第七章主成分分析
主成分分析
差 在测定。如果仅考虑X1或X2中的任何一个分量,那么包含
另一分量中的信息将会损失,因此,直接舍弃某个分量 不是“降维”的有效办法。
图6.1 主成分的几何意义
如 标果 系我y1们Oy将2 ,该这坐里标y系1 是按椭逆圆时的针长方轴向方旋向转,某y2个是角椭度圆的变短成轴新方坐向。
主要内容
主成分分析的基本思想 主成分分析的基本理论 主成分分析的几何意义 主成分的性质
引言
例子
如何评价一个学生在大学期间的表现
◦ 课程考试成绩 ◦ 社会工作 ◦ 科研
为了尽可能全面地评价,我们会引入很 多变量,目的是通过这些变量将学生的 差异显示出来
最终需要提供一种方法能够简单地概括 学生的特点和相对排名
所以
p
p
i ii
i 1
i 1
p
p
或 D(Yi ) D( X i )
i 1
i 1
性质 3 主成分 Yk 与原始变量 X i 的相关系数为
(6.20) (6.21)
(Yk , Xi )
k ii
tki
并称之为因子负荷量(或因子载荷量)。
(6.22)
证明:事实上
(Yk , Xi )
Cov(Yk , Xi ) Cov(TkX, eiX)
◦ 另条一线种,是第椭 一圆 主扁 成平 分到 包了 含极 有限二,维变空成间点y1轴的上全的部一信 息,仅用这一个综合变量代替原始数据不会有 任何的信息损失,此时的主成分分析效果是非 常理想的,其原因是,第二主成分不包含任何 信息,舍弃它当然没有信息损失。
主成分分析原理
第七章主成分分析(一)教学目的通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。
(二)基本要求了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。
(三)教学要点1、主成分分析基本思想,数学模型,几何解释2、主成分分析的计算步骤及应用(四)教学时数3课时(五)教学内容1、主成分分析的原理及模型2、主成分的导出及主成分分析步骤在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。
第 - 213 - 页第一节 主成分分析的原理及模型一、主成分分析的基本思想及数学模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。
通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21 F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。
第七章 主成分分析
a1 a1 a1 a1 1
(1)
欲使方程组(3)有非零解,其充要条件是 I 0 是协方差阵 的特征根。又由 由此可见, a (2)式知,欲使 1 a1 的值最大,就是要 的 值最大。也就是说, 应取为 的最大的特 征根 1 。再由(1)式知,我们所要求的 a1 , 应该是 的最大的特征根 1所对应的单位化 特征向量。这样,我们就求得第一个综合 指标 ( a1 a1 1) y1 a1 X , 并称y1为第一个主成分。
a1 X , , a k X
就分别是第一,…,第k个主成分。
由于协方差阵 是对称阵,根据线性代数知,
的不同特征根所对应的特征向量是正交的。 所以,如果上面求得的k个特征根全不相同 时,则它们所对应的特征向量a1 ,… ak ,是相 互正交的,于是有 cov(ai X , a j X ) ai a j ai j a j j ai a j 0 这表明上面所求得的主成分y1,…,yk之间互 不相关。
y1,…,yq既能充分反映原来p个指标x1,…,xp所反
映的信息,又能使这q个综合指标之间互不相关。
首先,考虑第一个综合指标y1如何求得。它应该
是由原来p个指标x1,…,xp综合而成的,通常将其 取为原来p个指标的线性组合: y1 a1 X a11 x1 a1 p x p 其中a1 (a11 ,, a1 p ) ,是一个p维非零常向量。我
即 a2 也是协方差阵 的特征根所对应的单 位化特征向量。
a 2 a 2 1
为了使y2的方差尽量地大,自然a2 应为 的仅次于 1第二大特征根2 所对应的单位化 特征向量。这样,我们也求得了第二个综 合指标
sas主成分分析
sas主成分分析sas主成分分析第七章主成分分析实验目的:熟悉并掌握主成分分析和因子分析的原理和在变量分类、综合评价、主成分回归等几个方面的应用,以及相应的SAS程序实现。
实验内容:对我国钢铁行业上市公司的财务绩效状况进行主成分分析,选择的财务指标共有以下几个:流动比率,速动比率,存货周转率,总资产周转率,净资产收益率,经营净利率,每股收益,净资产收益率增长率,股东权益增长率。
数据如下:完成以下工作:(1)选取累积贡献率>85%的前几个主成分,分别计算得分;并对选取的主成分进行解释;(2)对各上市公司的财务绩效进行综合评价;(3)利用选取的主成分得分,借助聚类分析过程对钢铁行业上市公司进行分类。
