习题7及其解答
习题解答
第7章思考题及习题7参考答案一、填空1. AT89S52单片机任何一个端口要想获得较大的驱动能力,要采用电平输出。
答:低2.检测开关处于闭合状态还是打开状态,只需把开关一端接到I/O端口的引脚上,另一端接地,然后通过检测来实现。
答: I/O端口引脚的电平3. “8”字型的LED数码管如果不包括小数点段共计段,每一段对应一个发光二极管,有和两种。
答:7,共阳极,共阴极4. 对于共阴极带有小数点段的数码管,显示字符“6”(a段对应段码的最低位)的段码为,对于共阳极带有小数点段的数码管,显示字符“3”的段码为。
答:7DH,B0H5. 已知8段共阳极LED数码显示器要显示某字符的段码为A1H(a段为最低位),此时显示器显示的字符为。
答:d6. LED数码管静态显示方式的优点是:显示闪烁,亮度,比较容易,但是占用的线较多。
答:无,较高,软件控制,I/O口7. 当显示的LED数码管位数较多时,一般采用显示方式,这样可以降低,减少的数目。
答:动态,成本,I/O端口8. LCD 1602是型液晶显示模块,在其显示字符时,只需将待显示字符的由单片机写入LCD 1602的显示数据RAM(DDRAM),内部控制电路就可将字符在LCD上显示出来。
答:字符,ASCII码9. LCD 1602显示模块内除有字节的 RAM外,还有字节的自定义,用户可自行定义个5×7点阵字符。
答:80,显示数据,64,字符RAM,810.当按键数目少于8个时,应采用式键盘。
当按键数目为64个时,应采用式键盘。
答:独立,矩阵11.使用并行接口方式连接键盘,对独立式键盘而言,8根I/O口线可以接个按键,而对矩阵式键盘而言,8根I/O口线最多可以接个按键。
答:8,6412.LCD 1602显示一个字符的操作过程为:首先,然后,随后,最后。
答:读忙标志位BF,写命令,写显示字符,自动显示字符13.由于微型打印机TPμP-40A/16A是一种外设,因此单片机与微型打印机的的命令与数据传送,必须采用方式。
程兰征版物理化学习题解答7
第七章 电池电动势及极化现象习题解答1、已知0.100mol/kgBaCl 2溶液中,γ±=0.501,求BaCl 2的活度。
解:m ±=34m B =0.1587mol/kg ,a ±=34γ±·m B =0.07953a B = 4(γ±·m B )3=5.03×10-42、在25℃,Ag(s)+0.5Hg 2Cl 2(s)=AgCl(s)+Hg(l)的ΔHθ(298K)=7950J/mol ,又知Ag 、AgCl 、Hg 2Cl 2、Hg 的标准摩尔熵分别为:42.7、96.1、196.0、77.4J ·K -1·mol -1。
求下列电池的标准电动势及其温度系数:Ag(s),AgCl(s)|KCl(aq)|Hg 2Cl 2(s),Hg(l)解:ΔSθ(298K)=96.1+77.4-42.7-0.5×196.0=32.8(J ·K -1·mol -1)ΔG θ(298K)=7950-298×32.8=-1824.4(J/mol ) E θ= -1824.4/1×(-96500)=0.01891(V)p )(TE∂∂=32.8/1×(96500)=3.4×10-4(V/K)3、查标准电极电势表(表7-1),计算下列电池的电动势(25℃)。
(1)Ag,AgBr|Br -(a =0.10)||Cl -(a =0.010)|AgCl,Ag (2)Pt,H 2(p θ)|HCl(a ±=0.10)|Cl 2(p =5066Pa),Pt(3)Pt,H 2(p θ)|HCl(a ±=0.10)|Hg 2Cl 2,Hg (4)K-Hg(a =0.010)|KOH(a ±=0.50)|HgO,Hg (5)Pb,PbSO 4|CdSO 4(0.20mol/kg,γ±=0.11)||CdSO 4(0.020mol/kg, γ±=0.32)|PbSO 4,Pb(6)Zn|Zn 2+(a =0.01)||Fe 2+(a =0.001),Fe 3+(a =0.10)|Pt 解:(1)AgCl+Br - =AgBr+Cl -E =0.2223-0.0713-10.0010.0lg 10592.0=0.2102V(2)0.5 H 2+ 0.5Cl 2=HClE =1.3583-0.0-0.5225)(5066/101310.0lg 10592.0=1.4382V(注意:a = a ±2)书上答案不对(3)0.5H 2+ 0.5Hg 2Cl 2=Hg+HClE =0.2799-0.0-110.0lg 10592.02=0.3983V书上答案不对(4)K+0.5HgO+0.5H 2O=Hg+KOH E =0.0986-(-2.924)-010.050.0lg 