八年级数学(下)第十九章《一次函数》同步练习题(含答案)
《常考题》初中八年级数学下册第十九章《一次函数》经典练习卷(含答案解析)
一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟2.一次函数y=-3x-2的图象和性质,表述正确的是()A.y 随x 的增大而增大B.函数图象不经过第一象限C.在y轴上的截距为2 D.与x轴交于点(-2,0)BC=,动点P沿折线BCD从点B开始运动到点3.如图,在矩形ABCD中,3AB=,4D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D .4.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <7.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .38.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 10.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-11.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-12.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .无法确定13.函数21y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限14.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6 B .6C .6或3D .6或-615.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量二、填空题16.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.17.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n =+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.18.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.19.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.20.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.21.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.22.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.26.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y (),n n (),m n (),n m(),f x ynm n -m n +如:()1,2213f =+=,()2,1211f =-=,()1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题27.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160(1)请直接写出y 与x 之间的关系式______. (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?28.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.29.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF的函数表达式;(2)若点A的坐标为(-6,0),点P(m,n )在线段EF上(不与点E重合)①求△OPA的面积S与m的函数表达式;②求当△OPA的面积为9时,点P的坐标;③求当△OPA的面积与△OPF的面积相等时,点P的坐标.参考答案。
人教版八年级下册数学第十九章一次函数测试题带答案
人教版八年级下册数学第十九章测试卷一、选择题 (每题 3分,共 30分)1.函数 y=错误!未找到引用源。
+x-2的自变量 x 的取值范围是 ()A. x≥2B. x> 2C.x≠2D.x≤22.某种正方形合金板材的成本 y(元)与它的面积成正比 ,设边长为 x 厘米. 当 x=3 时,y=18,那么当成本为 72 元时,边长为 ( )A.6 厘米B.12 厘米C.24 厘米D.36 厘米3.已知在一次函数 y=-1.5x+3 的图象上 ,有三点(-3,y1),(-1,y2),(2,y3),则 y1,y2,y3 的大小关系为 ( )A.y1>y2>y3B. y1>y3>y 2C.y2>y 1>y 3D.无法确定4.已知一次函数 y=kx+b (k,b是常数,且 k≠0中) x与 y 的部分对应值如下表所示 ,那么不等式 kx+b< 0 的解集是 ( )x -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0B.x>0C.x<1D.x>15.直线 l 1:y=k1x+b与直线 l2:y=k2x在同一平面直角坐标系中的位置如图 , 则关于 x 的不等式 k2x<k1x+b 的解集为 ( )6. 已知一次函数 y=kx+b ,y 随着 x 的增大而减小 ,且 kb>0,则这个函数的7. 如图,过 A 点的一次函数的图象与正比例函数 y= 2x 的图象相交于点B,则这个一次函数的解析式是 ( )A.y=2x+3B.y=x- 3C.y= 2x-3D.y=-x+ 38. 如图,点A 的坐标为(-1,0),点B 在直线 y=x 上运动,当线段 AB 最短时,A.(0,0)B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找 到引用源。
9. 一辆慢车与一辆快车分别从甲、 乙两地同时出发 ,匀速相向而行 ,两车 在途中相遇后分别按原速同时驶往甲地 ,两车A. x<-1B. x>-1C. x>2D. x<2大致图象是(之间的距离 s(km)与慢车行驶时间 t(h)之间的函数图象如图所示 ,下列说法 :①甲、乙两地之间的距离为 560 km;②快车速度是慢车速度的 1.5 倍;③快车到达甲地时 ,慢车距离甲地 60 km;④相遇时,快车距甲地 320 km.其中正确的个数是D.410.如图,在等腰三角形 ABC中,直线 l垂直于底边 BC,现将直线 l沿线段BC从B点匀速平移至 C点,直线 l与△ABC的边相交于 E,F两点,设线段 EF 的长度为 y, 平移时间为 t,则能较好地反映y 与 t 的函数关系的图二、填空题(每题 3分,共 30分)11.函数 y=(m-2)x+m2-4是正比例函数 ,则 m= .12.一次函数 y= 2x-6 的图象与 x轴的交点坐标为 .13.如果直线 y=错误!未找到引用源。