datazcf;inputname$x1-x9;cards;邯郸钢铁1.5510.9717.1650.88910.7689.2680.451-16.0246.122武钢股份2.1921.828.0880.97515.05411.1140.336-3.0392.588钢联股份1.2860.9418.0441.1247.3894.5990.205-59.988122.041宝钢股份0.9790.5718.130.6019.7428.780.205-17.6853.989莱钢股份1.3640.4975.0780.9314.1039.1370.523-24.26114.16西宁特钢1.4330.6721.4620.4716.4297.2680.1559.3493.027杭钢股份2.1081.4988.3731.41816.7567.9370.531-18.72513.662邢台轧辊2.11.5951.8830.3966.4848.9810.1325.275-1.061宁夏恒力1.3641.0641.8680.2787.46919.8420.201-35.19455.428凌钢股份1.7721.0617.8411.11912.8838.8040.5285.34310.107南钢股份1.8181.3928.8661.54612.8855.1530.409-7.0286.131酒钢宏兴1.4410.88410.1681.07112.8317.8250.36744.0376.686抚顺特钢0.9550.6523.4160.5097.1476.8510.193-8.0741.93安阳钢铁1.8931.3335.1070.9810.9497.9150.3500上海科技1.3131.1824.6430.5689.5499.4230.19935.6353.582沪昌特钢10.8139.536.5850.5671.1031.6560.01915.031-7.171山川股份1.2520.5851.4850.45110.34414.6930.209-1.6159.799浦东不锈6.1865.1212.3630.2650.7542.5130.013-45.439-1.176新华股份1.8171.3143.2910.7469.9249.0280.137-3.5771.985工益股份1.8091.2674.0460.8280.6950.450.011104.419-4.714马钢股份1.5841.0694.3180.5692.0032.1830.03235.279-12.487宝信软件3.5943.2015.0140.82114.669.7210.147126.91123.243北特钢1.3851.0922.6910.467-11.21-7.917-0.14853.839-11.058广钢股份0.8590.513.8840.7224.2472.6850.096-32.409-4.004;procprincompn=9out=prin;varX1-x9;run;procprintdata=prin;varprin1-prin9;run;主要输出结果:相关阵的特征值和特征向量EigenvalueDifferenceProportionCumulative13.626730451.710877240.40300.403021.915853210.519337180.21290.615831.396516020.349008540.15520.771041.047507480.371047740.11640.887450.676459740.478913290.07520.962660.197546440.106501190.02190.984570.091045260.044878480.01010.994680.046166770.043992140.00510.999890.002174630.00021.0000EigenvectorsPrin1Prin2Prin3Prin4Prin5Prin6Prin7Prin8Prin9x1-.2632570.5528190.3251720.0999320.0123340.1292890.077190-.0215500.697189x2-.2696730.5512290.3176490.0909930.0600930.065411-.0196680.049407-.709595x30.3207430.454750-.227474-.1958410.013020-.7729000.0382700.0086860.033825x40.3790330.331485-.342911-.1840840.0144020.490904-.3231210.4986720.026498x50.4608530.1052280.1235360.3670920.0903870.094185-.486791-.610331-.003691x60.308953-.1918380.4762280.4505290.202663-.228562-.0285870.5848690.042126x70.4802260.1255120.0219100.155827-.2454280.2558630.762567-.122168-.082054x8-.1693840.077314-.5106640.4440140.6759650.0353110.220767-.0214310.005659x90.210440-.0652010.347445-.5918860.6553280.1132300.140544-.1355950.001607由输出特征值可知,第一主成分的贡献率为40.30%,第二个主成分的.贡献率为61.58%,第三个主成分的贡献率为77.10%,前四个主成分累计贡献率为88.74%。