10592.02=2.9398V[注意:Eθ(HgO/Hg)=0.0986V] 书上答案不对(5)SO 42-(0.20mol/kg, γ±=0.11) =SO 42-(0.020mol/kg, γ±=0.32)近似:a +=a -= a ±=m ±γ±E =-0.1120.00.32020.0lg 20592.0⨯⨯=0.01587V书上答案不对(6)Zn+2Fe 3+=Zn 2++2Fe 2+E =0.770-(-0.7628)-2210.00.01001.0lg 20592.0⨯=1.7104V4、电池Pb,PbCl 2|KCl(aq)|AgCl,Ag 在25℃、p θ下的E θ=0.490V (1)写出电极反应和电池反应;(2)求电池反应的θm r S ∆、θm r G ∆、θm r H ∆,已知p )(TE ∂∂=-1.80×10-4V ·K -1解:正极:2AgCl+2e=2Ag+2Cl - ;负极:Pb-2e+2Cl -=PbCl 2电池反应:Pb+2AgCl=PbCl 2+2Agθm r G ∆=-2×96500×0.490=-94570(J/mol) θm r S ∆=2×96500×(-1.80×10-4)=-34.74(J ·K -1·mol -1)θm r H ∆=-94570+298×(-34.74)=-104922.5(J/mol)5、试验测出具有下列电池反应的可逆电池,其电动势与温度的关系式为:Cd(s)+Hg 22+=Cd 2++2Hg(l)E t =[0.6708+1.02×10-4(t/℃-25)-2.4×10-6(t/℃-25)2]V求该反应在40℃时的θm r H ∆、θm r G ∆、θm r S ∆。
算法与程序实践习题解答7(枚举)
《算法与程序实践》习题解答7——枚举枚举是基于已有的知识进行答案猜测的一种问题求解策略。
在求解一个问题时,通常先建立一个数学模型,包括一组变量,以及这些变量需要满足的条件。
问题求解的目标就是确定这些变量的值。
根据问题的描述和相关的知识,能为这些变量分别确定一个大概的取值范围。
在这个范围内对变量依次取值,判断所取的值是否满足数学模型中的条件,直到找到(全部)符合条件的值为止。
这种解决问题的方法称作“枚举”。
例如“求小于N的最大素数”。
其数学模型是:一个整型变量n,满足:(1)n不能够被[2,n)中的任意一个素数整除;(2)n与N之间没有素数。
利用已有的知识,能确定n 的大概取值范围{2}{2*i+1|1<=i,2*i+1<N}。
在这个范围内从小到大依次取值,如果n不能够被[2,n)中的任意一个素数整除,则满足条件(1)。
在这个范围内找到的最后一个素数也一定满足条件(2),即为问题的解。
枚举是用计算机求解问题最常用的方法之一,常用来解决那些通过公式推导、规则演绎的方法不能解决的问题。
而且,枚举也是现代科学研究和工程计算的重要手段,因为科学研究是在发现问题的规律之前解决问题,然后再寻找不同问题之间的共同规律。
在采用枚举的方法进行问题求解时,要注意3个方面的问题。
●建立简洁的数学模型。
数学模型中变量的数量要尽量少,它们之间相互独立。
这样问题解的搜索空间的维度就小。
反应到程序代码中,循环嵌套的层次少。
模型中的每个条件要反应问题的本质特征。
“求小于N 的最大素数”中的条件(1)是“n不能够被[2,n)中的任意一个素数整除”,而不是“n不能够被[2,n)中的任意一个整数整除”。
这个条件极大的降低了判断n是否是素数的计算开销。
●减小搜索的空间。
利用已有的知识缩小数学模型中各个变量的取值范围,避免不必要的计算。
反应到程序代码中,循环体被执行的次数就少。
除2 之外的其它素数都是奇数,因此“小于N 的最大素数”一定在集合{2,2*i+1|1<=i,2*i+1<N}中。
模电课后(康华光版)习题答案7
第七章部分习题解答7.1.1在图题7.1.1所示的各电路中,哪些元件组成了级间反馈通路?它们所引入的反馈是正反馈还是负反馈?是直流反馈还是交流反馈?(设各电路中电容的容抗对交流信号均可忽略)解:图题7.1.1a中,由电阻R2、R1组成反馈通路,引入负反馈,交、直流反馈均有;b图中,由R e1引入负反馈,交、直流反馈均有,由R f1、R f2引入直流负反馈;c图中,由R f、R e2引入负反馈,交、直流反馈均有;d图中,由R2、R1引入负反馈,交、直流反馈均有;e 图中,由A2、R3引入负反馈,交、直流反馈均有;f图中,由R6引入负反馈,交、直流反馈均有。
图题7.1.17.2.2 试指出图题7.1.5a、b所示电路能否实现规定的功能,若不能,应如何改正?解:图题7.1.5a电路不能实现规定的功能,因引入了正反馈。