人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案
(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;
人教版八年级下册数学第十九章 一次函数含答案(有答案)
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。
人教版数学八年级下册 第十九章 一次函数 习题练习(附答案)
人教版数学八年级下册第十九章一次函数习题练习(附答案)一、选择题1.函数y=kx+2经过点(1,3),则y=0时,x=()A.-2 B. 2 C. D. ±22.下列函数的解析式中是一次函数的是()A.y=1−x B.y=15x+1 C.y=x2+1 D.y=√x3.自由下落物体下落的高度h与下落的时间t之间的关系为h=12g t2(g=9.8 m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t4.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x5.园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米 C. 65平方米D. 80平方米6.某地电话拨号入网有两种收费方式:A计时制:每分0.05元;B包月制:每月50元.此外,每一种上网方式都得加收通信费每分钟0.02元.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算?()A.计时制B.包月制 C.两种一样D.不确定7.已知函数y=kx-1,且y随x的增大而减小,则它的图象是()A.B.C.D.8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量9.如图,扇形OAB上有一动点P,P从点A出发,沿⌒AB、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是 ()A.B.C.D.10.某人准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是()A.①②③④B.①③④C.①②④D.①②③二、填空题11.三角形的面积公式中S=12ah其中底边a保持不变,则常量是________,变量是________.12.下列函数中,是一次函数的是________.①y=8x2,②y=x+1,③y=8x ,④y=2x+1.13.y+2与x+1成正比例,且当x=1时,y=3,则当x=2时,y=______.14.已知关于x的函数y=(m+3)x|m|-3+2n-6是x的正比例函数,则mn=________.15.已知一次函数y=kx+b(k≠0)图象过点(0,2),y随x增大而减小,且与两坐标轴围成的三角形面积为2,则一次函数的解析式为________.16.如图所示,△ABC的底边BC上的高是6 cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,常量是__________________.17.已知函数y=2x2a+2b是x的正比例函数,则a+b=________.18.先完成下列填空,再在平面直角坐标系中画出下面函数的图象(不必再列表):正比例函数y=2x过(0,________)和(1,________)19.已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤1,且y随3x的减小而减小,则k的值为________.三、解答题20.设函数y=(m-2)x2-|m|+m-1,当m为何值时,y是x的正比例函数?21.在平面直角坐标系中,直线AB经过A(2,3)、B(-3,-2)两点,求直线AB所对应的函数解析式.22.当k为何值时,函数y=(k2+2k)x k2+k-1是x的正比例函数?.求:23.已知函数y=x−32x+1(1)当x=1和x=-1时的函数值;(2)当x为何值时,函数y分别等于1,-1.24.一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?(3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.答案解析1.【答案】A【解析】先把点的坐标代入函数解析式求出k值,得到函数解析式,再求当y=0时的自变量x的值.根据题意1×k+2=3,解得k=1,故函数解析式为y=x+2,当y=0时,x+2=0,解得x=-2,故选A.2.【答案】B【解析】A.是反比例函数,故此选项错误;B.是一次函数,故此选项正确;C.是二次函数,故此选项错误;D.不是一次函数,故此选项错误;故选B.3.【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h,t,故选A.4.【答案】B【解析】A.设路程是s,则根据题意知,s=xy,时间y和速度x是反比例函数关系.故本选项错误;B.根据题意,知10=2(x+y),即y=-x+5,符合一次函数的定义.故本选项正确;C.根据题意,知y=πx2,这是二次函数,故本选项错误;D.根据题意,知x2+y2=25,这是双曲线方程,故本选项错误,故选B.5.【答案】A【解析】根据图象可得,休息后园林队2小时绿化面积为130-50=80平方米,每小时绿化面积为80÷2=40(平方米).故选A.6.【答案】B【解析】根据题意,设上网时间为x 小时,计时制y =(0.05+0.02)·60x =4.2x ; 包月制y =50+0.02·60x =50+1.2x ; 当x =20时,计时制费用y =4.2×20=84(元); 包月制费用y =50+1.2×20=74(元), 所以一个月内上网的时间为20小时,采用包月制较为合算,故选B.7.【答案】B【解析】∵一次函数y =kx -1,且y 随着x 的增大而减小,∴k <0,又∵b =-1<0,∴此一次函数图形过第二、三、四象限,故选B.8.【答案】A【解析】甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt =s ,在这个变化过程中常量是距离s ,变量是时间t 和速度v ,故选A.9.【答案】D【解析】因为①当点P 在弧AB 上运动时,y =OP 为定值,其长为扇形的半径的长;②当P 点由B 向O 点运动时,y =OP 的长逐渐减小为0;③当点P 由点O 开始向点A 运动时,y =OP 的长逐渐增大为扇形的半径的长,所以选项D 符合题意.10.