主成分分析【可编辑全文】
• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
• 如果变量分组较有规则,则从特征向量各 分量数值作出组内组间对比分析。
主成分分析的一般步骤
6. 解释各个主成分的含义 7. 进行其他分析
利用SPSS进行主成分分析的步骤
1. 指标数据的标准化。
可以利用“Descriptive statistics” 中的“Descriptives”进行标准化。
这种由讨论多个指标降为少数几个综合指 标的过程在数学上就叫做降维。主成分分析通 常的做法是,寻求原指标的线性组合Fi。其中, Xi 是经过标准化后的变量。
F1 u11X1 u21X 2 u p1X p F2 u12 X1 u22 X 2 u p2 X p
Fp u1p X1 u2 p X 2 u pp X p
4. 确 定 主 成 分 Fi 的 表 达 式 : 将 表 “Component Matrix”(初始因子载荷 阵)中的第i列向量除以第i个特征根的平方 根,得到第i个主成分Fi的变量系数向量。
5. 对主成分Fi进行解释。
• x1:数学 • x2:物理 • x3:化学 • x4:语文 • x5:历史 • x6:英语
满足如下的条件:
每个主成分的系数平方和为1。即
u2 1i
u2 2i
u
2 pi
1
主成分之间相互独立,即无重叠的信息。即
Cov(Fi,Fj) 0,i j,i,j 1, 2, ,p 主成分的方差依次递减,重要性依次递减,即
主成分分析PPT
p
1
a1 u1,u2 ,
,
up
2
p
p
ia1uiuia1 1 a1uiuia1
i 1
i 1
1a1UUa1 1a1a1 1
u1
u2
a1
p
up
下面证明,由U的第一列元素所构成的原始变量的 线性组合有最大的方差。
设有P维单位向量 a1 a11, a21,
, a p1
y1 a11 x1 a21 x2 a p1 x p a1 x
1
D(
y1 )
a1a1
a1U
2
Ua1
主成分分析通常的做法,是寻求原指标的 线性组合yi:
y1 u11 x1 u21 x2 up1 x p y2 u12 x1 u22 x2 up2 x p
y p u1 p x1 u2 p x2
满足如下的条件:
upp x p
(1) 每个主成分的系数平方和为1(否则其方差可 能为无穷大),即
标。在实际工作中,主成分个数的选取通常有两个标准 一个是按累积贡献率达到一定的程度(如 70%或 80%
以上)来确定 m;另一个先计算协方差矩阵或相关矩阵
的特征值的均值 ,取大于 的特征值的个数作为 m.
大量实践表明,当 p 20时,第一个标准容易取太 多的主成分,第二个标准容易取太少的主成分,故最好 将两者结合起来使用,并考虑m 个主成分对 xi 的贡献率。
多元统计分析第七章主成分分析习题答案
7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。
解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。
解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。
《主成分分析》幻灯片PPT
PCA的实质——简化数据
用尽可能少的变量〔主成分〕反映原始数据中尽 可能多的信息,以简化数据,突出主要矛盾。
反映原始数据特征的指标:方差-离散度 主成分:原始变量的最优加权线性组合 最优加权:
第一主成分:寻找原始数据的一个线性组合,使 之具有最大方差〔数据离散度最大的方向〕
第二主成分:寻找原始数据的一个线性组合,使 之具有次大方差,且与第一主成分无关
12.00
14.00
16.00
run100m
18.00
20.00
二、PCA的模型与算法
设:x为标准化变量, 原始数据阵 X s [x 1 ,x 2 , x p ] PCA目标:找到原始数据方差最大的线性组合
❖设:线性组合系数为p×1=[1, 2, … p]T
❖即:要找一个 使z=Xs= 1x1+ 2x2 +…+ pxp具有
What does PCA do?
Original data matrix, say n by p 正交旋转
New data matrix, say n by q, with q < p:
例:研究55个国家运发动径赛 能力,用8项径赛成绩
经PCA得到新数据阵: z55×2:选取2个主成分, 其中第一主成分表示综合
0.0
1
第一主成分-1.0包0 含的信0.0息0 量显然1.00
-21..000
售 电 量
Z2
大于第二主成分,因而忽略s 第
二主成分信息损失不大 -2.0
-2
-1
Ma Xin, North China Electric Power University
0
1
2
3
应用多元统计分析课后习题答案高惠璇第七章习题解答
1
1
(2) 求X
(3) 试问当ρ取多大时才能使第一主成分的贡献率达95%以上.
解:
5
第七章 主成分分析
6
第七章 主成分分析
7-3 设p维总体X的协差阵为
21
1
1
应用多元统计分析
第七章习题解答
第七章 主成分分析
7-1 设X=(X1, X2)′的协方差阵 试从Σ和相关阵R出发求出总体主成分,
14
1040,
并加以比较.