应将运放的同相端和反相端位置互换。
图b电路也不能实现规定的功能。
应将R与R L位置互换。
图题7.1.57.2.4 由集成运放A 及BJT T 1、T 2组成的放大电路如图题7.1.7所示,试分别按下列要求将信号源v s 、电阻R f 正确接入该电路。
(1) 引入电压串联负反馈; (2) 引入电压并联负反馈; (3) 引入电流串联负反馈; (4) 引入电流并联负反馈。
图题7.1.7解: (1)a-c 、b-d 、h-i 、j-f(2)a-d 、b-c 、h-I 、j-f (3)a-d 、b-c 、g-i 、j-e (4)a-c 、b-d 、g-i 、j-e7.4.1 一放大电路的开环电压增益为A VO =104,当它接成负反馈放大电路时,其闭环电压增益为A VF =50,若A VO 变化10%,问A VF 变化多少?解: 因为200501014===+VF VO V VO A A F A所以,当A VO 变化10%时,A VF 变化%05.0%102001=⨯=VF VF A dA7.4.5 电路如图题7.3.10所示。
工程力学习题答案7 廖明成
第七章 杆类构件的应力分析与强度计算习 题7.1 图示阶梯形圆截面杆AC ,承受轴向载荷1200 kNF =与2100 kN F =, AB 段的直径mm 401=d 。
如欲使BC 与AB 段的正应力相同,试求BC 段的直径。
题7.1图解:如图所示:物体仅受轴力的作用,在有两个作用力的情况下经分析受力情况有:AB 段受力:1NAB F F = BC 段受力:12NBC F F F =+AB 段正应力:1221440.04NAB NAB AB AB F F F A d σππ⨯===⨯ BC 段正应力:()12222244NBC NBC BCBC F F F F A d d σππ+⨯===⨯ 而BC 与AB 段的正应力相同 即,BC AB σσ= 解出:249d mm ==7.2 图示轴向受拉等截面杆,横截面面积2500 mm A =,载荷50 kN F =。
试求图示斜截面()o30=α m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
mm题7.2图解:拉杆横截面上的正应力605000010050010N F F Pa MPa A A σ︒-====⨯ 应用斜截面上的正应力和剪应力公式:2300cos σσα︒︒= 030sin 22στα︒︒=有图示斜截面m-m 上的正应力与切应力为:3075MPa σ︒= 3043.3MPa τ︒=当0=α时,正应力达到最大,其值为max 0100MPa σσ︒== 即:拉压杆的最大正应力发生在横截面上,其值为100MPa 。
当45=α时,切应力最大,其值为0max 502MPa στ︒==即拉压杆的最大切应力发生在与杆轴成45的斜截面上,其值为50MPa 。
7.3图示结构中AC 为钢杆,横截面面积21200 mm A =,许用应力[]1160 Mpa σ=;BC 为铜杆,横截面面积22300 mmA =,许用应力[]2100 Mpa σ=。
《微机原理与接口技术》习题解答7
《微机原理与接口技术》习题解答习题77.1 什么是中断?常见的中断源有哪几类?CPU响应中断的条件是什么?【解答】中断是指CPU在正常执行程序时,由于内部/外部时间或程序的预先安排引起CPU暂时终止执行现行程序,转而去执行请求CPU为其服务的服务程序,待该服务程序执行完毕,又能自动返回到被中断的程序继续执行的过程。
常见的中断源有:一般的输入/输出设备请求中断;实时时钟请求中断;故障源;数据通道中断和软件中断。
CPU响应中断的条件:若为非屏蔽中断请求,则CPU执行完现行指令后,就立即响应中断。
CPU若要响应可屏蔽中断请求,必须满足以下三个条件:①无总线请求;②CPU 允许中断;③CPU执行完现行指令。
7.2 简述微机系统的中断处理过程。
【解答】(1)中断请求:外设需要进行中断处理时,向CPU提出中断请求。
(2)中断响应:CPU执行完现行指令后,就立即响应非屏蔽中断请求。
可屏蔽中断请求,CPU若要响应必须满足三个条件。
(3)中断处理:保护现场、开中断、中断服务。
(4)中断返回:CPU执行IRET中断返回指令时,自动把断点地址从堆栈中弹出到CS 和IP中,原来的标志寄存器内容弹回Flags,恢复到原来的断点继续执行程序。
7.3 软件中断和硬件中断有何特点?两者的主要区别是什么?【解答】硬件中断由外部硬件产生,是由CPU外部中断请求信号触发的一种中断,分为非屏蔽中断NMI和可屏蔽中断INTR。
软件中断是CPU根据某条指令或者对标志寄存器的某个标志位的设置而产生的,也称为内部中断。
