速度;(2)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)要施工多长时间甲、乙两队所铺设彩色道砖的长度刚好相等?24.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.2018-2019学年广东省广州市白云区八年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式;B、,被开方数含分母,不是最简二次根式;C、=x,被开方数含能开得尽方的因数,不是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.3.下列各式中,计算正确的是()A.3+3=6 B.=1 C.÷=4 D.×2=4【考点】二次根式的混合运算.【分析】根据二次根式的乘法、除法以及合并同类二次根式进行计算即可.【解答】解:A、3+3,不是同类二次根式,不能合并故A错误;B、是最简二次根式,故B错误;C、÷=2,故C错误;D、×2=4,故D正确;故选D.【点评】本题考查了二次根式的混合运算,掌握二次根式的乘法、除法以及合并同类二次根式是解题的关键.4.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.4,5,6 B.6,8,9 C.6,12,13 D.8,15,17【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、因为42+52≠62,所以三条线段不能组成直角三角形B、因为52+62≠92,所以三条线段不能组成直角三角形;C、因为62+122≠132,所以三条线段不能组成直角三角形;D、因为82+152=172,所以三条线段能组成直角三角形;故选:D.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.已知k<0,b>0,则直线y=kx+b的图象只能是如图中的()A.B.C.D.【考点】一次函数的图象.【分析】根据k,b的取值范围确定图象在坐标平面内的位置.【解答】解:k<0,b>0;,该函数图象经过第一、二、四象限,故选A【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.一次函数y=3x﹣6的图象与x轴的交点坐标是()A.(0,﹣6) B.(0,6)C.(2,0)D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】令一次函数解析式中y=0,可得出关于x的一元一次方程,解方程可求出x值,从而得出该一次函数与x轴的交点坐标.【解答】解:令y=3x﹣6中y=0,则0=3x﹣6,解得:x=2,∴一次函数y=3x﹣6的图象与x轴的交点坐标是(2,0).故选C.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是令y=0得出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,结合点的横(纵)坐标依据一次函数图象上点的坐标特征求出其纵(横)坐标是关键.8.▱ABCD中,∠A=30°,AB边上的高为6,则BC的长为()A.12 B.6 C.6D.6【考点】平行四边形的性质.【分析】由含30°角的直角三角形的性质得到AD的长,再根据平行四边形的性质即可得到结论.【解答】解:如图,过D作DE⊥AB于E,则DE=6,∠AED=90°,∵∠A=30°,∴AD=2DE=12,∵四边形ABCD是平行四边形,∴BC=AD=12,故选A.【点评】本题考查了平行四边形的性质,含30°角的直角三角形的性质;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出AD是解题的关键.9.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、有一个角是直角的平行四边形是矩形,故B选项正确;C、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.10.如图,正方形ABCD的边长为8,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.2 B.2C.8﹣4 D.8﹣8【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边和斜边的倍数关系计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=8,∵正方形的边长为8,∴BD=8,∴BE=BD﹣DE=8﹣8,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(8﹣8)=8﹣4,故选C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题11.计算: = 3.【考点】算术平方根.【分析】根据算术平方根的性质进行化简,即=|a|.【解答】解: ==3.故答案为3.【点评】此题考查了算术平方根的性质,即=|a|.12.代数式在实数范围内有意义,则x的取值范围是x≥3 .【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确得出x﹣3的取值范围是解题关键.13.若直线y=kx经过点(2,6),则它的解析式是y=3x .【考点】待定系数法求正比例函数解析式.【分析】由点的坐标利用待定系数法求出函数解析式,此题得解.【解答】解:将点(2,6)代入y=kx中,得:6=2k,解得:k=3.∴该一次函数的解析式为y=3x.【点评】本题考查了待定系数法求函数解析式,解题的关键是将点的坐标代入一次函数解析式中找出关于k的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.14.若一次函数y=kx+b的图象经过点A(x1,1),B(x2,﹣2),已知x1<x2,则k <0.(填“>”、“<”或“=”)【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的解析式y=kx+b,当x1<x2时,y1>y2,得出y随x的增大而减小,即可得出答案.【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小,∴k<0,故答案为:<.【点评】本题考查了一次函数的性质,一次函数图象上点的坐标特征的应用,能理解一次函数的性质是解此题的关键,难度适中.15.▱ABCD的对角线AC、BD相交点O,△OAB是等边三角形,且AB=3,则▱ABCD 的面积是9.【考点】平行四边形的性质;等边三角形的性质.【分析】由△AOB是等边三角形可以推出▱ABCD是矩形,得出AC=BD=6,∠BAD=90°,由勾股定理求出AD,即可得出▱ABCD的面积.【解答】解:如图,∵▱ABCD的对角线相交于点O,△AOB是等边三角形,∴OA=OC,OB=OD,OA=OB=AB=3,∴AC=BD,∴▱ABCD是矩形,∴∠BAD=90°,AC=BD=2OA=6,∴AD===3,∴▱ABCD的面积=AB•AD=3×3=9;故答案为:9.【点评】本题主要考查了平行四边形的性质、等边三角形的性质、矩形的判定与性质、勾股定理;熟练掌握平行四边形的性质,证明四边形是矩形是解决问题的关键.16.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=6,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△AnBnCn的周长= .【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后写出前三个三角形的周长,再根据指数的变化规律写出△An BnCn的周长即可.【解答】解:∵A1B1=7,B1C1=4,A1C1=6,∴△A1B1C1的周长=7+4+6=17,∵依次连接△A1B1C1三边中点,得△A2B2C2,∴△A2B2C2的周长=×17,∵再依次连接△A2B2C2的三边中点,得△A3B3C3,∴△A3B3C3的周长=×(×17)=×17,…,△An BnCn的周长=×17=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,三角形的周长,熟记定理并明确中点三角形的周长等于原三角形的周长的一半是解题的关键.三、解答题17.计算:2×÷10.【考点】二次根式的乘除法.【分析】先化简二次根式,再用乘法和除法运算即可.【解答】解:2×÷10=2×2××=【点评】此题是二次根式的乘除法,主要考查了二次根式的化简,分母有理化,解本题的关键是分母有理化的运用.18.如图,已知菱形ABCD的对角线交于点O,周长是16,BD=2,求AC.【考点】菱形的性质.【分析】因为菱形对角线互相垂直平分,故△ABO为直角三角形,根据菱形周长可以计算AB的值,在Rt△ABO中,已知AB,BO,根据勾股定理可以计算AO的长,进而可求出AC的长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,BO=DO,AO=CO,∵菱形ABCD的周长是16,∴AB=4,∵BD=2,∴BO=,∴AO==,∴AC=2AO=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了菱形对角线互相平分的性质,本题中正确计算AO的长是解题的关键.19.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.应聘者面试笔试甲 87 90乙 91 82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?【考点】加权平均数.【分析】根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.【点评】此题考查了加权平均数的计算公式,解题的关键是:计算平均数时按6和4的权进行计算.四、解答题20.已知一次函数的图象经过点A(1,1)和点B(2,7),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【分析】首先设一次函数解析式为y=kx+b,再把A、B两点代入可得关于k、b 的方程组,解方程组可得k、b的值,进而可得函数解析式.【解答】解:设一次函数解析式为y=kx+b,∵经过点A(1,1)和点B(2,7),∴,解得:,∴这个一次函数的解析式为y=6x﹣5.【点评】此题主要考查了待定系数法求函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.21.如图已知∠AOB,OA=OB,点F在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).【考点】作图—复杂作图;矩形的性质.【分析】由条件OA=OB可联想到连接AB,得到等腰三角形OAB.根据等腰三角形的“三线合一”性质,要画出∠AOB的平分线,只需作底边AB上的中线,考虑到AB是矩形AEBF的对角线,根据矩形的性质,要作出AB的中点,只要连接EF,那么AB与EF的交点C就是AB的中点,从而过点C作射线OC就可得到∠AOB的平分线.【解答】解:作图如下:(1)连接AB,EF,交点设为P,(2)如图,连接OP,∵OA=OB,所以△OAB为等腰三角形,根据矩形中对角线互相平分,知P点为AB中点,故根据等腰三角形的“三线合一”性质,OP即为∠AOB的平分线.【点评】本题考查的是运用等腰三角形“三线合一”性质巧作角平分线.命题立意:命题者把等腰三角形“三线合一”性质的基本图形与矩形的基本图形进行了有机的组合.本题有两个巧妙之处,一是矩形对角线的交点恰好就是等腰三角形底边的中点,二是等腰三角形底边上的中线恰好就是顶角的平分线,正是这两个“巧妙”,为我们作角的平分线提供了一种新方法.22.市政府决定对市直机关800户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的中位数和众数,并求出平均数;(3)请根据这800户家庭中月平均用水量不超过12吨的家庭数.【考点】条形统计图;加权平均数;中位数;众数.【分析】(1)根据题意可以求得用水量为11吨的用户,从而可以将条形统计图补充完整;(2)根据统计图可以得到这100个样本数据的中位数和众数,平均数;(3)根据统计图可以求得这800户家庭中月平均用水量不超过12吨的家庭数.【解答】解:(1)由题意和统计图可得,用水量11吨的用户有:100﹣20﹣10﹣20﹣10=40,补全的条形统计图如右图所示,(2)由统计图可得,这100个样本数据的中位数是11吨,众数是11吨,平均数是: =11.6(吨);(3)由统计图可得,这800户家庭中月平均用水量不超过12吨的家庭数是:800×=560,即这800户家庭中月平均用水量不超过12吨的家庭有560户.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.五、解答题23.某市创建文明城区的活动中,有两段长度相等的彩色道转铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设彩色道转的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在0≤x≤2的时段内的施工速度;(2)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)要施工多长时间甲、乙两队所铺设彩色道砖的长度刚好相等?【考点】一次函数的应用.【分析】(1)根据函数图象可以得到乙队在0≤x≤2的时段内的施工速度;(2)根据乙队在2≤x≤6的时段内,函数图象为线段且经过点(2,30),(6,50),从而可以求出y与x之间的函数关系式;(3)根据函数图象可以求得甲队对应的函数解析式,让甲乙两个函数解析式相等可以求得相应的x的值,本题得以解决.【解答】解:(1)由图象可得,乙队在0≤x≤2的时段内的施工速度是:30÷2=15米/时;(2)乙队在2≤x≤6的时段内,设y与x之间的函数关系式是y=kx+b,则,解得,,即乙队在2≤x≤6的时段内,y与x之间的函数关系式是y=5x+20;(3)设甲队的函数解析式为y=ax,则6a=60得a=10,即甲队的函数解析式为y=10x,10x=5x+20,解得,x=4,即要施工4小时时甲、乙两队所铺设彩色道砖的长度刚好相等.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【考点】翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL 定理得出△ABG≌△AFG即可;(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.【点评】此题主要考查了勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.。
2019-2020学年广东省广州市天河区八年级(下)期末数学试卷(附答案详解)