Байду номын сангаас解:
2
第七章 主成分分析
3
第七章 主成分分析
4
第七章 主成分分析
7-2 设X=(X1, X2)′~N2(0,Σ),协方差Σ=
(01).
(1)
Z1 1p(X1X2Xp);
(2) 试求第一主成分的贡献率.
7
第七章 主成分分析
解:
1
8
第七章 主成分分析
7-4 设总体X=(X1,…,Xp)′~Np(μ,Σ) (Σ>0),等概率密度
椭球为
(X-μ)′Σ-1(X-μ)=C2(C为常数).
试问椭球的主轴方向是什么?
第七章 主成分分析
17
第七章 主成分分析
7-10
18
第七章 主成分分析
77--1112
19
解:
9
第七章 主成分分析
7-5 设3维总体X的协差阵为
试求总体主成分.
4 0 0
0 4 0
0 0 2
解:总体主成分为
数理统计第七章第一节主成分分析
k
定义 第k个主成分Yk的贡献率为:
p
i
i 1
m
i
前m个主成分Y1,Y2,…,Ym的累计贡献率为:
i 1 p
i
i 1
在实际应用中,通常选取m<p,使前m个累计贡献率达到 一定的比例(80%~90%).这样用前m 个主成分代替原
来的变量X1,X2,…,Xp而不至于损失太多的信息,从而到
达减少变量个数的目的.
(ij ) pp E X E( X ) X E(X )T
设li=(l1i, l2i ,…, lpi )T(i=1,2,…,p)为p个常数向量,考虑如 下线性组合:
Y1 l1T X l11X1 l21X2
lp1X p,
Y2 l2T X l12X1 l22X2
l p 2X p ,
Yp lTp X l1pX1 l2pX2
eiT ei ,Yk ) eiT
i
, ek
i 1, 2, 0,i
, k.
p,
由此可知,求X的各主成分,等价于求∑的各个特征值 及其相应的正交单位化特征向量,按特征值由大到小
所对应的特征向量为组合系数的X1,X2,…,Xp的线性 组合分别为X的第一、第二、甚至第p个主成分,而各 主成分的方差等于相应的特征值.
2.主成分的计算方法
在实际问题中,一般∑(或ρ)是未知的,需要通过样本来
估计.设
S
(sij ) p p
1 n 1
n
( xk
k 1
x )(xk
x )T ,
R
(rij ) pp
sij siis jj
其中
x (x1, x2,
, xp )T ,
xi
1 n
第七章 主成分分析
主成分分析
什么是主成分分析
主成分分析(Principal Components Analysis ,PCA)也称为主分量分析,是一种通过 降维来简化数据结构的方法,即如何把多个变量(变 量)转化为少数几个综合变量(综合变量),而这几 个综合变量可以反映原来多个变量的大部分信息。
基本思想
主成分分析就是设法将原来众多具有一定相关性的 变量(如p个变量),重新组合成一组新的相互无关的 综合变量来代替原来变量。怎么处理? 通常数学上的处理就是将原来p个变量作线性组合 作为新的综合变量。如何选择? 如果将选取的第一个线性组合即第一个综合变量记 为F1,自然希望F1尽可能多的反映原来变量的信息。 怎样反映?