通常有除法出错中断、INTO溢出中断、INT n中断、断点中断和单步中断等。
两者的主要区别:硬件中断由外部硬件产生,而软件中断与外部电路无关。
7.4 中断优先级的排队有哪些方法?采用软件优先级排队和硬件优先级排队各有什么特点?【解答】软件优先级排队:各中断源的优先权由软件安排。
优点是电路比较简单,可以直接修改软件查询顺序来修改中断优先权,不必更改硬件。
数据库系统概论第五版第七章习题解答和解析
第七章习题解答和解析1. 试述数据库设计过程。
答:这里只概要列出数据库设计过程的六个阶段:(1) 需求分析;(2) 概念结构设计;(3) 逻辑结构设计;(4) 数据库物理设计;(5) 数据库实施;(6) 数据库运行和维护。
这是一个完整的实际数据库及其应用系统的设计过程。
不仅包括设计数据库本身,还包括数据库的实施、运行和维护。
设计一个完善的数据库应用系统往往是上述六个阶段的不断反复。
解析:希望读者能够认真阅读《概论》7.1 的内容,了解并掌握数据库设计过程。
2.试述数据库设计过程中结构设计部分形成的数据库模式。
答:数据库结构设计的不同阶段形成数据库的各级模式,即:(1) 在概念设计阶段形成独立于机器特点,独立于各个 DB MS 产品的概念模式,在本篇中就是 E-R 图;(2) 在逻辑设计阶段将 E-R 图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式,然后在基本表的基础上再建立必要的视图(View),形成数据的外模式;(3) 在物理设计阶段,根据 DB MS 特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式。
读者可以参考《概论》上图7.4。
图中概念模式是面向用户和设计人员的,属于概念模型的层次;逻辑模式、外模式、内模式是 DBMS 支持的模式,属于数据模型的层次,可以在 DBMS 中加以描述和存储。
3.需求分析阶段的设计目标是什么 ? 调查的内容是什么 ?答需求分析阶段的设计目标是通过详细调查现实世界要处理的对象(组织、部门、企业等),充分了解原系统(手工系统或计算机系统)工作概况,明确用户的各种需求,然后在此基础上确定新系统的功能。
调查的内容是“数据”和“处理”,即获得用户对数据库的如下要求:(1) 信息要求,指用户需要从数据库中获得信息的内容与性质,由信息要求可以导出数据要求,即在数据库中需要存储哪些数据;(2) 处理要求,指用户要完成什么处理功能,对处理的响应时间有什么要求,处理方式是批处理还是联机处理;(3) 安全性与完整性要求。
单片机原理及接口技术(C51编程)(第2版)-习题答案 - 第7章习题解答
第7章思考题及习题7参考答案一、填空1.如果采用晶振的频率为3MHz,定时器/计数器T x(x=0,1)工作在方式0、1、2下,其方式0的最大定时时间为,方式1的最大定时时间为,方式2的最大定时时间为。
答:32.768ms,262.144ms,1024µs2.定时器/计数器用作计数器模式时,外部输入的计数脉冲的最高频率为系统时钟频率的。
答:1/243.定时器/计数器用作定时器模式时,其计数脉冲由提供,定时时间与有关。
答:系统时钟信号12分频后,定时器初值4.定时器/计数器T1测量某正单脉冲的宽度,采用方式可得到最大量程?若时钟频率为6MHz,求允许测量的最大脉冲宽度为。
答:方式1定时,131.072ms。
5. 定时器T2 有3种工作方式:、和,可通过对寄存器中的相关位进行软件设置来选择。
答:捕捉,重新装载(增计数或减计数),波特率发生器,T2CON6. AT89S52单片机的晶振为6MHz,若利用定时器T1的方式1定时2ms,则(TH1)= ,(TL1)= 。
答:FCH,18H。
二、单选1.定时器T0工作在方式3时,定时器T1有种工作方式。
A.1种B.2种 C.3种D.4种答:C2. 定时器T0、T1工作于方式1时,其计数器为位。
A.8位B.16位C.14位D.13位答:B3. 定时器T0、T1的GATE x=1时,其计数器是否计数的条件。
A. 仅取决于TR x状态B. 仅取决于GATE位状态C. 是由TR x和INT x两个条件来共同控制D. 仅取决于INT x的状态答:C4. 定时器T2工作在自动重装载方式时,其计数器为位。
A.8位B. 13位C.14位D. 16位答:D5. 要想测量INT0引脚上的正单脉冲的宽度,特殊功能寄存器TMOD的内容应为。
A.87HB. 09HC.80HD. 00H答:B三、判断对错1.下列关于T0、T1的哪些说法是正确的。
A.特殊功能寄存器SCON,与定时器/计数器的控制无关。
《固体物理学》房晓勇主编教材-习题参考解答07第七章 能带结构分析