2019-2020学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列二次根式中,是最简二次根式的是()B. √11C. √27D. √a3A. √122.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3.如果一组数据−3,−2,0,1,x,6,9,12的平均数为3,则x为()A. 2B. 3C. −1D. 14.一次函数y=−3x+5的图象不经过的象限是第()象限.A. 一B. 二C. 三D. 四5.对于两组数据A,B,如果s A2>s B2,且x−A=x−B,则()A. 这两组数据的波动相同B. 数据B的波动小一些C. 它们的平均水平不相同D. 数据A的波动小一些6.下列命题中的假命题是()A. 过直线外一点有且只有一条直线与这条直线平行B. 平行于同一直线的两条直线平行C. 直线y=2x−1与直线y=2x+3一定互相平行D. 如果两个角的两边分别平行,那么这两个角相等7.在同一直角坐标系中,一次函数y=(k−2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.8. 如图,矩形ABCD 中,AB =8,BC =4,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D′处,则CD′的最小值是( )A. 4B. 4√5C. 4√5−4D. 4√5+49. 如图,平行四边形ABCD 中,∠BDC =30°,DC =4,AE ⊥BD 于E ,CF ⊥BD 于F ,且E 、F 恰好是BD 的三等分点,AE 、CF 的延长线分别交DC.AB 于N 、M 点,那么四边形MENF 的面积是( )A. √2B. √3C. 2√2D. 2√310. 对于函数y =−x +3,下列结论正确的是( )A. 它的图象与两坐标轴围成等腰直角三角形B. 它的图象经过第一、二、三象限C. 它的图象必经过点(−1,3)D. y 的值随x 值的增大而增大二、填空题(本大题共6小题,共18.0分)11. 若a ,b 都是实数,b =√1−2a +√2a −1−2,则a b 的值为______.12. 直角三角形两条边的长度分别为3cm ,4cm ,那么第三条边的长度是______cm . 13. 如果将直线y =3x −1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.14. 已知一次函数y 1=x 和函数y 2={−x −1,(x <0)3x −1,(x ≥0),当y 1>y 2时,x 的取值范围是______.15.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(−3,0),则点C的坐标为______.16.在平行四边形ABCD中,CD=2AD,BE⊥AD,点F为DC中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确的有______.三、解答题(本大题共10小题,共80.0分)17.计算:(1)√27−√12+√13+√83;(2)(2√3+√15)(√15−2√3).18.在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小19.如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2√3,求▱ABCD的面积.20.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B 两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=______;b=______;m=______;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?21.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.22.如图,直线过A(−1,5),P(2,a),B(3,−3).(1)求直线AB的解析式和a的值;(2)求△AOP的面积.23.如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证:√2DH=CF.24.如图,△ABC的三个顶点的坐标分别为A(−1,−1).B(3,2),C(1,−2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.25.如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(−3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.26.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)当AM的值为______ 时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.答案和解析1.【答案】B【解析】解:√12=√22,A不是最简二次根式;B,√11是最简二次根式;√27=3√3,C不是最简二次根式;√a3=a√a,D不是最简二次根式;故选:B.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.【答案】B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.3.【答案】D【解析】解:∵−3,−2,0,1,x,6,9,12的平均数为3,∴−3−2+0+1+x+6+9+128=3,解得:x =1, 故选:D .根据算术平均数定义列出关于x 的方程,解之可得.本题主要考查算术平均数,算术平均数:对于n 个数x 1,x 2,…,x n ,则x −=1n (x 1+x 2+⋯+x n )就叫做这n 个数的算术平均数,注意计算的准确性.4.【答案】C【解析】 【分析】本题考查一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x 的系数及常数是大于0或是小于0.一次项系数−3<0,则图象经过二、四象限;常数项5>0,则图象还过第一象限. 【解答】 解:∵−3<0, ∴图象经过二、四象限; ∵5>0,∴直线与y 轴的交点在y 轴的正半轴上,图象还过第一象限.所以一次函数y =−3x +5的图象经过一、二、四象限,不经过第三象限. 故选C .5.【答案】B【解析】解:∵s A 2>s B2, ∴数据B 组的波动小一些. 故选:B .根据方差的定义,方差越小数据越稳定.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【答案】D【解析】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x−1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选D.根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.7.【答案】C【解析】【分析】此题主要考查一次函数的图象及正比例函数的图像:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k−2)x+k的图象1,2,3象限,D选项错误;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k−2)x+k的图象1,2,4象限,A选项错误;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k−2)x+k的图象2,<0,所以两函数交点的横坐标小于0,B选3,4象限,当(k−2)x+k=kx时,x=k2项错误,C选项正确,故选C.8.【答案】C【解析】【分析】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.由矩形的性质可得AD=BC=4,∠B=90°,由勾股定理可求AC的长,当点D′在线段AC上时,CD′值最小,即可求CD′的最小值.【解答】解:如图,连接AC,∵四边形ABCD是矩形∴AD=BC=4,∠B=90°∵AB=8,BC=4,∴AC=√AB2+BC2=4√5∵折叠∴AD=AD′=4,∴点D′在以点A为圆心,AD长为半径的圆上,∴当点D′在线段AC上时,CD′值最小,∴CD′的最小值=4√5−4故选:C.9.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AB=DC=4,∵E、F恰好是BD的三等分点,∴DE=EF=BF,∵AE⊥BD于E,CF⊥BD于F,∴AN//CM,AB=2,∴AM=BM=12又∵∠ABD=30°,BM=1,BF=√3,则在Rt△BFM中,MF=12同理:在Rt△DEN中,EN=1,∴EN=MF,∵AE⊥BD,CF⊥BD,∴MF//EN,∴四边形MENF是平行四边形,∵E、F恰好是BD的三等分点,∴EF=BF=√3,∴四边形MENF的面积=1×√3=√3.故选:B.由平行四边形的性质得出AB=DC=4,证出AN//CM,在直角三角形BMF中,由勾股定理求解MF与BF的长,进而得出四边形MENF是平行四边形,进而即可求其面积.本题主要考查了平行四边形的判定及性质、直角三角形的性质以及面积的计算,熟练掌握平行四边形的性质和直角三角形的性质,证明四边形MENF是平行四边形是解题关键.10.【答案】A【解析】解:A.由函数y=−x+3可知与坐标轴的交点为(3,0)和(0,3),所以它的图象与两坐标轴围成等腰直角三角形,选项A正确;B.它的图象经过第一、二、四象限,选项B错误;C.它的图象必经过点(−1,4),选项C错误;D.y的值随x值的增大而减小,选项D错误;故选:A.根据一次函数的性质和一次函数图象上点的坐标特征可以判断各个选项是否正确,从而可以解答本题.本题考查一次函数的性质和一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.11.【答案】4【解析】解:∵b=√1−2a+√2a−1−2,∴1−2a=0,,解得:a=12则b=−2,)−2=4.故a b=(12故答案为:4.直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.12.【答案】5或√7【解析】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:√32+42=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:√42−32=√7(cm).故答案为:5或√7.利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为3cm,4cm时;二是当这个直角三角形的一条直角边为3cm,斜边为4cm时.然后利用勾股定理即可求得答案.此题主要考查学生对勾股定理的理解和掌握,注意分类讨论得出是解题关键.13.【答案】y=3x+2【解析】解:设平移后直线的解析式为y=3x+b.把(0,2)代入直线解析式得2=b,解得b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,2)代入即可得出直线的函数解析式.本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y= kx+b(k≠0)平移时k的值不变是解题的关键.14.【答案】−12<x <12【解析】解:解不等式组{x >−x −1x <0,得−12<x <0; 解不等式组{x >3x −1x ≥0,得0≤x <12, 综上可得,−12<x <12.故答案为−12<x <12.分别解不等式组{x >−x −1x <0,以及{x >3x −1x ≥0,进而得出x 的取值范围. 本题考查了一次函数与一元一次不等式,一元一次不等式组的解法,难度适中.此题还可以利用图象法求解.15.【答案】(8,3√3)【解析】解:∵点A 坐标为(−3,0)∴AO =3∵∠ADO =30°,AO ⊥DO∴AD =2AO =6,∵DO =√AD 2−AO 2∴DO =3√3∴D(0,3√3)∵四边形ABCD 是平行四边形∴AB =CD =8,AB//CD∴点C 坐标(8,3√3)故答案为(8,3√3)根据题意可求点D 坐标(0,3√3),根据平行四边形的性质可求点C 坐标.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是本题的关键.16.【答案】①②③④【解析】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD//AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE//CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG(AAS),∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD//BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S=S△EBG=2S△BEF,故③正确,四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF//BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH//AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故答案为:①②③④延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17.【答案】解:(1)原式=3√3−2√3+√3+23=4√3+2;3(2)原式=(√15+2√3)(√15−2√3)=(√15)2−(2√3)2=15−12=3.【解析】(1)根据二次根式的加减法法则计算;(2)根据平方差公式,二次根式的乘法法则计算.本题考查的是二次根式的混合运算,掌握二次根式的加减法法则,二次根式的乘法法则是解题的关键.18.【答案】解:∵AB=AC,M是边BC的中点,∴∠AMB=90°,∠BAM=∠CAM,∵∠BEM=∠AED=64°,∴∠EBM=26°,∵BD平分∠ABC,∴∠ABC=2∠EBM=52°,∴∠BAM=90°−∠ABM=38°,∴∠BAC=2∠BAM=76°.【解析】根据等腰三角形的性质得到∠ABM=90°,∠BAM=∠CAM,根据角平分线的定义得到∠ABC=2∠EBM=52°,于是得到结论.本题考查了等腰三角形的性质,角平分线定义,正确的识别图形是解题的关键.19.【答案】(1)证明:∵四边形ABCD为平行四边形,∴AB//CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(2)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan∠ADE=AEDE =√33,DE=2√3,∴AE=2.∴S平行四边形ABCD=2S△ADE=AE⋅DE=4√3.【解析】(1)根据平行四边形的性质证得∠F=∠DAF,然后利用等角对等边证得结论;(2)利用S平行四边形ABCD=2S△ADE求解即可.本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.20.【答案】4 1 49【解析】解:(1)由B村的中位数为46,即中间第8个为46,∴1+5+b=7,∴b=1,∴a=15−1−4−5−1=4,A村的中位数为第8个数49,即m=49;故答案为:4;1;49;(2)A,B两村中A村的小土豆卖得更好;理由如下:①A村的平均数比B村大;②A村的中位数比B村大;③A村的众数比B村大;(3)A,B两村抽取的15户中每月的小土豆销售量x在45<x<60范围内的村民有8−2=6户,210×6+7=91(户);15+15答:估计两村共有91户村民会被列为重点培养对象.(1)由题意以及中位数的定义即可得出答案;(2)①A村的平均数比B村大;②A村的中位数比B村大;③A村的众数比B村大;(3)求出A,B两村中抽取的15户中每月的小土豆销售量x在45<x<60范围内的村民分别有6户、7户,即可得出答案.本题也考查了平均数、中位数、众数、数据的整理、用样本估计总体等知识;熟练掌握平均数、中位数、众数的定义是解题的关键.21.【答案】解:如图菱形ABCD即为所求.【解析】①作∠MAB=∠α.②在∠MAN的两边截取AD=AB=a,③分别以D、B为圆心a为半径画弧,两弧交于点C.菱形ABCD即为所求.本题考查作图−复杂作图、菱形的判定和性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.22.【答案】解:(1)设直线AB 的解析式为y =kx +b(k ≠0),将A(−1,5),B(3,−3)代入y =kx +b ,得:{−k +b =53k +b =−3, 解得:{k =−2b =3, ∴直线AB 的解析式为y =−2x +3.当x =2时,y =−2x +3=−1,∴点P 的坐标为(2,−1),即a 的值为−1.(2)设直线AB 与y 轴交于点D ,连接OA ,OP ,如图所示.当x =0时,y =−2x +3=3,∴点D 的坐标为(0,3).S △AOP =S △AOD +S △POD =12OD ⋅|x A |+12OD ⋅|x P |=12×3×1+12×3×2=92.【解析】(1)根据点A ,B 的坐标,利用待定系数法即可求出直线AB 的解析式,再利用一次函数图象上点的坐标特征即可求出a 的值;(2)设直线AB 与y 轴交于点D ,连接OA ,OP ,利用一次函数图象上点的坐标特征可求出点D 的坐标,根据三角形的面积公式及S △AOP =S △AOD +S △POD 可求出△AOP 的面积. 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB 的解析式;(2)利用分割图形求面积法,求出△AOP 的面积.23.【答案】(1)解:连接BD 交AC 于K .∵四边形ABCD 是菱形,∴AC ⊥BD ,AK =CK =8,在Rt △AKD 中,DK =√AD 2−AK 2=6,∵CD =CE ,∴EK =CE −CK =10−8=2,在Rt △DKE 中,DE =√DK 2+EK 2=2√10.(2)证明:过H 作HQ ⊥CD 于Q ,过G 作GJ ⊥CD 于J .∵CH ⊥GF ,∴∠GJF =∠CQH =∠GPC =90°,∴∠QCH=∠JGF,∵CH=GF,∴△CQH≌△GJF(AAS),∴QH=CJ,∵GC=GF,∴∠QCH=∠JGF=∠CGJ,CJ=FJ=12CF,∵GC=CH,∴∠CHG=∠CGH,∴∠CDH+∠QCH=∠HGJ+∠CGJ,∴∠CDH=∠HGJ,∵∠GJF=∠CQH=∠GPC=90°,∴∠CDH=∠HGJ=45°,∴DH=√2QH,∴√2DH=2QH=CF.【解析】(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH=√2QH解决问题.本题考查菱形的性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)△ABC是直角三角形,由勾股定理可得:AC2=12+22=5,AC=√5,BC2=22+42=20,BC=√20=2√5,AB2=32+42=25,AB=√25=5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)△ABC的周长为:AC+BC+AB=√5+2√5+5=3√5+5,△ABC的面积为:12AC⋅BC=12×√5×2√5=5.【解析】此题考查勾股定理及其逆定理,根据点的坐标求出△ABC各边的长是解题的关键.(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;(2)根据三角形的周长和面积公式解答即可.25.【答案】解:如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.∵四边形AOCB是矩形,B(−3,5),∴OA=3,OC=5,∵AD=2OD,∴AD=2,OD=1,∴AD′=AD=2,∴D′(−5,0),∵C(0,5),∴直线CD′的解析式为y=x+5,∴E′(−3,2).【解析】如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.求出直线CD′的解析式即可解决问题.本题考查轴对称−最短问题,矩形的性质,一次函数的应用等知识,解题的关键是灵活运用所学知识解决问题属于中考常考题型.26.【答案】解:(1)∵点E是AD边的中点,∴AE=ED,∵AB//CD,∴∠NDE=∠MAE,在△NDE和△MAE中,{∠NDE=∠MAE DE=AE∠NED=∠MEA,∴△NDE≌△MAE(ASA),∴ND=AM,∵ND//AM,∴四边形AMDN是平行四边形;(2)2;当AM=2时,说明四边形是矩形.∵E是AD的中点,∴AE=2,∵AE=AM,∠EAM=60°,∴△AME是等边三角形,∴AE=EM,∴AE=ED=EM,∴∠AMD=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,故当AM=2时,四边形AMDN是矩形.【解析】本题考查了菱形的性质,平行四边形的判定,全等三角形的判定与性质,矩形的性质,熟记各性质并求出三角形全等是解题的关键,也是本题的突破口.(1)根据菱形的性质可得AB//CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠NED=∠MEA,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)首先证明△AME是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.。