【答案】C【解析】①yB =0.95x +50(1-95%)=0.95x +2.5,正确;②根据题意yA =a +(x -a )×90%=0.9x +0.1a =0.9x +10,所以a =100;③当累计购物大于50时上没封顶,选择乙商场一定优惠显然不对;④当yA <yB 时,即0.9x +10<0.95x +2.5,解得x >150.所以当累计购物超过150元时,选择甲商场一定优惠些,故选C.11.【答案】12,a ;S ,h【解析】根据变量是指在一个变化过程中数值发生改变的量,常量是指在程序的运行过程中数值保持不变的量,可得答案.S =12ah ,其中底边a 保持不变,则常量是12,a ,变量是h 、S ,故答案为12,a ;S ,h .12.【答案】②【解析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数.只有②符合一次函数的定义,所以答案为②.13.【答案】112【解析】根据题意设y +2=k (x +1)(k ≠0),将x =1,y =3代入得:5=2k ,即k =52,∴y +2=52(x +1), 将x =2代入得:y +2=52×3,即y =112. 故答案为112.14.【答案】±12 【解析】依据正比例函数的定义得到2n -6=0,|m |-3=1,然后可求得m 、n 的值,最后依据有理数的乘法法则进行求解即可.∵关于x 的函数y =(m +3)x |m|-3+2n -6是正比例函数,∴{m +3≠0|m|−3=12n −6=0,解得n =3,m =±4.∴mn =±12.故答案为±12. 15.【答案】y =-x +2【解析】∵一次函数y =kx +b (k ≠0)图象过点(0,2),y 随x 增大而减小,且与两坐标轴围成的三角形面积为2,∴12OB ×2=2,∴B (2,0)∵y =kx +b 的图象过点(0,2),(2,0),∴{2k +b =0,b =2,解得{k =−1,b =2,, ∴此一次函数的解析式为y =-x +2.16.【答案】6 cm【解析】直接利用常量与变量的定义分别得出答案.在这个变化过程中,常量是:6 cm.故答案为 6 cm.17.【答案】12【解析】根据正比例函数定义可得2a =1,2b =0,再解可得a 、b 的值,然后可得a +b 的值. 由题意得:2a =1,2b =0,解得a =12,b =0,a +b =12,故答案为12.18.【答案】0 2【解析】当x =0时,y =2x =0,∴正比例函数y =2x 过(0,0);当x =1时,y =2x =1,∴正比例函数y =2x 过(1,2).故正比例函数y =2x 过(0,0)和(1,2).图象为19.【答案】-19【解析】易知k <0时,y 随x 的增大而减小,∴当x =-3时,y =13,代入正比例函数y =kx 得:13=-3k解得k =-19.20.【答案】解 ∵函数y =(m -2)x 2-|m|+m -1是x 的正比例函数,∴{m −2≠02−|m|=1m −1=0,解得m =1.【解析】根据正比例函数的定义列出关于m 的不等式组,求出m 的取值范围即可. 21.【答案】解 设直线AB 解析式为y =kx +b ,把点A (2,3)和点B (-3,-2)代入得{2k +b =3①,−3k +b =−2②, ①-②得5k =5,即k =1,把k =1代入①得b =1,则直线AB 所对应的解析式为y =x +1.【解析】设直线AB 解析式为y =kx +b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式.22.【答案】解 由题意得:k 2+k -1=1且k 2+2k ≠0,解得k =1.【解析】根据正比例函数的定义可得k 2+k -1=1且k 2+2k ≠0,再解即可.23.【答案】解 (1)x =1时,y =1−32×1+1=-23,x =-1时,y =−1−32×(−1)+1=4;(2)y =1时,x−32x+1=1,解得x =-4,y =-1时,x−32x+1=-1,解得x =23.【解析】(1)把自变量x 的值代入函数关系式进行计算即可得解;(2)把函数值代入函数关系式解方程求解即可得到自变量x 的值.24.【答案】解 (1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用T 表示时间,V 表示速度,那么随着T 的变化,V 的变化趋势是V 随着T 的增大而增大;(3)当T 每增加1秒,V 的变化情况不相同,在第9秒时,V 的增加最大;(4)120×1003600=1003≈33.3米/秒,由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.【解析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出V 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.。
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)
故答案为:﹣3或6.
9.y=﹣x﹣1(答案不唯一)
【解析】试题解析:∵y随x的增大而减小,
∴
设一次函数的解析式为
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,无选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
9.某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
10.已知直线 与直线 平行,且截距为5,那么这条直线的解析式为_______.
11.直线y=-8x-6可以由直线y=-8x向___平移___个单位得到.
12.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
故选B.
7.C
【解析】如图,作点D关于AB的对称点D′,连接CD′交AB于点E,则此时△CDE的周长最小,
∵点B的坐标为(3,4),四边形ABCO是矩形,D是OA的中点,
∴点C的坐标为(0,4),点D的坐标为(1.5,0),点D′的坐标为(4.5,0),点E的横坐标为3,
设直线CE的解析式为:y=kx+b,则有: ,解得 ,
∴直线CE的解析式为: ,
∴当 时, ,
∴点E的坐标为 .
故选C.
八年级数学(下)第十九章《一次函数》同步练习(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版初中八年级数学下册第十九章《一次函数》习题(含答案解析)