()
()
间的运动轨迹是一条垂直于 B 德平面和等能面所截成的曲线,显然电子从曲线 k1 点运动曲线 k2 点所需 的时间为
J G
t2 − t1 =
∫
t2
dt =
t1
∫
k2
k1
dk dk / dt
其中 dk 是 k 空间曲线的弧元
3
第七章 能带结构分析
G G J G JJ G J G dk 由= = −ev × B = −ev⊥ × B dt JJ G J G v⊥ 为垂直于 B 德速度分量,可得
N = 2×
S2
( 2π )
2
2 × π kF
N ⎞ ⎛ k F = ⎜ 2π 2 ⎟ S ⎠ ⎝
1/ 2
= ( 2nπ )
1/ 2
7.3 试证明,当 n / na = 1.36 时,费米球和面心立方晶格的第一布里渊区相切,其中 na 是原子数密度。 解:参考陈金富 13.6 面心立方晶格原子数密度 nα = 界的最近距离 km = 4
5
第七章 能带结构分析 同理可用 ω =
2π eB =2
dA ( E ) dE
7.7 考虑两个能带
E (k ) = ±
=2k 2Δ + Δ2 ∗ m
式中Δ为一常数。设所有取正号的正能态都是空的,所有取负号的负能态都是填满的。 (1)在 t=0 时刻加上一个电子于正能带上的 ( k0 , 0, 0 ) ,并施加一个电场 E = Ez k ′ ,求 t 时刻的电流 (2)当 t → ∞ 时,上述情况如何? (3)在相同条件下,如果负能带出现一个空穴,求其电流。 解:参考陈金富 13.16 (1)正能带上只有一个电子,它对电流的贡献,根据《固体物理学》式 7-20
水产生物统计习题7答案
水产生物统计习题7答案水产生物统计习题7答案统计学是一门研究数据收集、分析和解释的学科,它在各个领域中都有广泛的应用。
水产生物统计学是统计学在水产生物学领域的应用,通过对水产生物数据的统计分析,可以帮助我们了解和解释水产生物的特征和变化规律。
在水产生物统计学的学习中,习题是非常重要的一部分。
通过解答习题,我们可以巩固和应用所学的知识,提高解决实际问题的能力。
下面是水产生物统计学习题7的答案,希望对大家的学习有所帮助。
题目1:某渔场对一种鱼类进行了调查,得到了100个样本的体长数据,如下所示:15.2 14.8 17.5 16.3 15.9 16.7 15.6 15.4 16.1 15.8...17.2 16.5 15.7 16.8 15.3 16.0 15.9 15.6 16.2 15.8要求:计算这批鱼类的平均体长和标准差。
解答:首先,计算平均体长。
将100个样本的体长相加,然后除以100,即可得到平均体长。
标准差的计算需要进行多个步骤,首先计算每个样本与平均体长的差值,然后将这些差值平方,再将平方值相加并除以样本数,最后将结果开方,即可得到标准差。
题目2:某湖泊中的鱼类数量随时间的变化情况如下表所示:时间(年)鱼类数量(万尾)2000 102001 122002 152003 182004 222005 25要求:绘制该湖泊中鱼类数量随时间变化的折线图,并根据图形分析鱼类数量的变化趋势。
解答:为了绘制折线图,我们需要将时间和鱼类数量的数据进行配对。
然后,选择一个适当的比例,将时间和鱼类数量的数据转换为坐标点。
最后,通过连接这些坐标点,即可得到折线图。
通过观察折线图,我们可以看到鱼类数量随时间的增加而增加,呈现出逐年递增的趋势。
题目3:某渔场对鱼类的重量进行了调查,得到了100个样本的重量数据,如下所示:0.3 0.5 0.4 0.6 0.2 0.8 0.7 0.4 0.9 0.5...0.6 0.5 0.4 0.7 0.3 0.5 0.6 0.8 0.4 0.5要求:计算这批鱼类的重量的中位数和四分位数。
水力学教材习题解答习题解答7
第 七 章 习 题 解 答7-1 梯形断面壤土渠道,已知通过流量Q = 10.5 m 3/s ,底宽b = 8.9 m ,边坡系数m = 1.5,正常水深h 0= 1.25 m ,糙率 n = 0.025,求底坡i 和流速v 。
解: A = 1.25×(8.9+1.5×1.25) = 13.47 m 2,χ= 8.9+2×1.25×25.11+= 13.41 m , R = A /χ=1.005 m ,C = 1.0051/6/0.025 = 40.03 m 1/2·s , K = ACR 1/2=540.57 m/3si = (Q /K )2 = 0.000377,v = Q /A = 0.78 m/s7-2 有一灌溉干渠,断面为梯形,底宽b = 2.2 m ,边坡系数m = 1.5,实测得流量Q = 8.11 m 3/s 时,均匀流水深h 0 = 2 m ,在1800m 长的顺直渠段水面落差Δh = 0.5 m ,求渠道的糙率n 。