2018--2019学年度八年级下学期数学期末试题及答案
2018-2019年八年级数学(下)期末检测题考试时间:120分钟满分:120分一.选择题(每小题2分,共12分)1.若二次根式21x-有意义,则x的取值范围是()A.x≤-12B.x≥-12C.x≥12D.x≤122.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.83.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.(5-1,0)C.(10-1,0)D.(5,0)4、如图,已知菱形ABCD的对角线AC,BD的长分别为6㎝和8㎝,AE⊥BC于点E,则AE的长为()A.53㎝B.25㎝C.㎝D.524㎝5、某移动通讯公司提供了A,B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元,B.若通话时间超过200分,则B方案比A方案便宜12元,C.若通讯费为60元,则B方案比A方案的通话时间多,D.若两种方案通信费用相差10元,则通话时间是145分或185分,6.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股元方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么()2a b+的值为()A.13B.19C.25D.169二.填空题(每小题3分,共24分)7.化简18-108的结果是8.直角三角形的两条直角边长为3和4,则该直角三角形斜边上的高为9.在平面直角坐标系中,将正比例函数y=2x的图象向上平移一个单位,那么平移后的图象不经过象限10.将一根长24㎝的筷子,置于底面直径为5㎝,高为12㎝的圆柱形水杯中(如图),设筷子露在杯子外面的长度为h㎝,则h的取值范围是11.已知一组数据10,8,9,x,5,的众数是8,那么这组数据的方差是12.如图,正方形ABCD的边长为8,M在CD上,且DM=2,P是AC上的一个动点,则PD+PM的最小值是13.如图所示,在平行四边形ABCD中,E,F为对角线BD上的两点,要使四边形AECF为平行四边形,在不连接其他线段的前提下还需要添加的一个条件是14.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为三.解答题(每题5分,共20分)15. 22525(+)-第10题第12题第13题16、148312242÷⨯-+17、如图,有一块地,已知,AD=4m ,CD=3m ,∠ADC=90°,AB=13m ,BC=12m 。
【解析版】2018-2019年广州市天河区八年级下期末数学试卷
2018-2019 学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本题有10 小题,每小题 3 分,满分30 分)1.( 3 分)( 2019?张家港市模拟)若二次根式有意义,则x 的取值范围是()A . x≤﹣B. x≥﹣C. x≥D. x≤2.(3 分)( 2019 春 ?天河区期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.方差B.平均数C.中位数D.众数3.( 3 分)( 2019 春 ?天河区期末)已知平行四边形ABCD 的周长为32,AB=4 ,则 BC 的长为()A. 4B. 12C. 24D. 284.( 3 分)( 2019 春?天河区期末)如图,已知两正方形的面积分别是25 和 169,则字母 B所代表的正方形的面积是()A . 12 B. 13 C. 144 D. 1945.( 3 分)( 2019?普陀区二模)在平面直角坐标系中,将正比例函数y=kx ( k> 0)的图象向上平移一个单位,那么平移后的图象不经过()A .第一象限B .第二象限C.第三象限 D .第四象限6.( 3 分)( 1999?广州)函数y=﹣ x 的图象与函数y=x+1 的图象的交点在()A .第一象限B .第二象限C.第三象限 D .第四象限7.( 3 分)( 2019 春?天河区期末)下列各命题的逆命题成立的是()A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等8.( 3 分)( 2019 春 ?天河区期末)直角三角形的两条直角边长为 3 和 4,则该直角三角形斜边上的高为()A. 5B. 7C.D.第1页(共 20页)A . y 随 x 的增大而减小 B.直线经过第一、二、四象限C.当 x> 0 时 y< 5 D.直线与 x 轴交点坐标是( 0, 5)10.( 3 分)( 2019 春?天河区期末)如图, E 是边长为 4 的正方形 ABCD 的对角线 BD 上一点,且 BE=BC , P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BR 于点 R,则 PQ+PR 的值是()A.2B.2C.2D.二、填空题(共 6 小题,每小题 3 分,满分 18 分)11.(3 分)( 2019 春 ?天河区期末) 6=.12.( 3 分)( 2019 春?天河区期末)菱形的面积是16,一条对角线长为4,则另一条对角线的长为.13.( 3 分)( 2019 春 ?天河区期末)一组数据5,﹣ 2,4,x, 3,﹣ 1,若 3 是这组数据的众数,则这组数据的平均数是.14(. 3 分)(2019 春 ?天河区期末)如图,矩形 ABCD 的对角线AC ,BD 交于点 O,∠ AOD=60 °,AD=3 ,则 BD 的长为.15.( 3 分)( 2019?广州)一次函数y=( m+2 ) x+1 ,若 y 随 x 的增大而增大,则m 的取值范围是.16.( 3 分)(2019 春 ?天河区期末)如图,菱形ABCD 在平面直角坐标系中,若点 D 的坐标为( 1,),则点C的坐标为.三、解答题(本题有 9 小题,共102 分))2﹣ 217.( 14 分)( 2019 春 ?天河区期末)(1)计算:(2+;(2)在平面直角坐标系中画出函数y=2x ﹣ 4 的图象,并确定当x 取何值时 y> 0.18.( 14 分)( 2019 春 ?天河区期末)(1)如图甲,在水塔 O 的东北方向32m 处有一抽水站A .在水塔的东南方向24m 处有一建筑工地B,在 AB 间建一条直水管,求水管AB 的长.(2)如图乙,在△ABC 中, D 是 BC 边上的点.已知 AB=13 , AD=12 , AC=15 ,BD=5 ,求DC 的长.19.( 8 分)( 2019 春?天河区期末)市政府决定对市直机关500 户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100 户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这 100 个样本数据的平均数,众数和中位数.20.( 8 分)( 2019 春?天河区期末)如图, E、 F 分别是菱形ABCD 的边 AB 、 AC 的中点,且 AB=5 , AC=6 .(1)求对角线 BD 的长;(2)求证:四边形 AEOF 为菱形.21.( 8 分)( 2019 春?天河区期末)根据表格中一次函数的自变量x 与函数 y 的对应值,求p的值.x ﹣ 2 0 1y 3 p 022.( 12分)( 2019 春 ?天河区期末)如图,在矩形ABCD 中, E 为 BC 上一点, AE ⊥ DE ,∠DAE=30 °,若 DE=m+n ,且 m、 n 满足 m=++2,试求 BE 的长.23.( 12 分)(2019 春 ?天河区期末)如图,直线 y=x+3 与 x 轴、 y 轴分别相交于 A 、C 两点,过点 B (6, 0),E( 0,﹣ 6)的直线上有一点 P,满足∠ PCA=135 °(1)求证:四边形ACPB 是平行四边形;(2)求点 P 的坐标及线段PB 的长度.24.( 12 分)( 2019 春 ?天河区期末)已知:如图,等腰△ABC中,AB=AC,BD、CE分别是边 AC 、 AB 上的中线, BD 与 CE 相交于点 O,点 M 、N 分别为线段 BO 和 CO 中点.求证:四边形 EDNM 是矩形.25.( 14 分)( 2019 春 ?天河区期末)已知:如图,已知直线AB 的函数解析式为y=2x+10 ,与 y 轴交于点 A ,与 x 轴交于点B.(1)求 A、 B 两点的坐标;(2)若点 P( a,b)为线段 AB 上的一个动点,作 PE⊥y 轴于点 E,PF⊥ x 轴于点 F,连接EF,问:①若△ PBO 的面积为S,求 S 关于 a 的函数关系式;②是否存在点P,使 EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由.2018-2019 学年广东省广州市天河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10 小题,每小题 3 分,满分30 分)1.( 3 分)( 2019?张家港市模拟)若二次根式有意义,则x 的取值范围是()A . x≤﹣B. x≥﹣C. x≥D. x≤考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意得,2x ﹣1≥0,解得 x≥ .故选: C.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3 分)( 2019 春 ?天河区期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.方差B.平均数C.中位数D.众数考点:统计量的选择.分析:幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.解答:解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.故选 D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.( 3 分)( 2019 春 ?天河区期末)已知平行四边形ABCD 的周长为32,AB=4 ,则 BC 的长为()A. 4B. 12C. 24D. 28考点:平行四边形的性质.分析:根据平行四边形的性质得到AB=CD ,AD=BC ,根据 2(AB+BC )=32,即可求出答案.解答:解:∵四边形ABCD 是平行四边形,∴AB=CD , AD=BC ,∵平行四边形ABCD 的周长是32,∴2( AB+BC )=32 ,∴B C=12 .故选 B.点评:本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.4.( 3 分)( 2019 春?天河区期末)如图,已知两正方形的面积分别是25 和 169,则字母 B所代表的正方形的面积是()A . 12 B. 13 C. 144 D. 194考点:勾股定理.分析:结合勾股定理和正方形的面积公式,得字母 B 所代表的正方形的面积等于其它两个正方形的面积差.解答:解:字母 B 所代表的正方形的面积=169﹣ 25=144 .故选 C.点评:熟记:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.5.( 3 分)( 2019?普陀区二模)在平面直角坐标系中,将正比例函数y=kx ( k> 0)的图象向上平移一个单位,那么平移后的图象不经过()A .第一象限B .第二象限C.第三象限 D .第四象限考点:一次函数图象与几何变换.分析:先由“上加下减”的平移规律求出正比例函数y=kx (k> 0)的图象向上平移一个单位后的解析式,再根据一次函数图象与系数的关系即可求解.解答:解:将正比例函数y=kx ( k> 0)的图象向上平移一个单位得到y=kx+1 ( k> 0),∵k> 0, b=1> 0,∴图象经过第一、二、三象限,不经过第四象限.故选 D.点评:本题考查了一次函数图象与几何变换,一次函数图象与系数的关系,正确得出函数平移后的解析式是解题的关键.6.( 3 分)( 1999?广州)函数y=﹣ x 的图象与函数y=x+1 的图象的交点在()A .第一象限B .第二象限C.第三象限 D .第四象限考点:两条直线相交或平行问题.专题:计算题.分析:要想求函数y=﹣ x 的图象与函数y=x+1 的图象的交点在第几象限,必须先求交点坐解答:解:根据题意得,解得:,∵点(﹣,)在第二象限,∴函数 y=﹣ x 的图象与函数y=x+1 的图象的交点在第二象限,故选 B.点评:本题考查了求两个一次函数的交点问题,以及各象限内的点的符号问题.7.( 3 分)( 2019 春?天河区期末)下列各命题的逆命题成立的是()A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等考点:命题与定理.分析:首先写出各个命题的逆命题,再进一步判断真假.解答:解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选 C.点评:考查点:本题考查逆命题的真假性,是易错题.易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.8.( 3 分)( 2019 春 ?天河区期末)直角三角形的两条直角边长为 3 和 4,则该直角三角形斜边上的高为()A. 5B. 7C.D.考点:勾股定理.分析:先根据勾股定理求出斜边长,再设这个直角三角形斜边上的高为h,根据三角的面积公式求出h 的值即可.解答:解:∵直角三角形两直角边长为3, 4,∴斜边 ==5,设这个直角三角形斜边上的高为h,则 h==.故选 C.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.( 3 分)( 2019 春 ?天河区期末)下列描述一次函数y= ﹣ 2x+5 的图象及性质错误的是()A . y 随 x 的增大而减小 B.直线经过第一、二、四象限C.当 x> 0 时 y< 5 D.直线与 x 轴交点坐标是( 0, 5)考点:一次函数的性质;一次函数的图象.分析:由k的系数可判断 A 、B;利用不等式可判断C;令 y=0 可求得与 x 轴的交点坐标,可判断 D,可得出答案.解答:解:∵一次函数y= ﹣ 2x+5 中, k= ﹣ 2< 0,∴y 随 x 的增大而减小,故A正确;又∵ b=5,∴与 y 轴的交点在x 轴的上方,∴直线经过第一、二、四象限,故B正确;∵当 x=0 时, y=5 ,且 y 随 x 的增大而减小,∴当 x> 0 时, y< 5,故C正确;在 y= ﹣ 2x+5 中令 y=0,可得 x=2.5 ,∴直线与x 轴的交点坐标为( 2.5, 0),故D错误;故选 D.点评:本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标是解题的关键,注意与不等式相结合.10.( 3 分)( 2019 春?天河区期末)如图, E 是边长为 4 的正方形 ABCD 的对角线 BD 上一点,且 BE=BC , P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BR 于点 R,则 PQ+PR 的值是()A.2B.2C.2D.考点:正方形的性质.分析:连接 BP,设点 C 到 BE 的距离为 h,然后根据S△BCE=S△BCP+S△BEP求出 h=PQ+PR ,再根据正方形的性质求出h 即可.则 S△BCE=S△BCP+S△BEP,即 BE ?h= BC ?PQ+ BE ?PR,∵B E=BC ,∴h=PQ+PR ,∵正方形 ABCD 的边长为 4,∴h=4 × =2 .