一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t =或4.5.A .1B .2C .3D .4B解析:B【分析】 观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题.【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩=8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t ,即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确;④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t ,当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B .【点睛】 本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =D解析:D【分析】 本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A 、B 、C 都可证正确,选项D ,面积为8时,对应x 值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ 的边长,MN=9-4=5,NP=4,故选项A 正确;选项B ,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.3.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.4.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 5.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <A 解析:A【分析】 由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解: ∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)C解析:C【分析】 先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB =22AO BO +=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.8.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D .D 解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.9.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④D解析:D【分析】 当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.二、填空题11.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____. (15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅= 在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 12.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当1n =时,直线1:21l y x =-+与x 轴和y 轴分别交于点1A 和1B ,设11AOB (其中0是平面直角坐标系的原点)的面积为1S ;当2n =时,直线2l :3122y x =-+与x 轴和y 轴分别交于点2A 和2B ,设22A OB 的面积为2S ;……依此类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n A OB 的面积为n S .则1S =________,123n S S S S +++⋅⋅⋅+=________.【分析】首先求得S1S2Sn 的值然后由规律:×=−求解即可求得答案【详解】当n =1时直线l1:y =−2x +1与x 轴和y 轴分别交于点A1和B1则A1(0)B1(01)∴S1=××1=∵当n =2时直线l 解析:1422n n + 【分析】 首先求得S 1,S 2,S n 的值,然后由规律:11n +×1n =1n −11n +求解即可求得答案. 【详解】当n =1时,直线l 1:y =−2x +1与x 轴和y 轴分别交于点A 1和B 1,则A 1(12,0),B 1(0,1), ∴S 1=12×12×1=14, ∵当n =2时,直线l 2:y =−32x +12与x 轴和y 轴分别交于点A 2和B 2, 则A 2(13,0),B 2(0,12), ∴S 2=12×13×12, ∴直线l n 与x 轴和y 轴分别交于点A n 和B n ,△A n OB n 的面积为S n =12×11n +×1n , ∴S 1+S 2+S 3+…+S n =12×12×1+12×13×12+…+12×11n +×1n =12×(1−12+12−13+…+1n −11n +) =12×(1−11n +) =22n n +. 故答案为:14,22n n +. 【点睛】此题考查了一次函数的应用.解题的关键是找到规律:△A n OB n 的面积为S n =12×11n +×1n 与11n +×1n =1n −11n +. 13.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A 解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°, ∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3),设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253. 故答案为:y=-23x+253. 【点睛】本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.14.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.【分析】根据一次函数y=(m-2)x+m -3的图象经过第一二四象限可得函数表达式中一次项系数小于0常数项大于0进而得到关于m 的不等式组解不等式组即可得答案取值范围【详解】∵一次函数的图像经过第一二四 解析:12m <<【分析】根据一次函数y=(m-2)x+m -3的图象经过第一、二、四象限,可得函数表达式中一次项系数小于0,常数项大于0,进而得到关于m 的不等式组,解不等式组即可得答案取值范围.