解:i = J = J P = △h /L =1/3600,A = 2×(2.2+1.5×2 ) = 10.4 m 2, χ= 2.2+2×2×25.11+= 9.41 m , R = A /χ= 1.105 mn = AR 2/3i 1/2/Q = 0.02287-3 一石渠的边坡系数m = 0.1,糙率n = 0.020,底宽b = 4.3 m ,水深h = 2.75 m ,底坡i = 1/2000,求流量和流速。
解:A = 2.75×(4.3+0.1×2.75 ) = 12.58 m 2,χ= 4.3+2×2.75×21.01+= 9.83 m R = A /χ= 1.28 m ,v = n i R 32=1.318 m/s , Q = vA =16.58 m 3/s7-4 直径为d 的圆形管道中的明槽均匀流动,试根据式(7-2-5)导出Q/Q 1~h/d 的关系式(Q 1为h/d = 1时的流量),并论证当充满度h/d 为多大时Q/Q 1达到最大值。
复习题七答案及详细分析
字符串1.以下能正确定义字符串的语句是A char str[]={'\064'};B char str="\x43";C char str='';D char str[]="\0";1 D解析:在C语言中,字符串常量是由双引号括起来的,由若干个字符所组成的序列。
所以A选项中的字符是由一对单引号括起来,C选项中只有一个双引号,皆错。
对于B选项,定义了一个字符变量,却给它赋了字符串常量,错误。
若该改为char str[] =”\x43”,则也正确。
2.以下语句中存在语法错误的是A char ss[6][20];ss[1]="right?";B char ss[][20]={ "right?"};C char *ss[6]; ss[1]="right?";D char *ss[]={" right?"};2 A解析:A选项中ss[1]可以看作是一个地址常量,其值不能改变,所以不可以对其赋值。
但是在定义二维数组的时候,对其进行初始化是允许的,如选项B。
选项C和D定义的是字符指针变量,可以对其进行赋值。
3.设有以下定义和语句:char str[20]="Program",*p;p=str;则以下叙述中正确的是A *p与str[0]中的值相等。
B str与p的类型完全相同。
C str数组长度和p所指向的字符串长度相等。
D 数组str中存放的内容和指针变量p中存放的内容相同。
3 A解析:Str是地址常量,P是指针变量,两者类型不一致,选项B错误。
Str数组的长度是20,而P所指的字符串遇到’\0’就结束,本题中其长度应该为7,选项C错误。
同理,既然Str 数组的长度与P所指字符串长度不同,所以存放的内容肯定不同,选项D错误。
4.有以下程序运行后的输出结果是main(){ char p[]={ 'a','b','c' },q[]="abc";printf("%d %d\n",sizeof(p),sizeof(q));}A 4 4B 3 3C 3 4D 4 34 C解析:对于数组P,只有三个元素,分别是’a’,’b’,’c’,所以sizeof(P)的输出结果应该是3 ,对于数组q,存储了四个元素,分别是’a’,’b’,’c以及’\0’。
基础化学第二版李保山沉淀溶解平衡习题解答
7 沉淀-溶解平衡习题 (p180-182)参考解答1.解答:(1) 1.4×10-16; (2) 1.4×10-112.解答:(1) 8.2×10-5 mol/L ; (2) 2.0×10-8 mol/L3.解答:1.0×10-10 mol/L4.解答:(1) 1.2×10-3 mol/L ; (2) 1.4×10-4 mol/L ; (3)7.0×10-9 mol/L5.解答:(1) 3.5×10-3 mol/L ; (2) 0.051 mol/L ; (3) 4.3×10-7mol/L6.解答:6.3×10-11 mol/L7.解答:5.5×10-4 mol/L8.解答:5.1×10-4mg9.解答:1.6×10-5 mol/L10.解答:1.1×10-611.解答:0.067 mol/L12.解答: [Ba 2+]=6.3×10-3mol ⋅L -1 [F -]=2s=1.3×10-2 mol ⋅L -113.解答: J =[Mg 2+][OH -]2= 3.2×10-15<K θsp =1.8×10-11. 无Mg(OH)2沉淀生成14.解答:溶解0.20molMnS 需1.0L HAc 的浓度为0.42mol ⋅L -115.解答: s= 4.8×10-3 mol ⋅L -116.解答: [Ag +]=1.8×10-10 mol ⋅L -1, [Cl -]=0.020 mol ⋅L -1[Ba 2+]=0.010 mol ⋅L -1, [SO 42-]=1.1×10-8 mol ⋅L -117.解答:(1) 4.4×10-3 mol ⋅L -1(2) K θsp (SrCO 3)= 1.9×10-5(3) CO 2不能完全溢出回收,所以测定值小于实际值。