写出主成分模型
前面的表给出的因子载荷矩阵,主成分系数应该 为特征向量,其换算方法为:用主成分载荷矩阵 中的数据除以主成分相对应的特征值开平方根便 得到两个主成分中每个指标所对应的系数。
i ei i
第一主成分的特征值
第二主成分的特征值
主成分模型为:
F1=0.337X1+0.34X2+0.347X3+0.22X4+0.1 02X5+0.084X6+0.156X7+0.322X8+0.344X 9+0.34X10+0.328X11+0.337X12
上机操作流程
主成分分析的前提条件:原始变量之间有一定的相关
性
检验方法 (1)Kaiser-Meyer-Olkin(KMO)检验:抽样充足量的测度, 检验变量之间的偏相关系数是否过小。 (2)Bartlett’s 检验:该检验的原假设是相关矩阵为单位阵(不 相关),如果不能拒绝原假设,则不适合进行主互不 相关
应用多元统计分析习题解答第七章
第七章因子分析7.1试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。
7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子 分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。
7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。
答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。
主成分分析法
§7.1
引言 §7.2 总体的主成分 §7.3 样本的主成分
§7.1 引言
主成分分析(或称主分量分析,principal component analysis)由皮尔逊(Pearson,1901)首先引入,后来 被霍特林(Hotelling,1933)发展了。 主成分分析是一种通过降维技术把多个变量化为少 数几个主成分(即综合变量)的统计分析方法。这些 主成分能够反映原始变量的绝大部分信息,它们通 常表示为原始变量的某种线性组合。 主成分分析的一般目的是:(1)变量的降维;(2)主成 分的解释。
现比较本例中从R 出发和例7.2.2中从 Σ 出发的主成 分计算结果。从R 出发的 y1* 的贡献率0.705明显小于 从 Σ 出发的 y1的贡献率0.938,事实上,原始变量方 差之间的差异越大,这一点也就倾向于越明显, * * * (7.2.15)式有助于我们理解之。 y1 , y2 , y3 可用标准 化前的原变量表达如下: x3 3 x1 1 x2 2 *
Cov y1 , y2 0 我们在此条件和约束条件 a2a 2 1 下寻求向量a 2 ,使 得 V y2 a2 Σa2 达到最大,所求的 y2 称为第二主成
分。求得的第二主成分为
y2 t12 x1 t22 x2 t p 2 x p t x 2
3.原始变量 xi 与主成分 yk 之间的相关系数 k xi , yk tik , i, k 1, 2,, p ii
在实际应用中,通常我们只对 xi (i 1, 2,, p) 与 yk (k 1, 2,, m) 的相关系数感兴趣。
三、从相关阵出发求主成分
主成分分析完整ppt课件
这样,我们就对主成分分析的几何意义有了一个充分的了解。 主成分分析的过程无非就是坐标系旋转的过程,各主成分表达 式就是新坐标系与原坐标系的转换关系,在新坐标系中,各坐 标轴的方向就是原始数据变差最大的方向。
2021/6/12
1199
目录 上页 下页 返回 结束
其中,U为旋转变换矩阵,由上式可知它是正交阵, 即满足
U'U1 , U'UI
2021/6/12
1144
目录 上页 下页 返回 结束
§2 主成分分析的几何意义
经过这样的旋转之后,N个样品点在 Y 1 轴上的离散程度最
大,变量 Y 1 代表了原始数据绝大部分信息,这样,有时在研
究实际问题时,即使不考虑变量 Y 2 也无损大局。因此,经过
指标转化为几个综合指标的多元统计方法。通常把转化生成
的综合指标称之为主成分,其中每个主成分都是原始变量的
线性组合,且各个主成分之间互不相关,这就使得主成分比
原始变量具有某些更优越的性能。这样在研究复杂问题时就 可以只考虑少数几个主成分而不至于损失太多信息,从而更
容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时
上述旋转变换就可以把原始数据的信息集中到
Y
轴上,对数
1
据中包含的信息起到了浓缩的作用。进行主成分分析的目的
就是找出转换矩阵 U ,而进行主成分分析的作用与几何意义
也就很明了了。下面我们用遵从正态分布的变量进行分析,
以使主成分分析的几何意义更为明显。为方便,我们以二元
正态分布为例。对于多元正态总体的情况,有类似的结论。
1.每一个主成分都是各原始变量的线性组合;
主成分分析
(二)汇付的当事人
1.汇款人(remitter) 2.收款人(payee; beneficiary ) 3.汇出行(remitting bank ) 4.汇入行(receiving bank )又称
第二节 信用证的审核与修改
一、信用证的审核要求 (一)审核信用证的真实性、安全可靠性 (二)审核信用证与合同条款是否一致,