故答案为: 2 .点评:本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出 PQ+PR 等于点 C 到 BE 的距离是解题的关键.二、填空题(共 6 小题,每小题 3 分,满分 18 分)11.(3 分)( 2019 春 ?天河区期末) 6= 2.考点:二次根式的性质与化简.分析:由二次根式的性质化简解答即可.解答:解:6=2,故答案为: 2.点评:此题考查了二次根式的性质与化简.关键是注意掌握二次根式的性质.12.( 3 分)( 2019 春?天河区期末)菱形的面积是 16,一条对角线长为 4,则另一条对角线的长为8.考点:菱形的性质.分析:根据菱形的面积=对角线乘积的一半,即可得出另一条对角线的长.解答:解:设另一条对角线为x,由题意得,×x×4=16,解得: x=8 .故答案为: 8.点评:本题考查了菱形的性质,属于基础题,注意掌握菱形的面积=对角线乘积的一半.13.( 3 分)( 2019 春 ?天河区期末)一组数据5,﹣ 2,4,x, 3,﹣ 1,若 3 是这组数据的众数,则这组数据的平均数是2.考点:众数;算术平均数.分析:根据众数和平均数的概念求解.解答:解:∵这组数据的众数为3,∴x=3 ,则平均数为:=2.故答案为: 2.点评:本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.14(. 3 分)(2019 春 ?天河区期末)如图,矩形 ABCD 的对角线 AC ,BD 交于点 O,∠AOD=60 °, AD=3 ,则 BD 的长为 6 .考点:矩形的性质.分析:由矩形的性质得出OA=OD ,再证明△ AOD 是等边三角形,得出OD=AD=3 ,即可得出 BD 的长.解答:解:∵四边形ABCD 是矩形,∴OA= AC , OD=BD , AC=BD ,∴OA=OD ,∵∠ AOD=60 °,∴△ AOD 是等边三角形,∴O D=AD=3 ,∴B D=2OD=6 ;故答案为: 6.点评:本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.( 3 分)( 2019?广州)一次函数y=( m+2 ) x+1 ,若 y 随 x 的增大而增大,则m 的取值范围是m>﹣ 2 .考点:一次函数图象与系数的关系.分析:根据图象的增减性来确定(m+2)的取值范围,从而求解.解答:解:∵一次函数 y= ( m+2)x+1 ,若 y 随 x 的增大而增大,∴m+2 > 0,解得, m>﹣ 2.故答案是: m>﹣ 2.点评:本题考查了一次函数的图象与系数的关系.函数值 y 随 x 的增大而减小? k< 0;函数值 y 随 x 的增大而增大? k> 0.16.( 3 分)(2019 春 ?天河区期末)如图,菱形 ABCD 在平面直角坐标系中,若点 D 的坐标为( 1,),则点 C 的坐标为(3,).考点:菱形的性质;坐标与图形性质.专题:计算题.分析:先利用两点间的距离公式计算出 AD=2 ,再根据菱形的性质得到 CD=AD=2 ,CD∥ AB ,然后根据平行于 x 轴的直线上的坐标特征写出 C 点坐标.解答:解:∵点 D 的坐标为( 1,),∴AD==2,∵四边形 ABCD 为菱形,∴C D=AD=2 ,CD∥ AB ,∴C 点坐标为(3,).故答案为( 3,).点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了坐标与图形性质.三、解答题(本题有9 小题,共102 分))2﹣ 217.( 14 分)( 2019 春 ?天河区期末)(1)计算:(2+;(2)在平面直角坐标系中画出函数y=2x ﹣ 4 的图象,并确定当x 取何值时 y> 0.考点:二次根式的混合运算;一次函数的图象.专题:计算题.分析:(1)先利用完全平方公式展开,然后合并即可;(2)利用两点确定一直线画函数 y=2x ﹣ 4 的图象,然后找出图象上 x 轴上方所对应的自变量的取值范围即可.解答:解:(1)原式=4+4+5﹣ 2=9+2;(2)如图,当 x> 2 时, y> 0.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了一次函数图象.18.( 14 分)( 2019 春 ?天河区期末)(1)如图甲,在水塔 O 的东北方向32m 处有一抽水站A .在水塔的东南方向24m 处有一建筑工地B,在 AB 间建一条直水管,求水管AB 的长.(2)如图乙,在△ABC 中, D 是 BC 边上的点.已知 AB=13 , AD=12 , AC=15 ,BD=5 ,求DC 的长.考点:勾股定理的应用.分析:(1)根据题意得出:∠AOB=90 °,再利用勾股定理得出AB 的长;(2)利用勾股定理的逆定理得出∠ ADB= ∠ ADC=90 °,再利用勾股定理得出答案.解答:解:( 1)由题意可得:∠ AOB=90 °,在 Rt△ AOB 中, AB===40 ( m),答:水管 AB 的长为 40m;(2)∵ AB=13 , AD=12 , BD=5 ,222222,∴AB =13=169, BD =5 =25, DA =12 =144222∴AB =BD +DA,∴∠ ADB= ∠ ADC=90 °,在 Rt△ ADC 中,又 AC=15 ,∴CD===9.点评:此题主要考查了勾股定理以及其逆定理,得出∠ADB= ∠ ADC=90 °是解题关键.19.( 8 分)( 2019 春?天河区期末)市政府决定对市直机关500 户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100 户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这 100 个样本数据的平均数,众数和中位数.考点:频数(率)分布直方图;加权平均数;中位数;众数.分析:(1)利用总数100 减去其它组的人数即可求得月用水量是11 吨的人数,即可补全直方图;(2)利用加权平均数公式即可求得平均数,然后根据众数和中位数的定义确定众数和中位数.解答:解:( 1)月用水量是 11 吨的户数是: 100﹣20﹣ 10﹣20﹣ 10=40(户);;(2)平均数是:(20×10+40×11+10×12+20×13+10×14)=11.6(吨);众数是 11 吨,中位数是11 吨.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.( 8 分)( 2019 春?天河区期末)如图, E、 F 分别是菱形ABCD 的边 AB 、 AC 的中点,且 AB=5 , AC=6 .(1)求对角线 BD 的长;(2)求证:四边形 AEOF 为菱形.考点:菱形的判定与性质;勾股定理.分析:(1)利用菱形的性质结合勾股定理得出OB 的长即可得出DB 的长;(2)利用三角形中位线定理进而得出四边形AEOF 是平行四边形,再利用菱形的判定方法得出即可.解答:(1)解:∵四边形ABCD 是菱形,∴AC ⊥DB ,AO= AC ,BO= DB,∵AC=6 ,∴AO=3 ,∵AB=5 ,∴OB==4 ,∴DB=8 ;(2)证明:∵ E, O 分别是 BA , BD 中点,∴OE AD ,同理可得: AF AD ,∴四边形 AEOF 是平行四边形,又∵ AB=AD ,∴ AE=AF ,∴平行四边形AEOF 是菱形.点评:此题主要考查了勾股定理以及菱形的判定与性质,正确把握菱形的判定方法是解题关键.21.( 8 分)( 2019 春?天河区期末)根据表格中一次函数的自变量x 与函数 y 的对应值,求p的值.x ﹣ 2 0 1y 3 p0考点:待定系数法求一次函数解析式;一次函数图象上点的坐标特征.分析:设一次函数的解析式为y=kx+b ( k≠0),再把当x=﹣ 2 时, y=3;当 x=1 时, y=0 代入求出 k,b 的值,进而可得出一次函数的解析式,再把x=0 时, y=p 代入求出p 的值即可.解答:解:设一次函数的解析式为y=kx+b ( k≠0),∵当 x= ﹣ 2 时, y=3;当 x=1 时, y=0 ,∴,解得,∴一次函数的解析式为y= ﹣ x+1,当 x=0 时, p=1 .点评:本题考查的是用待定系数法求一次函数的解析式,熟知用待定系数法求一次函数解析式一般步骤是解答此题的关键.22.( 12 分)( 2019 春 ?天河区期末)如图,在矩形ABCD 中, E 为 BC 上一点, AE ⊥ DE ,∠DAE=30 °,若 DE=m+n ,且 m、 n 满足 m=++2,试求 BE 的长.考点:矩形的性质;二次根式有意义的条件.分析:根据二次根式的意义求出m、 n,得出 DE,再由含30°角的直角三角形的性质得出AD ,由矩形的性质得出∠ ADC=90 °, BC=AD=20 ,得出∠ CDE=30 °,求出 CE,即可得出BE 的长.解答:解:∵ m、n满足m=++2,∴,∴n=8 ,∴m=2 ,∵D E=m+n ,∴DE=10 ,∵A E ⊥ DE ,∠ DAE=30 °,∴AD=2DE=20 ,∠ADE=60 °,∵四边形 ABCD 是矩形,∴∠ADC=90 °, BC=AD=20 ,∴∠ CDE=30 °,∴C E= DE=5 ,∴B E=BC ﹣ CE=20 ﹣ 5=15.点评:本题考查了二次根式有意义的条件、矩形的性质、含30°角的直角三角形的性质;熟练掌握二次根式有意义的条件、矩形的性质,并能进行推理计算是解决问题的关键.23.( 12 分)(2019 春 ?天河区期末)如图,直线 y=x+3 与 x 轴、 y 轴分别相交于 A 、C 两点,过点 B (6, 0),E( 0,﹣ 6)的直线上有一点 P,满足∠ PCA=135 °(1)求证:四边形ACPB 是平行四边形;(2)求点 P 的坐标及线段PB 的长度.考点:一次函数综合题.专题:综合题.分析:(1)根据题意确定出 A 与 C 的坐标,得到OA=OC ,进而确定出三角形AOC 为等腰直角三角形,得到∠CAO=45 °,由已知角度数,得到一对同旁内角互补,得到AB 与 CP 平行,同理得到AC 与 BP 平行,利用两组对边分别平行的四边形为平行四边形即可得证;(2)由平行四边形的对边相等得到AB=PC ,PB=AC ,根据 OA+OB 求出 AB 的长,确定出PC 的长,确定出P 的坐标;在直角三角形AOC 中,利用勾股定理求出AC 的长,即为PB 的长.解答:解:(1)∵直线y=x+3 与 x 轴的交点为 A (﹣ 3, 0),与 y 轴交点为C( 0, 3),∴OA=OC ,∵∠ AOC=90 °,∴∠ CAO=45 °,∵∠ PCA=135 °,∴∠ CAO+ ∠ PCA=180 °,∴AB ∥ CP,同理由 E( 0,﹣ 6), B (6, 0)得到∠ CAO= ∠ ABE=45 °,∴AC ∥ BP,则四边形 ACPB 为平行四边形;(2)∵ OC=3, OA=3 ,OB=6 ,四边形 ACPB 为平行四边形,∴PC=AB=9 , PB=AC ,∴P( 9, 3),根据勾股定理得: AC==3 ,则 BP=AC=3.点评:此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,等腰直角三角形的性质,平行线的判定,平行四边形的判定与性质,勾股定理,熟练掌握性质及定理是解本题的关键.24.( 12 分)( 2019 春 ?天河区期末)已知:如图,等腰△ABC中,AB=AC,BD、CE分别是边 AC 、 AB 上的中线, BD 与 CE 相交于点 O,点 M 、N 分别为线段 BO 和 CO 中点.求证:四边形 EDNM 是矩形.考点:矩形的判定;等腰三角形的性质;三角形中位线定理.专题:证明题.分析:由题意得出ED 是△ ABC 的中位线,得出ED ∥ BC ,ED= BC,由题意得出MN 是△OBC 的中位线,得出 MN ∥ BC ,MN= B C,因此 ED∥ MN ,ED=MN ,证明四边形EDNM是平行四边形,再由 SAS 证明△ ABD ≌△ ACE ,得出 BD=CE ,证出 DM=EN ,即可得出四边形 EDNM 是矩形.解答:证明:∵ E、D分别是AB、AC的中点,∴A E= AB ,AD= AC , ED 是△ABC 的中位线,∴ED ∥ BC , ED= BC,∵点 M 、 N 分别为线段BO 和 CO 中点,∴OM=BM , ON=CN , MN 是△ OBC 的中位线,∴MN ∥BC , MN=BC ,∴ED ∥ MN , ED=MN ,∴四边形 EDNM 是平行四边形,∴OE=ON , OD=OM ,∵A B=AC ,∴AE=AD ,在△ ABD 和△ ACE 中,,∴△ ABD ≌△ ACE ( SAS),∴BD=CE ,又∵ OE=ON , OD=OM ,OM=BM , ON=CN ,∴DM=EN ,∴四边形 EDNM 是矩形.点评:本题考查了等腰三角形的性质、三角形中位线定理、矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质和三角形中位线定理,并能进行推理论证是解决问题的关键.25.( 14 分)( 2019 春 ?天河区期末)已知:如图,已知直线AB 的函数解析式为y=2x+10 ,与 y 轴交于点 A ,与 x 轴交于点 B.(1)求 A、 B 两点的坐标;(2)若点 P( a,b)为线段 AB 上的一个动点,作 PE⊥y 轴于点 E,PF⊥ x 轴于点 F,连接EF,问:①若△ PBO 的面积为S,求 S 关于 a 的函数关系式;②是否存在点P,使 EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)由直线AB 解析式,令x=0 与 y=0 分别求出y 与 x 的值,即可确定出 A 与 B 的坐标;(2)①把 P 坐标代入直线AB 解析式,得到 a 与 b 的关系式,三角形POB 面积等于OB 为底边, P 的纵坐标为高,表示出S 与 a 的解析式即可;② 存在,理由为:利用三个角为直角的四边形为矩形,得到四边形PFOE 为矩形,利用矩形的对角线相等得到EF=PO,由 O 为定点, P 为动点,得到OP 垂直于 AB 时, OP 取得最小值,利用面积法求出OP 的长,即为 EF 的最小值.解答:解:(1)对于直线AB 解析式 y=2x+10 ,令 x=0 ,得到 y=10 ;令 y=0 ,得到 x= ﹣ 5,则 A ( 0, 10),B (﹣ 5, 0);(2)连接 OP,如图所示,① ∵P( a, b)在线段 AB 上,∴b=2a+10 ,由 0≤2a+10≤10,得到﹣ 5≤a≤0,由( 1)得: OB=5 ,∴S△PBO=OB ?(2a+10),则 S= ( 2a+10)=5a+25 (﹣ 5≤a≤0);② 存在,理由为:∵∠ PFO=∠ FOE=∠ OEP=90°,∴四边形 PFOE 为矩形,∴E F=PO ,∵O 为定点, P 在线段 AB 上运动,∴当 OP⊥ AB 时, OP 取得最小值,∵AB ?OP= OB ?OA ,∴?OP=50 ,∴EF=OP=2,综上,存在点P 使得 EF 的值最小,最小值为2.点评:此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,矩形的判定与性质,勾股定理,以及三角形面积求法,熟练掌握性质及定理是解本题的关键.第 20 页(共 20 页)。
2018-2019学年广东省广州市天河区八年级(下)期末数学试卷