【详解】∵一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,∴2010m m -<⎧⎨->⎩, 解得:1<m <2,故答案为:1<m <2【点睛】本题考查了一次函数y=kx+b (k≠0)的图象与系数的关系:对于一次函数y=kx+b (k≠0),k >0,b >0时,图象在一、二、三象限;k >0,b <0时,图象在一、三、四象限;k <0,b >0时,图象在一、二、四象限;k <0,b <0时,图象在二、三、四象限;熟练掌握一次函数的性质是解题关键.15.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.(00)【分析】先作点B 关于x 轴的对称点C 再连接AC求出AC 的函数解析式再把y=0代入即可【详解】解:如图作点B 关于x 轴的对称点C 再连接AC 点B 坐标为(﹣11)点B 关于x 轴的对称点C 的坐标为(-1- 解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 18.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元解析:43【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知, 当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43. 【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键. 19.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k,再求出b,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b,∵y=2x+b的图象经过A(4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为480m?解析:(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min) 612-=答:小慧返回家中的速度比去文具店的速度快80m/min (2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.23.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);当x=0时,y=-13x+1=1, ∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3. 当y=3时,12x+1=3, 解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3).∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3).【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.24.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.解析:(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+,2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟, 答:兔子中间停下睡觉用了28.5分钟.【点睛】 本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围. 解析:(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,。
八年级数学(下)第十九章《一次函数》测试题含答案
八年级数学(下)第十九章《一次函数》测试题(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .76.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对8.已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x =D .12y x =-9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 二、填空题(共10小题,每题3分,共30分)11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是.12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 .15.已知点A(-3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(填序号)A.①②③ B.仅有① C.仅有①③ D.仅有②③20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB 的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数. (2)温差是 ℃.(3)10时的气温是 ℃. (4) 时气温是4℃.(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.22.(6分)已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q 立方米与时间t (时)之间的函数关系式. (2)写出自变量t 的取值范围.(3)10小时后,池中还有多少水? (4)几小时后,池中还有100立方米的水?23.(8分)如图,直线y = 2x + 3与x 轴相交于点A ,与y 轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 00.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 【答案】D . 【解析】考点:1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )【答案】C. 【解析】试题分析:函数图像中图形表示了自变量和函数之间的对应关系,由题,因瓶子下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越缓,分析四个图象只有C 符合要求,故选C .考点:函数图像.3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 【答案】【解析】试题分析:在圆的周长公式2C r =π中,C 是r 的函数,C ,r 是变量,2π是常量,将C=2πr 写成2Cr =π,则可看作C 是自变量,r 是C 的函数,故说法错误的是A . 