信用证条款是否合理,有无前后矛盾现 象 (三)审核信用证是否包括软条款
二、信用证的修改要求
(一)接受修改信用证和接受信用证修改 的权利
(二)修改信用证应注意以下问题:
(三)对信用证修改内容的接受或拒绝有 两种表示形式:
Clause) 十六.信用证生效性条款(Valid Conditions Clause) 十七.信用证特别条款(Special Conditions)
三、信用证项下单证的流转程序
• ① 买卖双方签订贸易合同,在合同中规定 使用信用证方式支付货款。
• ② 买方向当地银行提出申请,根据所签的 贸易合同填写开证申请书,落实开证保证 金,或提供其它保证,请银行(开证行) 开证。
• ⑦寄单索汇。议付行将汇票和货运单据按 照信用证的要求寄给开证行(或其指定的 付款行)索偿。
• ⑧开证行(或其指定的付款行)核对单据 无误后,付款给议付行。
• ⑨开证行向买方(开证申请人)提示单据, 买方付款赎单。
• ⑩开证申请人取得单据后向承运人提货。
• ⑾议付行收到货款后,为企业结汇入账, 并收回垫款。
信用证是一种银行开立的有条件的承诺付款的书面文 件。即开证行根据进口商(开证申请人)的请求和指 示向出口商(受益人)开立的一定金额的,并在一定 的期限内凭规定的单据承诺付款的书面文件。 1.由银行开出; 2.应客户的申请开出(或开证行因自身的需要而开出); 3.在符合信用证的条款和条件前提下,凭规定的单据向 受益人付款;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上机操作流程
主成分分析的前提条件:原始变量之间有一定的相关
性
检验方法 (1)Kaiser-Meyer-Olkin(KMO)检验:抽样充足量的测度, 检验变量之间的偏相关系数是否过小。 (2)Bartlett’s 检验:该检验的原假设是相关矩阵为单位阵(不 相关),如果不能拒绝原假设,则不适合进行主成分分析。
主成分分析
什么是主成分分析
主成分分析(Principal Components Analysis ,PCA)也称为主分量分析,是一种通过 降维来简化数据结构的方法,即如何把多个变量(变 量)转化为少数几个综合变量(综合变量),而这几 个综合变量可以反映原来多个变量的大部分信息。
基本思想
主成分分析就是设法将原来众多具有一定相关性的 变量(如p个变量),重新组合成一组新的相互无关的 综合变量来代替原来变量。怎么处理?
第七章 主成分分析
1、主成分分析 2、SPSS上机实现过程
主成分分析
❖ 每个人都会遇到,在如此多的变量 之中,有很多是相关的。人们希望能够找出它们的 少数“代表”来对它们进行描述。
❖ 本章就介绍两种把变量维数降低以便于描述、理解 和 分 析 的 方 法 : 主 成 分 分 析 ( principal component analysis ) 和 因 子 分 析 ( factor analysis)。实际上主成分分析可以说是因子分析 的一个特例。
通常数学上的处理就是将原来p个变量作线性组合 作为新的综合变量。如何选择?
如果将选取的第一个线性组合即第一个综合变量记 为F1,自然希望F1尽可能多的反映原来变量的信息。 怎样反映?
基本思想
最经典的方法就是用方差来表达,即var(F1)越大, 表示F1包含的信息越多。因此在所有的线性组合中所 选取的F1应该是方差最大的,故称之为第一主成分 (principal component I)。
写出主成分模型
前面的表给出的因子载荷矩阵,主成分系数应该 为特征向量,其换算方法为:用主成分载荷矩阵 中的数据除以主成分相对应的特征值开平方根便 得到两个主成分中每个指标所对应的系数。
ei
i i
第一主成分的特征值
第二主成分的特征值
主成分模型为:
F1=0.337X1+0.34X2+0.347X3+0.22X4+0.1 02X5+0.084X6+0.156X7+0.322X8+0.344X 9+0.34X10+0.328X11+0.337X12
综合 变量 (主 成分) 之间 互不 相关
计算主成分特征根及贡献率和累积贡献率
如果想选取 累积贡献率 >95%,
则需要重 新选择因子数
确定主成分
本操作是选择以特征根大于1为标准提取主成分,提取了2个主成分。按照累积方差的 观点,应该提取>80%或>85%的值,本例题提取2个主成分,其累积方差贡献率为 94.99%,应该提取2个应该提取前两个主成分。
F1主要表示X1、X2、X3、X8、X9、X10、X11、 X12的信息(冬半年的信息)
F2=-0.134X1 - 0.114X2+0.016X3+0.384X4+ 0.507X5+0.519X6+0.457X7+0.034X8-0.064X90.136X10-0.195X11-0.157X12
F1主要表示X4、X5、X6、X7的信息(夏半年的信息)
如果第一主成分不足以代表原来p个变量的信息, 再考虑选取F2即第二个线性组合。F2称为第二主成 分(principal component II)。F1和F2的关 系?
基本思想
为了有效地反映原来信息,F1已有的信息就不再 出现在F2中,即cov(F1,F2)=0。依此类推,可 以获得p个主成分。因此,这些主成分之间是互不相 关的,而且方差依次递减。在实际中,挑选前几个最 大主成分来表征。标准?