广东省广州市天河区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个事正确的)1.(3分)(2020春•荔湾区期末)下列二次根式中,属于最简二次根式的是( )A.B.C.D.2.(3分)(2020春•下陆区期末)以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A.5,12,13B.3,5,2C.6,9,14D.4,10,13 3.(3分)(2020春•下陆区期末)若一组数据1,4,7,x,5的平均数为4,则x的值是( )A.7B.5C.4D.34.(3分)(2020春•下陆区期末)函数y=﹣x﹣3的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)(2020春•下陆区期末)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁6.(3分)(德州二模)下列命题中,真命题是( )A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形7.(3分)(2020春•下陆区期末)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )A.B.C.D.8.(3分)(2020•嘉兴模拟)如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB 边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3B.4C.5D.69.(3分)(2020春•下陆区期末)如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED时,△AOE的面积为4,则四边形EFCD的面积是( )A.8B.12C.16D.3210.(3分)(2020春•下陆区期末)如图,在平面直角坐标系中,点A1,A2,A3在直线yx+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )A.B.C.D.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)(2020春•下陆区期末)若式子x在实数范围内有意义,则x的取值范围是 .12.(3分)(2020春•下陆区期末)若一直角三角形的两直角边长为,1,则斜边长为 .13.(3分)(2020春•下陆区期末)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为 .14.(3分)(2011•阜新)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是 .15.(3分)(2020春•下陆区期末)如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为 .16.(3分)(2020春•安陆市期末)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是 .三、解答题(本题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)(2020春•下陆区期末)(1)计算:()().(2)计算.18.(6分)(2020春•下陆区期末)如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB的长.19.(6分)(2020春•下陆区期末)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.20.(8分)(2020春•下陆区期末)某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是 ,中位数是 .(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?21.(10分)(2019春•天河区期末)如图,△ABC是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的中点M.②连接BM,并延长到D,使MD=MB,连接AD,CD.(2)求证(1)中所作的四边形ABCD是菱形.22.(12分)(2020春•下陆区期末)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值23.(12分)(2019春•天河区期末)如图,菱形ABCD的对角线AC和BD相交于点O,AB,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.24.(12分)(2020春•下陆区期末)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.25.(13分)(2020春•下陆区期末)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.26.(13分)(2019春•天河区期末)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.(1)求EF的长;(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.广东省广州市天河区八年级(下)期末数学试卷答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个事正确的)1.(3分)(2020春•荔湾区期末)下列二次根式中,属于最简二次根式的是( )A.B.C.D.【考点】最简二次根式.【分析】直接利用最简二次根式的定义得出答案.解:A、5,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、2,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.(3分)(2020春•下陆区期末)以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A.5,12,13B.3,5,2C.6,9,14D.4,10,13【考点】勾股定理的逆定理.【分析】先分别求出两个小边的平方和,再求出最长边的平方,看看是否相等即可.解:A、52+122=132,即以5、12、13为边能组成直角三角形,故本选项符合题意;B、32+52≠(2)2,即以3、5、2为边不能组成直角三角形,故本选项不符合题意;C、62+92≠142,即以6、9、14为边不能组成直角三角形,故本选项不符合题意;D、42+102≠132,即以4、10、13为边不能组成直角三角形,故本选项不符合题意;故选:A.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.3.(3分)(2020春•下陆区期末)若一组数据1,4,7,x,5的平均数为4,则x的值是( )A.7B.5C.4D.3【考点】算术平均数.【分析】运用平均数的计算公式即可求得x的值.解:依题意有:1+4+7+x+5=4×5,解得x=3.故选:D.【点评】本题考查的是样本平均数的求法及运用,关键是熟练掌握平均数公式.4.(3分)(2020春•下陆区期末)函数y=﹣x﹣3的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.解:∵k=﹣1<0,∴一次函数经过二四象限;∵b=﹣3<0,∴一次函数又经过第三象限,∴一次函数y=﹣x﹣3的图象不经过第一象限,故选:A.【点评】此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.5.(3分)(2020春•下陆区期末)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁【考点】算术平均数;方差.【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.解:∵S甲2=3.5,S乙2=3.5,S丙2=12.5,S丁2=15,∴S甲2=S乙2<S丙2<S丁2,∵175,173,∴,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.【点评】此题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2[(x1)2+(x2)2+…+(x n)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(3分)(德州二模)下列命题中,真命题是( )A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形【考点】命题与定理.【分析】根据菱形的判定方法对A进行判定;根据矩形的判定方法对B进行判定;根据正方形的判定方法对C、D进行判定.解:A、两邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、四个角相等的菱形是正方形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)(2020春•下陆区期末)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.解:∵正比例函数y=kx,且y随x的增大而减少,∴k<0.在直线y=2x+k中,∵2>0,k<0,∴函数图象经过一三四象限.故选:D.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.8.(3分)(2020•嘉兴模拟)如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB 边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3B.4C.5D.6【考点】矩形的性质;翻折变换(折叠问题).【分析】先根据矩形的性质求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点评】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.9.(3分)(2020春•下陆区期末)如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED时,△AOE的面积为4,则四边形EFCD的面积是( )A.8B.12C.16D.32【考点】全等三角形的判定与性质;平行四边形的性质.【分析】根据等底等高的三角形面积相等可得S△DOE=S△AOE=4,进而可得S△COD=S△AOD=8,再由平行四边形性质可证明△COF≌△AOE(ASA),S△COF=S△AOE=4,即可得S四边形EFCD=16.解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;故选:C.【点评】本题考查了平行四边形性质,全等三角形判定和性质,三角形面积等知识点,关键要会运用等底等高的三角形面积相等.10.(3分)(2020春•下陆区期末)如图,在平面直角坐标系中,点A1,A2,A3在直线yx+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )A.B.C.D.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.解:∵A1(1,1)在直线yx+b上,∴b,∴yx.设A2(x2,y2),A3(x3,y3),则有y2x2,y3x3.又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.∴x2=2y1+y2,x3=2y1+2y2+y3,将点坐标依次代入直线解析式得到:y2y1+1y3y1y2+1 y2∴y2,y3=()2,∴点A3的纵坐标是,故选:D.【点评】此题主要考查了一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)(2020春•下陆区期末)若式子x在实数范围内有意义,则x的取值范围是 x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数,可得答案.解:由题意,得x﹣1≥0,解得x≥1,故x≥1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.12.(3分)(2020春•下陆区期末)若一直角三角形的两直角边长为,1,则斜边长为 2 .【考点】勾股定理.【分析】根据勾股定理计算,得到答案.解:斜边长2,故2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.(3分)(2020春•下陆区期末)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为 y=﹣x+1 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移规律可直接求得答案.解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.故y=﹣x+1.【点评】本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.14.(3分)(2011•阜新)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是 x<﹣2 .【考点】一次函数的性质;一次函数与一元一次不等式.【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故x<﹣2.【点评】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.15.(3分)(2020春•下陆区期末)如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为 .【考点】坐标与图形性质;平行四边形的性质.【分析】首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,∴OP,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴PE=PO×cos30°,∴点P到y轴的距离为,故.【点评】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.16.(3分)(2020春•安陆市期末)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是 ①③ .【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的性质.【分析】由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EMFM,根据直角三角形的性质得到BEFM,等量代换的EF=BE,故②错误;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故③正确.解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,∴∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,∴∠DFE=∠M,在△DFE与△CME中,,∴△DFE≌△CME(AAS),∴EF=EMFM,∵∠FBM=90°,∴BEFM,∴EF=BE,∵EF≠DE,故②错误;∵EF=EM,∴S△BEF=S△BME,∵△DFE≌△CME,∴S△DFE=S△CME,∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.故①③.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△DEF≌△CME是解题关键.三、解答题(本题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)(2020春•下陆区期末)(1)计算:()().(2)计算.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式进而计算得出答案.解:(1)原式=3﹣25=﹣22;(2)原式=2=2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(6分)(2020春•下陆区期末)如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB的长.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和勾股定理即可得到结论.解:∵AB=AC,BC=4cm,AD⊥BC,∴BDBC=2,∵AD=4cm,∴AB2.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.19.(6分)(2020春•下陆区期末)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.【考点】平行四边形的性质.【分析】首先根据平行四边形的性质和对角线的和求得AO+OD的长,然后根据BC的长求得AD的长,从而求得△AOD的周长.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC+BD=28,∴AO+OD=14,∵AD=BC=12,∴△AOD的周长=AO+OD+AD=14+12=26.【点评】本题考查了平行四边形的性质,解题的关键是了解平行四边形的对角线互相平分,难度不大.20.(8分)(2020春•下陆区期末)某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是 7环 ,中位数是 7环 .(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?【考点】用样本估计总体;加权平均数;中位数;众数.【分析】(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.(2)根据平均数的计算方法进行计算即可,(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,故7环,7环.(2)7.5环,答:这10名学生的平均成绩为7.5环.(3)人,答:全年级500名学生中有100名是优秀射手.【点评】考查平均数、众数、中位数的意义及求法,理解样本估计总体的统计方法.21.(10分)(2019春•天河区期末)如图,△ABC是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的中点M.②连接BM,并延长到D,使MD=MB,连接AD,CD.(2)求证(1)中所作的四边形ABCD是菱形.【考点】线段垂直平分线的性质;等边三角形的性质;菱形的判定;作图—复杂作图.【分析】(1)根据要求画出图形即可.(2)根据对角线垂直的四边形是菱形即可判断.(1)解:如图,四边形ABCD即为所求.(2)证明:∵AM=MC,BM=MD,∴四边形ABCD是平行四边形,∵△ABC是等边三角形,AM=MC,∴BD⊥AC,∴四边形ABCD是菱形.