故选A .考点:函数的概念.4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )【答案】C . 【解析】考点:函数的图象.5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴a b 3b 2+=⎧⎨=-⎩,解得a 5b 2=⎧⎨=-⎩.∴a ﹣b=5+2=7.故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.6.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限 【答案】A 【解析】考点:一次函数的性质.7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对 【答案】A . 【解析】试题分析:∵k=-2<0,∴y 随x 的增大而减小,∵1<2,∴a >b . 故选A .考点:一次函数图象上点的坐标特征.8.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x = D .12y x =- 【答案】B. 【解析】试题分析:∵正比例函数y=kx (k ≠0)的图象经过点(1,-2),∴1×k=-2,解得:k=-2.则此正比例函数的关系式为y=-2x. 故选B.考点:待定系数法求正比例函数解析式.9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.【答案】A . 【解析】考点:一次函数的图象及性质.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 【答案】A . 【解析】试题分析:将点A (m ,3)代入y=2x 得,2m=3,解得,m=32,∴点A 的坐标为(32,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥32. 故选A .考点:一次函数与一元一次不等式.二、填空题(共10小题,每题3分,共30分) 11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是 .【答案】t 【解析】试题分析:根据函数的定义即可判断出自变量是t ,因变量是v. 考点:函数的定义12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为【答案】12. 【解析】 试题分析:因为x=32,所以1<x ≤2,所以y=-32+2=12. 考点:函数值.13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数. 【答案】-2. 【解析】试题分析:由正比例函数的定义可得:4-m 2=0,且m-2≠0,解得,m=-2. 考点:正比例函数的定义.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 . 【答案】y=-x+4. 【解析】试题分析:∵一次函数y=-x+m 的图象经过(﹣1,5),∴5=-(-1)+m ,解得:m=4.则该一次函数解析式为y=-x+4.考点:待定系数法求一次函数解析式.15.已知点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,则a 与b 的数量关系为 【答案】a=8-3b . 【解析】试题分析:∵点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,∴322a k b k =-+=+⎧⎨⎩①②,①+②×3得,a+3b=8,即a=8-3b . 考点:一次函数图象上点的坐标特征.16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.【答案】x<1【解析】考点:一次函数与一元一次不等式.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 【答案】m>1.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:324y x my x=-++=+⎧⎨⎩,解得:132103mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴132103mm-⎧⎪⎪⎨+⎪⎪⎩>>,解得:m>1.学¥科网考点:一次函数图象与几何变换.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】y=﹣21x+23 【解析】考点:1、翻折变换(折叠问题);2、勾股定理;3、待定系数法19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 (填序号)A .①②③B .仅有①C .仅有①③D .仅有②③【答案】①②③. 【解析】考点:一次函数的图象分析.20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3【答案】(0,2). 【解析】试题分析:∵线段AB 的长度是确定的,∴△PAB 的周长最小就是PA+PB 的值最小,∵3>5,∴点P 在y 轴上,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,∵A (1,1),∴A ′(-1,1),设直线A ′B 的解析式为y=kx+b (k ≠0),∴351k b k b +=-+=⎧⎨⎩,解得12k b =⎧⎨=⎩,∴直线A ′B 的解析式为y=x+2,当x=0时,y=2,∴P (0,2). 学科#网考点:1.轴对称-最短路线问题;2.坐标与图形性质.三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)温差是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.【答案】(1)是;(2)12;(3)5;(4)9时和22时;(5)2时至12时;(6)14时到16时.【解析】;(3)5;(4)9时和22时;(5)2时至12时及14时到16时.故答案为:(1)是;(2)16,2,10,2考点:函数的图象.22.(6分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?【答案】(1)Q=800-50t;(2)0≤t≤16;(3)300立方米;(4)14小时后学#科网【解析】考点:函数的应用.23.(8分)如图,直线y = 2x + 3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.【答案】(1)A(-32,0) B(0,3);(2)274.