大学物理简明教程习题7详解
习题77.1 选择题(1) 下面说法正确的是: [ ](A )若高斯面上的电场强度处处为零,则该面内必无电荷; (B )若高斯面内无电荷,则高斯面上的电场强度处处为零;(C )若高斯面上的电场强度处处不为零,则高斯面内必定有电荷; (D )若高斯面内有净电荷,则通过高斯面的电通量必不为零; (E )高斯定理仅适用于具有高度对称性的电场。
[答案:D](2)点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如题7.1(2)图所示,则引入前后, [ ](A) 曲面S 的电场强度通量不变,曲面上各点场强不变.(B) 曲面S 的电场强度通量变化,曲面上各点场强不变.(C) 曲面S 的电场强度通量变化,曲面上各点场强变化.(D) 曲面S 的电场强度通量不变,曲面上各点场强变化. 题7.1(2)图[答案D ](3)在电场中的导体内部的 [ ](A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。
[答案:C](4)两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ), 所带电荷分别为Q a 和Q b .设某点与球心相距r ,当R a <r <R b 时,该点的电场强度的大小为: [ ] (A)2014a bQ Q r ε+⋅π. (B)2014a bQ Q r ε-⋅π.(C)22014a b b Q Q r R ε⎛⎫⋅+ ⎪⎝⎭π. (D)2014aQ rε⋅π.[答案 D](5)如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的 [ ] (A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [答案 C]7.2 填空题(1)在静电场中,电势不变的区域,场强必定为 。
[答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为 ,若将点电荷由中心向外移动至无限远,则总的电通量将 。
习题7图及其答案
(a) 图 6-12
(b)
5. 已知图 6-13 所示的一个网,按照 Prim 方法,从顶点 1 出发,求该网的最小生成树 的产生过程。 6. 已知图 6-13 所示的一个网,按照 Kruskal 方法,求该网的最小生成树的产生过程。 V1 65 50 V5 60 52 V4 V3 42 30 70 V6
习题 6 参考答案
一、单项选择题 1. A 2. D 3. D 4. C 5. B 6. B 7. B 8. A 9. C 10. D 11. C 12. D 13. A 14. B 15. B 16. C 17. A 18. A 19. B 20. D 21. A 22. C 23. B 24. A 二、填空题 1. 2 3. 2,4 5. 邻接矩阵,邻接表 7. k+1 9. n,n 11. 出边,入边 2 13.O(n ) ,O(n+e) 15. acfebd,acefbd (答案不唯一) 17. n,n-1 19. 唯一 三、应用题 1. 深度优先搜索序列:0,1,2,8,3,4,5,6,7,9 广度优先搜索序列:0,1,4,2,7,3,8,6,5,9 2. 深度优先搜索序列:0,4,7,5,8,3,6,1,2 广度优先搜索序列:0,4,3,1,7,5,6,2,8 3. 深度优先搜索序列:0,2,3,5,6,1,4 广度优先搜索序列:0,2,3,5,6,1,4 4. 深度优先搜索序列:0,3,6,4,1,5,2 广度优先搜索序列:0,3,2,6,5,4,1 5. 过程如图 6-16 所示 50 V2 40 V1 65 50 60 52 V4 V3 42 30 V5 45 V7 V2 V1 V4 V3 V7 50 V2 V1 V4 V3 V7 2. n(n-1)/2,n(n-1) 4. n-1 6. 1 8. 3 10. 2e,e 12. O(n) ,O(e/n) 14. acdeb,acedb (答案不唯一) 16. 深度,广度 18. 唯一 20. aebdcf(答案不唯一)
高等数学课后答案 第七章 习题详细解答