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,菱形的判定,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(12分)(2020春•下陆区期末)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值【考点】一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【分析】(1)利用待定系数法求一次函数的解析式;(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;(3)利用三角形面积公式得到5×|m|=21×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.解:(1)设这个一次函数的解析式是y=kx+b,把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,所以这个一次函数的解析式是y=x+5;(2)设直线AB交x轴于C,如图,当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),当n=2时,S△OPC5×2=5,即直线AB,直线OP与x轴围成的图形的面积为5;(3)∵当△OAP的面积等于△OAB的面积的2倍,∴5×|m|=21×5,∴m=2或m=﹣2,即P点的横坐标为2或﹣2,当x=2时,y=x+5=7,此时P(2,7);当x=﹣2时,y=x+5=3,此时P(﹣2,3);综上所述,n的值为7或3.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.23.(12分)(2019春•天河区期末)如图,菱形ABCD的对角线AC和BD相交于点O,AB,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.【考点】菱形的性质.【分析】(1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;(2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴.【点评】本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a 和b的数量关系,此题是一道非常不错的试题.24.(12分)(2020春•下陆区期末)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.【考点】坐标与图形性质;勾股定理;勾股定理的逆定理.【分析】(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则,解得,,∴设直线AB的解析式为:yx,∴点C的坐标为(0,);(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=32+42=25,则OA2+OB2=AB2,∴△OAB是直角三角形.【点评】本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.25.(13分)(2020春•下陆区期末)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.【考点】坐标与图形性质;三角形的面积;矩形的性质;轴对称﹣最短路线问题.【分析】(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为yx,设P(m,m),根据S△POB S矩形OBCD,列方程即可得到结论;(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB 的值最小,设直线OE的解析式为y=nx,于是得到结论.解:(1)∵矩形ABCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k,∴直线OC的解析式为yx,∵点P在矩形的对角线OC上,∴设P(m,m),∵S△POB S矩形OBCD,∴5m3×5,∴m,∴P(,2);(2)∵S△POB S矩形OBCD,∴设点P的纵坐标为h,∴|h|×55,∴h=±2,∴点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n,∴直线OE的解析式为yx,当y=2时,x,∴P(,2),同理,点P在直线y=﹣2的直线上,P(,﹣2),∴点P的坐标为(,﹣2)或(,2).【点评】本题考查了轴对称﹣最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.26.(13分)(2019春•天河区期末)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.(1)求EF的长;(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.【考点】等边三角形的判定与性质;平行四边形的判定;菱形的性质;平移的性质.【分析】(1)首先求出AF的长度,再在直角三角形AEF中求出EF的长度;(2)连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH的长,最后根据面积公式求出答案.解:(1)∵四边形ABCD是菱形,∴AD=AB=8,∵F是AB的中点,∴AFAB8=4,∵FE⊥AD,∠A=60°,∴EF=sin60°×4=2;(2)如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF,在Rt△PHF中,∵∠FPH=30°,PF,∴HFPF,∵DF=4,∴DH=4,∴平行四边形PP′CD的面积8=28.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.。
2018至2019第二学期八年级数学试卷(含答案)
图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。
)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。
2019年八年级(下)期末考试数学试卷含答案详解
2018〜2019学年度第二学期期末考试试卷初二数学本试卷由填空题、选择题和解答题三大题组成,共 28题,满分130分。
考试用时120分钟。
注意事项:1•答卷前考生务必将自己的学校、班级、姓名、考场号、考试号使用 05毫米黑色签字笔书写在答题卷的相应位置上,并将考试号用2B 铅笔正确填涂.2•答选择题必须用 2B 铅笔把答题卷上对应题目的答案标号涂黑;答非选择题必须用 0.5mm的黑色墨水签字笔写在答题卷指定的位置上,不在答题区域的答案一律无效,不得用其他 笔答题。
3•考生答题必须在答题卷上,答在试卷上和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑 ......... 1 亠亠―亠…“…, ………•)1•若代数式 在头数氾围内有意乂,则头数x+3X 的取值氾围是A. X - -3B. X = 一3C. x : -3D. X • -32•下列各点中,在双曲线上 12 y的点是XA . (4, - 3)B ・(3 , - 4)C ・(—4, 3)D.( — 3,— 4)3化简-5)2的结果是A . 5 B. - 5 C. ±D. 254•菱形对角线不.具有的性质是 A .对角线互相垂直 B.对角线所在直线是对称轴 C .对角线相等D.对角线互相平分5•苏州市5月中旬每天平均空气质量指数(AQI )分别为:84, 89, 83, 99, 69, 73, 78, 81,89, 82,为了描述这十天空气质量的变化情况,最适合用的统计图是 A •折线统计图B .频数分布直方图C •条形统计图D •扇形统计图6•如图,DE//BC 在下列比例式中,不能.成立的是DE AEB.- AD AE A .-DB EC AB AC c. ■AD AEBC ECDB AB D.-EC AC7•有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形; ③平行四边形;④圆;⑤菱形 •将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是8.如图, 在正方形 ABCD 中,AC 为对角线,点 E 在AB 边上,EF _ AC 于点F ,连接或不可能事件” •)13. _________________________________________________________________________ 某建筑物的窗户为黄金矩形,已知它较长的一边长为 I 米,则较短的一边长为 __________________ 米.(结果保留根号或者 3位小数)14. 如图,在四边形ABCD 中,AC 平分• BCD ,要「SBC L DAC ,还需添加一个条件,1 A.-52 B.-53 C.-54 D.-5EC , AF =3「EFC 的周长为12,则EC 的长为B.3.2C.5D.69•如图,路1.6米的小明从距离灯的底部(点20米的点A 处,沿A0所在的直线行走A •变长了 1.5米B .变短了 2.5米C .变长了 3.5米 D.变短了 3.5米10.如图所示,在 Rt AOB 中,AOB =90 ,2OB =3OA ,点 A2在反比例函数y 的图象上,若点x图象上,则k 的值为kB 在反比例函数y 的xB.9 C. —4二、填空题:(本大题共8小题,每小题D.9 23分,共24分)12.一个不透明的盒子中装有 3个红球, 2个黄球,这些球除了颜色外其余都相同, 从中随机摸出3个小球,则事件 所摸3个球中必含有红球”是(填必然事件”、随机事件”14米到点B 处时,人影的长度你添加的条件是 __________ •(只需写一个条件,不添加辅助线和字母)(第趙图) (第堆nab15. 如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF = DC ,若ADF =25 ,则ECD = _______________ °x a16. 关于x的方程 1 有增根,则a的值为x-2 x-217•如图,在ABC 中,.C=90,BC=16cm,AC =12cm,点P 从点B 出发,沿BC 以2cm/s的速度向点C移动,点Q从点C出发,沿CA以lcm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为t s,当t= ___________ 时,AB//PQ.k18•如图,直线y =2x与反比例函数y 的图象交于点A(3,m),点B是线段0A的中点,x点E(n,4)在反比例函数的图象上,点F在x轴上,若.EAB=/EBF=/AOF ,则点F的横坐标为 __________ .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分6分)己知A二也b) 42ab(a^-- 0且a = b). ab(a —b)(1) 化简A ;(2) 若点P(a, b)在反比例函数y =的图象上,求A的值x20.(本题满分6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛. 从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,已知A组的频数a比B 组的频数b 小24,绘制统计频数分布直方图 (未完成)和扇形图如下,请解答下列问题:(1)样本容量为:____________ ,a为___________ ;⑵n为 ________ ° E组所占比例为______________ %;(3)补全频数分布直方图:(4)若成绩在80分以上记作优秀,全校共有2000名学生,估计成绩优秀学生有名.21.(本题满分6分)请你阅读小红同学的解题过程,并回答所提出的问题计算:3 x-3 x-1 1 -x2(1)问:小红在第_________ 步开始出错(写出序号即可);(2)请你给出正确解答过程22.(本题满分8分)如图所示,在4>4的正方形万格中,.'ABC 和:-.DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:N ABC= ________ ° BC= _________⑵判断ABC与DEF是否相似?并证明你的结论23.(本题满分8分)已知、a-17 J17-a =b 8 .(1)求a的值;⑵求a2-b2的平方根.24•(本题满分8分)己知,¥ = 5 W 与x 成正比例,y 与x 成反比例,并且当x = -1时,y = -1,当 x =2时,y =5.(1)求y 关于x 的函数关系式;25.(本题满分8分)如图,在 ABC 中,• BAC =90 , AD 是斜边上的中线,点,过点A 作AF //BC 交BE 的的延长线于 F ,连接CF ”“刊(1) 求证:BD = AF ;(2) 判断四边形ADCF 的形状,并证明你的结论⑵当y =0时,求x 的值.E 是AD 的中426. (本题满分8分)如图,反比例函数y 的图象与一次函数x内相交于点A,且点A的横坐标为4.(1) 求点A的坐标及一次函数解析式;(2) 若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求ABC的面积.27. (本题满分8分)如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使1 CE BC,连接DE,CF .(1) 求证:DE =CF ;(2) 若AB =4,AD =6^ B = 60,求DE 的长.X /Iy二kx-3的图象在第一象限28. (本题满分10分)如图,在平面直角坐标系中,一次函数y二kx6的图象分别与x轴,y轴交于点代B,点A的坐标为(一8, 0).⑴点B的坐标为 __________ ;(2)在第二象限内是否存在点P,使得以P、O、A为顶点的三角彤与OAB相似?若存在,请求出所有符台条件的点P的坐标:若不存在,请说明理由.一、选择题:丛:、.理亠10 Z .每小赴3纺奘?0趴)_______ __ —_ v;・4」.r■: —_ —_”_:一 -::尹.二— ,■— ^asya^giiagy^^^—ivja|BauK : HLK _ ._.:■> •_.1 T ■■:-3 1- -S ) 6 IL -J . mz. ts m _ :-7 8广:—— ----------- —■「一」 10 符WIlDACA: H■K IM ME• ■» V:™CDD三—永ES77M 丸題疋$卜无 每协赶J 芜 离24令・).............................................................................................. .. . (5)#2泅为护17.谢以&二8................................................. * .......... 4分 a 3-|>-=17225*9....................................................... 6# 所曲 妒的皆方眦矍±|§.: ..................... .. 8分24. (1)& \\\ -—.则,; ................................ 三命x x-l--A t - i,. Jr = 3,.席dL , 酹陶勺...................... 4分 5 = 2i +-X. 禹二,嘔伽◎離数解折式为¥ = 3X 2”............................................. 4 »□ 一必蟆谢料| 9*t 0.618三、如苔隸:(本大曼啓10小硬・失”分・t19* (IM = ™ :............................................................ ... *3 甘 M (2)o/1 - 5... . ................ . .... ...... …….…*………吁仿A ~ ——・. ... .... ..... …*"…十…“…*巧 您520. (1)200* IC....................................... ......................... 2 兮 3*12 Y)翳................................................................. 4甘 .................................................................. 5力..................................................... 4兮b <r........................ ?分 [*|7j4 .4/« '-Zn£F- (35 2-埼 HCEF 2l*i 必——二——‘DE 卜:F斫以△』他 \DLF..................................... *…3分 ........................................... 4分 .......................................... 5 分 ............................................ 6分 ................... 7分23.( l )a - ■15. 5": B.(4)040.-2.y-6T^Jr 122. {1)135.x(2f,L j y= 01<J » 3 v 4-门,即3一齐2 - 0 - 轩再v =号心=25.⑴简证:阿为.和执’・所订"时-厶册.小「WDRE・< DE AE * 9 以二4AX 竺「DI-H. ........................................................ 3 分的;旳m:......................... ........... 4 5/⑵岡T形ADCb的1;置址 < 形・下血址禺:.................... 5苛曲⑴血)丈EM X・< J/ X、所UH® 也F: .4ZX 尸E ?行m 开・..... . (6)JJ打JD £宜斯-Jr脱.血斜过! fr>空,斯以...................................................... 7分2尺;*巩芍洱边形川乂尸足菱畋.................... 8分血(t)j(4,n・... .... ................................ 1井把4vLI)代I J.矗数再:|二4* “彳* ;「上二i .... ... ......... .. ... ......... 3分故一次憾数的解折式为y = x-J:.......................................... 4分(釘令x-2t分别再敲2.2), CR-1)・ 6# 所以BC = 3・Il ffC边上的高为L ................................................ . ...... 7分所LU电屮\ HC AD^3................ . ....................... 8分27. (I)諾址:曲腔住C£厂6 rUZ -FD,所以四边F8册JZ i ?刃q边形・.................... 3分^DE = t 1 . ................. …』分V'EhQF 中,ft*f/)r =4^-4. CE・FD二,= *fTDW HE 干H *抚中,H:DH - 2 二 2 ・..................................... 召分户QEH 中”求舉77/ = I , DE工\D1I:; ///;= <1 J...... ***> 分28,(1} J(U6), .......... ............. .............. 2分(2}存栓点卩符件条蚪................... 3分「比点。