【解析】考点:一次函数图象上点的坐标特征.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.【答案】x≥34.【解析】试题分析:首先将已知点的坐标代入到直线y=kx-2中求得k值,然后代入不等式即可求得x的取值范围.试题解析:∵将点A(-2,0)代入直线y=kx-2,得:-2k-2=0,即k=-1,∴-4x+3≤0,解得x≥34.考点:一次函数与一元一次不等式.学@科网25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.【答案】(1)S=24-3x,(0<x<8);(2)(4,4).【解析】试题分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.试题解析:(1)如图所示:考点:一次函数图象上点的坐标特征.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【答案】(1)60千米/小时,96千米/小时,C(19806,);(2))4619(38496≤≤+-=xxy;(3)613.【解析】试题分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/考点:一次函数的应用.27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;【答案】(1)y=6x﹣100;(2)120吨;(3)100吨.【解析】试题分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可.考点:1.一次函数、一元二次方程和一元一次方程的应用;2.待定系数法;3.分类思想.28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;学@科网(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.【答案】(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩;(2)作图见解析;(3)方案二.【解析】试题分析:(1)根据月话费=月租费+通话费分别列式. (2)根据(1)的函数关系式作图.(3)分别求出两种方案的月话费作出比较即可.试题解析:(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩.(2)作图如下:(实线部分)考点:1.一次函数的应用;2.由实际问题列函数关系式;3.分类思想的应用.21。
人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)
一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。
八年级数学(下)第十九章《一次函数》测试卷含答案
八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。
人教版八年级数学下册第十九章 一次函数练习题(含答案)
第十九章 一次函数一、单选题1.函数y 中,自变量x 的取值范围是( ) A .x >-1B .x >-1且x ≠1C .x ≥一1D .x ≥-1且x ≠1 2.下列各式中,y 不是x 的函数的是( )A .y x =B .y x =C .1y x =-+D .y x =± 3.小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .4.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣45.一个正比例函数的图象经过点()2,4-,则它的解析式为( )A .12y x =-B .12y x =C .2y x =-D .2y x = 6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A.-1 B.0 C.3 D.47.在平面直角坐标系中,一次函数y=-2x+1的图象经过P1(-1,y1)、P2(2,y2)两点,则( ) A.y1>y2B.y1<y2C.y1=y2D.y1≥y28.如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b >0的解集是()A.x>﹣1 B.x<﹣1 C.x>2 D.x<29.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x <3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.310.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A .甲乙两地相距1200千米B .快车的速度是80千米∕小时C .慢车的速度是60千米∕小时D .快车到达甲地时,慢车距离乙地100千米二、填空题11.函数131y x =-中,自变量x 的取值范围是______. 12.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.13.若一次函数2(3)218y k x k =--+的图象经过原点,则k =_____.14.已知一次函数y=kx+b 的图象如图所示,则关于x 的不等式3kx-b>0的解集为_____.三、解答题15.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示.(1)求△ABC的面积;(2)求y关于x的函数解析式;(3)当△ABP的面积为5时,求x的值.16.已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?17.如图,函数y=2x+4的图象与正比例函数的图象相交于点A(﹣1,2),且与x轴、y轴分别交于点B、C.(1)求正比例函数y=kx的解析式;(2)求两个函数图象与y轴围成图形的面积.18.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?答案1.D 2.D 3.D 4.B 5.C 6.C 7.A 8.A 9.C 10.C11.x≠1 312.1x 13.-3 14.x<215.(1)10;(2)y=﹣52x+652;(3)当△ABP的面积为5时,x的值为2或1116.(1)m=﹣2;(2)m=4.17.(1)y=-2x;(2)218.(1)①当0≤x≤5时,y=20x;②当x>5,y=16x+20;(2)一次购买玉米种子30千克,需付款500元。
八年级数学(下)第十九章《一次函数》单元测试卷含答案
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。