2018-2019学年度八年级下期末数学试卷及答案
八年级下期 末 考 试 数 学 试 卷本试卷满分为100分,考试时间为90分钟.一、选择题(本大题共16个小题;1~6小题,每小题2分,7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将对应题目的答案标号填在下表中)1.不等式组⎩⎨x ≤1x >-1的解集是A .x >-1B .x ≤1C .x <-1D .-1<x ≤12.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)23.若分式3xx -1有意义,则x 应满足 A .x =0B .x ≠0C .x =1D .x ≠14.如图,△ABC中,D ,E 分别是边AB ,AC 的中点.若DE =2,则BC =A .2B .3C .4D .55.方程x (x -2)+x -2=0的解是A .2B .-2,1C .-1D .2,-16.一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等...的实数根,则b 2-4ac 满足的条件是 A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥07.分式方程xx -3=x +1x -1的解为( )A .1B .-1C .-2D .-38.如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为9.如图所示,DE 是线段AB 的垂直平分线,下列结论一定成立的是A .ED =CDB .∠DAC =∠BC .∠C >2∠BD .∠B +∠ADE =90°10.如图,在平行四边形中,阴影部分的面积与平行四边形面积之比为 A .12B .23C .13D .无法确定11.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 A .-3,2 B .3,-2 C .2,-3 D.2,3 12.通过尺规作图作一个角的平分线的的理论依据是A .SASB .SSSC .ASAD .AAS13.据调查,某市的2012年房价均价为7600/m 2,2014年同期将达到8200/m 2,假设这两年该市房价的平均增长率为x ,根据题意,所列方程为A .7600(1+x %)2=8200B .7600(1-x %)2=8200C .7600(1+x )2=8200D .7600(1-x )2=8200A .2mm 2-1B .-2mm 2-1C .-2m 2-1D .2m 2-115.如图,在矩形ABCD 中,AD =2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则AMMD等于 ( )A .38B .23C .35D .458题 9题 10题 15题 16.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( ) A .54cm 2B .58cm 2 C .516cm 2D .532cm 2二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.一个多边形的每个内角均为108°,则这个多边形是_____边形.18.已知函数f (x )=3x 2+1,那么f (2)= __________.19.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .20.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时, 小球P 与正方形的边碰撞的次数为 .三、解答题(共5个题,共46分.解答应写出文字说明、证明过程或演算步骤)10分,其中第(1)(2)小题每题3分,第(3)题4分)(3(1)解不等式组:并写出该不等式组的整数解23(本小题满分9分)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)请直接写出四边形ABFE 是哪种特殊的四边形. 24(本小题满分10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?,(a>b),且满足a=5b+m,b=4m.请直接写出矩形是几阶参考答案一、选择题DDDCA DBCCB二、填空11.012.2.5 10-613.59°,对顶角相等 14.8 15.相等,同角的余角相等 16.m 2-9n 217.1218.40°19.T =30+7t 20.PN 边或QM 边 三、解答题 21.(1)-278··········································································································· 5分(2)-6m 2+m +2 ································································································ 5分 (3)4mn ············································································································ 5分 (4)-xy当x =10,y =-125时原式=25······································································································· 5分 22.答案略 ············································································································ 8分23.证明:如图 ∵DF ∥AC ∴∠C =∠CEF ∵∠C =∠D∴∠D =∠CEF∴BD ∥CE ··································································································· 6分FEDCBA24.··························· 10分25.(1)m-n;(2)方法1:(m+n)2;方法2:(m-n)2+4mn;(3)(m+n)2=(m-n)2+4mn(4)∵(a+b)2=(a-b)2-4ab∴49=(a-b)2-20∴(a-b)2=69 ························································································ 8分。
2018-2019学年八年级下期末数学试卷含答案解析
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
2018-2019学年广东省广州市天河区八年级(下)期末数学试卷
2018-2019学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个事正确的)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)以下列各组数据为边长作三角形,其中能组成直角三角形的是()A.5,12,13B.3,5,2C.6,9,14D.4,10,133.(3分)若一组数据1,4,7,x,5的平均数为4,则x的值时()A.7B.5C.4D.34.(3分)函数y=﹣x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形7.(3分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A.B.C.D.8.(3分)如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.69.(3分)如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED时,△AOE 的面积为4,则四边形EFCD的面积是()A.8B.12C.16D.3210.(3分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是()A.B.C.D.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)若式子x+在实数范围内有意义,则x的取值范围是.12.(3分)若一直角三角形的两直角边长为,1,则斜边长为.13.(3分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为.14.(3分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.(3分)如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为.16.(3分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是.三、解答题(本题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)(1)计算:()().(2)计算.18.(6分)如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB的长.19.(6分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.20.(8分)某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是,中位数是.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?21.(10分)如图,△ABC是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的中点M.②连接BM,并延长到D,使MD=MB,连接AD,CD.(2)求证(1)中所作的四边形ABCD是菱形.22.(12分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值23.(12分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.24.(12分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.25.(13分)如图,矩形ABCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.26.(13分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.(1)求EF的长;(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.2018-2019学年广东省广州市天河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个事正确的)1.【解答】解:A、=5,故此选项错误;B、是最简二次根式,故此选项正确;C、=,故此选项错误;D、=2,故此选项错误;故选:B.2.【解答】解:A、52+122=132,即以5、12、13为边能组成直角三角形,故本选项符合题意;B、32+52≠(2)2,即以3、5、2为边不能组成直角三角形,故本选项不符合题意;C、62+92≠142,即以6、9、14为边不能组成直角三角形,故本选项不符合题意;D、42+102≠132,即以4、10、13为边不能组成直角三角形,故本选项不符合题意;故选:A.3.【解答】解:依题意有:1+4+7+x+5=4×5,解得x=3.故选:D.4.【解答】解:∵k=﹣1<0,∴一次函数经过二四象限;∵b=﹣3<0,∴一次函数又经过第三象限,∴一次函数y=﹣x﹣3的图象不经过第一象限,故选:A.5.【解答】解:∵S甲2=3.5,S乙2=3.5,S丙2=12.5,S丁2=15,∴S甲2=S乙2<S丙2<S丁2,∵=175,=173,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.6.【解答】解:A、两邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、四个角相等的菱形是正方形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选:C.7.【解答】解:∵正比例函数y=kx,且y随x的增大而减少,∴k<0.在直线y=2x+k中,∵2>0,k<0,∴函数图象经过一三四象限.故选:D.8.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.9.【解答】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD ∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∵AO=CO∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;故选:C.10.【解答】解:∵A1(1,1)在直线y=x+b上,∴b=,∴y=x+.设A2(x2,y2),A3(x3,y3),则有y2=x2+,y3=x3+.又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.∴x2=2y1+y2,x3=2y1+2y2+y3,将点坐标依次代入直线解析式得到:y2=y1+1y3=y1+y2+1=y2又∵y1=1∴y2=,y3=()2=,∴点A3的纵坐标是,故选:D.二、填空题(本题共6小题,每小题3分,共18分)11.【解答】解:由题意,得x﹣1≥0,解得x≥1,故答案为:x≥1.12.【解答】解:斜边长==2,故答案为:2.13.【解答】解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.故答案为:y=﹣x+1.14.【解答】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.15.【解答】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,∴OP=,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴PE=PO×cos30°=,∴点P到y轴的距离为,故答案为:.16.【解答】解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,∴∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,∴∠DFE=∠M,在△DFE与△CME中,,∴△DFE≌△CME(AAS),∴EF=EM=FM,∵∠FBM=90°,∴BE=FM,∴EF=BE,∵EF≠DE,故②错误;∵EF=EM,∴S△BEF=S△BME,∵△DFE≌△CME,∴S△DFE=S△CME,∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.故答案为:①③.三、解答题(本题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.【解答】解:(1)原式=3﹣25=﹣22;(2)原式=2+﹣=2.18.【解答】解:∵AB=AC,BC=4cm,AD⊥BC,∴BD=BC=4,∵AD=4cm,∴AB==2.19.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC+BD=28,∴AO+OD=14,∵AD=BC=12,∴△AOD的周长=AO+OD+AD=14+12=26.20.【解答】解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,故答案为:7环,7环.(2)=7.5环,答:这10名学生的平均成绩为7.5环.(3)500×=100人,答:全年级500名学生中有100名是优秀射手.21.【解答】(1)解:如图,四边形ABCD即为所求.(2)证明:∵AM=MC,BM=MD,∴四边形ABCD是平行四边形,∵△ABC是等边三角形,AM=MC,∴BD⊥AC,∴四边形ABCD是菱形.22.【解答】解:(1)设这个一次函数的解析式是y=kx+b,把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,所以这个一次函数的解析式是y=x+5;(2)设直线AB交x轴于C,如图,当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),当n=2时,S△OPC=×5×2=5,即直线AB,直线OP与x轴围成的图形的面积为5;(3)∵当△OAP的面积等于△OAB的面积的2倍,∴×5×|m|=2××1×5,∴m=2或m=﹣2,即P点的横坐标为2或﹣2,当x=2时,y=x+5=7,此时P(2,7);当x=﹣2时,y=x+5=3,此时P(﹣2,3);综上所述,n的值为7或3.23.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=7,∴a+b=,∴=.24.【解答】(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则,解得,,∴设直线AB的解析式为:y=﹣x+,∴点C的坐标为(0,);(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=32+42=25,则OA2+OB2=AB2,∴△OAB是直角三角形.25.【解答】解:(1)∵矩形ABCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=,∴直线OC的解析式为y=x,∵点P在矩形的对角线OC上,∴设P(m,m),∵S△POB=S矩形OBCD,∴5×m=3×5,∴m=,∴P(,2);(2)∵S△POB=S矩形OBCD,∴设点P的纵坐标为h,∴h×5=5,∴h=2,∴点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=,∴直线OE的解析式为y=x,当y=2时,x=,∴P(,2),同理,点P在直线y=﹣2的直线上,P(,﹣2),∴点P的坐标为(,2)或(﹣,2).26.【解答】解:(1)∵四边形ABCD是菱形,∴AD=AB=8,∵F是AB的中点,∴AF=AB=×8=4,∵点F作FE⊥AD,∠A=60°,∴EF=sin60°×4=2;(2)如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.。
2018-2019学年八年级数学下学期期末考试原创卷A卷(广东)(考试版)
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018-2019学年下学期期末原创卷A 卷八年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版八下全册。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若式子24x -有意义,则x 的取值范围是 A .12x ≥B .x ≥2C .x ≤2D .12x ≤2.下列几组数中,不能作为直角三角形三边长度的是 A .1.5,2,2.5B .3,4,5C .30,40,50D .32,42,523.下列各式中计算正确的是 A .268+=B .2323+=C .3515⨯=D .422= 4.据调查,某班30位同学所穿鞋子的尺码如下表所示:码号/码 33 34 35 36 37 人数36885则该班这30位同学所穿鞋子尺码的众数是 A .8 B .35 C .36D .35和365.在平行四边形ABCD 中,∠A :∠B :∠C =3:5:3,则∠D 的度数是A .67.5oB .90oC .112.5oD .120o6.正比例函数y =kx (k >0)的图象大致是A .B .C .D .7.某同学使用计算器求30个数据的平均数时,错将其中一个数据75输入为15,那么所求出的平均数与实际平均数的差是A .2.5B .2C .1D .–28.如图,菱形ABCD 中,E 是AD 的中点,将△CDE 沿CE 折叠后,点A 和点D 恰好重合.若AB =4,则菱形ABCD 的面积为A .23B .43C .63D .839.如图,G 是边长为4的正方形ABCD 边上一点,矩形DEFG 的边EF 经过点A ,已知GD =5,则FG 为A .3B .3.2C .4D .4.810.如图,直线y =﹣x ﹣1与y =kx +b (k ≠0且k ,b 为常数)的交点坐标为(﹣2,l ),则关于x 的不等式数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………﹣x ﹣1<kx +b 的解集为A .x >﹣2B .x <﹣2C .x >1D .x <l第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.已知一组数据3,3,3,3,3,那么这组数据的方差为______. 12.将直线y =3x +1向下平移1个单位长度,平移后直线的解析式为______. 13.若最简二次根式321x +与31x -是同类二次根式,则x =______.14.如图,在△ABC 中,边BC 长为10,BC 边上的高AD ′为6,点D 在BC 上运动,设BD 长为x (0<x <10),则△ACD 的面积y 与x 之间的关系式为______.15.如图,在四边形ABCD 中,DA ⊥AB ,DA =AB =2,BC=5,DC =1.则∠ADC 的度数是______.16.如图,在直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴上,顶点B的坐标为(15,6),直线y =13x +m 恰好将矩形OABC 分成面积相等的两部分,那么m =______.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(1)271248-+;(2)(48﹣75)×113.18.如图,在四边形ABCD 中,AB =AD ,∠A =90°,∠CBD =30°,∠C =45°,如果AB =2,求CD 的长.19.已知:如图,在菱形ABCD 中,E 、F 分别是AB 、BC 边上的一点,且AE CF =.求证:DE DF =.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,已知直线y =2x ﹣4交x 轴于点A ,交y 轴于点B ,直线y =﹣3x +3交x 轴于点C ,交y 轴于点D ,且两直线交于点E . (1)求点E 的坐标; (2)求S △BDE .21.某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中, 他俩的成绩分别如下表,请根据表中数据解答下列问题:数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 平均分 众数 中位数 方差甲 60 分 75 分 100 分 90 分 75 分 80 分 75 分 75 分 190 乙70 分90 分100 分80 分80 分80 分80 分(1)把表格补充完整;(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.如图,A 城气象台测得台风中心在A 城正西方向600 km 的B 处,以每小时200 km 的速度向北偏东60°的方向移动,距台风中心500 km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,那么A 城遭受这次台风影响有多长时间? 五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在△ABC 中,AB =AC ,D 为边BC 的中点,四边形ABDE 是平行四边形,AC ,DE 相交于点O .(1)求证:四边形ADCE 是矩形;(2)若∠AOE =60°,AE =2,求矩形ADCE 对角线的长.24.某品牌笔记本电脑的售价是5000元/台.最近,该商家对此型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售,方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.设公司一次性购买此型号笔记本电脑x 台. (1)根据题意,填写下表:(2)设选择方案一的费用为y 1元,选择方案二的费用为y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >15时,该公司采用哪种方案购买更合算?并说明理由. 25.如图,在平面直角坐标系中,直线y =12x +2与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长; (2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使△MDB 的周长最小,请求出M 点的坐标,并直接写出△MDB 的周长最小值.。
八年级数学下册期天河区测试及答案
B.3
C.2
D.1
5.下列计算正确的是( ).
x3 x
A. y 3 y
B.
( b )2 3c
b2 3c2
第4题
ab 1
C. b 2a 2
aa D. b b
6.
一组数据共4个数,其平均数为5,极差是6,则下列满足条件的一组数据是(
).
A.0 8 6 6
B.1 5 5 7
C.1 7 6 6
D.3 5 6 6
7.某校八年级6个班级同学在“支援玉树灾区献爱心”活动中都捐了款,具体班级捐
款情况如表,则该校班级捐款数的中位数是( ).
捐款班级
1
2
3
4
5
6
捐款数(元) 240 240 260 280 270 330
A.240
B.260 C.265 D.270
8.下列各命题都成立,而它们的逆命题不能成立的是( ).
18.(本大题共2小题,每小题7分,满分14分)
(1) 如图,在等腰梯形ABCD中,AD∥BC,AB∥DE,
BC=8,AD=5,求EC的长.
60 A
(2)如图是一个外轮廓为矩形的机器零件平面示意图,根据图 150 C
B 60
180 第18(2)题
中的尺寸(单位:mm),计算两圆孔中心 A 和 B 的距离.
考试
考试
成绩 88
70
96
86
85
x
(1)计算小青本学期的平时平均成绩;
第20题
(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期小青的期末考试成
绩x至少为多少分才能保证达到总评成绩90分的最低目标?
21.(本题满分8分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.5.若一组数据1,4,7,x ,5的平均数为4,则x 的值时()A.7B.5C.4D.36.函数y =﹣x ﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差S 2:甲乙丙丁平均数(cm )175173175174方差S 2(cm 2)3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是()A. B. C. D.9.如图,过平行四边形ABCD 对角线交点O 的线段EF ,分别交AD ,BC 于点E ,F ,当AE =ED 时,△AOE 的面积为4,则四边形EFCD 的面积是()A.8B.12C.16D.3210.如图,在平面直角坐标系中,点A 1,A 2,A 3在直线y =x +b 上,点B 1,B 2,B 3在x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3都是等腰直角三角形,若已知点A 1(1,1),则点A 3的纵坐标是()在实数范围内有意义,则答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………立的是.评卷人得分二、计算题(共1题)7.(1)计算:(+5)(-5).(2)计算.评卷人得分三、解答题(共2题)8.如图,△ABC 中,AB =AC ,BC =4cm ,作AD ⊥BC ,垂足为D ,若AD =4cm ,求AB 的长.9.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且AC +BD =28,BC =12,求△AOD 的周长.答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………13.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,AB =,OA =a ,OB =b ,且a ,b 满足:.(1)求菱形ABCD 的面积;(2)求的值.14.如图,在平面直角坐标系中,O 为原点,点A (2,1),B (﹣2,4),直线AB 与y 轴交于点C .(1)求点C 的坐标;(2)求证:△OAB 是直角三角形.15.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =S 矩形OBCD ,问:第7页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.16.如图,在菱形ABCD 中,∠A =60°,AD =8,F 是AB 的中点,过点F 作FE ⊥AD ,垂足为E ,将△AEF 沿点A 到点B 的方向平移,得到△A ′E ′F ′.(1)求EF 的长;(2)设P ,P ′分别是EF ,E ′F ′的中点,当点A ′与点B 重合时,求证四边形PP ′CD 是平行四边形,并求出四边形PP ′CD 的面积.参数答案1.【答案】:答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:2.【答案】:【解释】:3.【答案】:【解释】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】:5.【答案】:【解释】:6.【答案】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:7.【答案】:【解释】:8.【答案】:【解释】:第11页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9.【答案】:【解释】:10.【答案】:答案第12页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:第13页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:答案第14页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:第15页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:答案第16页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第17页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:【答案】:【解释】:【答案】:答案第18页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:(3)【答案】:【解释】:第19页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:答案第20页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:答案第22页,总27页……○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:答案第24页,总27页……○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:答案第26页,总27页……○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………。