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题7及其解答7.1 选择题1.在下列运算符中,不能重载的是( b )。
(a) ! (b) sizeof (c) new (d) delete2.下列关于运算符重载的描述中,( d )是正确的。
(a) 可以改变参与运算的操作数个数(b) 可以改变运算符原来的优先级(c) 可以改变运算符原来的结合性(d) 不能改变原运算符的语义3.下列函数中,不能重载运算符的函数是( b )。
(a) 成员函数(b) 构造函数(c) 普通函数 (d) 友员函数4.要求用成员函数重载的运算符是( a )。
(a) = (b) == (c) <= (d) ++5.要求用友员函数重载的运算符是( c )。
(a) = (b) [] (c) << (d) ()6.下面关于类型转换的描述中,错误的是( a )。
(a) 任何形式的构造函数都可以实现数据类型转换。
(b) 带非默认参数的构造函数可以把基本类型数据转换成类类型对象。
(c) 类型转换函数可以把类类型对象转换为其他指定类型对象。
(d) 类型转换函数只能定义为一个类的成员函数,不能定义为类的友员函数。
7.2 阅读下列程序,写出执行结果1.#include <iostream>using namespace std;class T{ public :T() { a = 0; b = 0; c = 0; }T( int i, int j, int k ){ a = i; b =j; c = k; }void get( int &i, int &j, int &k ){ i = a; j = b; k = c; }T operator* ( T obj );private:int a , b , c;};T T::operator* ( T obj ){ T tempobj;tempobj.a = a * obj.a;tempobj.b = b * obj.b;tempobj.c = c * obj.c;return tempobj;}int main(){ T obj1( 1,2,3 ), obj2( 5,5,5 ), obj3;int a , b , c;obj3 = obj1 * obj2;obj3.get( a, b, c );cout<<"( obj1*obj2 ): "<<"a = "<<a<<'\t'<<"b = "<<b<<'\t'<<"c = "<<c<<'\t'<<endl;(obj2*obj3).get( a, b, c );cout<<"( obj2*obj3 ): "<<"a = "<<a<<'\t'<<"b = "<<b<<'\t'<<"c = "<<c<<'\t'<<endl;}【解答】( obj1 * obj2 ): a = 5 b = 10 c = 15( obj2 * obj3 ): a = 25 b = 50 c = 752.#include <iostream>using namespace std;class Vector{ public:Vector(){ }Vector(int i,int j){ x = i ; y = j ;}friend Vector operator+ ( Vector v1, Vector v2 ){ Vector tempVector ;tempVector.x = v1.x + v2.x ;tempVector.y = v1.y + v2.y ;return tempVector ;}void display(){ cout << "( " << x << ", " << y << ") "<< endl ; }private:int x , y ;};int main(){ Vector v1( 1, 2 ), v2( 3, 4 ), v3 ;cout << "v1 = " ;v1.display() ;cout << "v2 = " ;v2.display() ;v3 = v1 + v2 ;cout << "v3 = v1 + v2 = " ;v3.display() ;}【解答】v1 = ( 1, 2 )v2 = ( 3, 4 )v3 = v1 + v2 = ( 4, 6 )7.3 思考题1.一个运算符重载函数被定义为成员函数或友员函数,从定义方式、解释方式和调用方式上有何区别?可能会出现什么问题?请用一个实例说明之。
【解答】以二元运算符为例。
可能会出现的问题:(1)运算符的左右操作数不同,须用友员函数重载;(2)当运算符的操作需要修改类对象状态时,应用成员函数重载。
(3)友员函数不能重载运算符 = () [] ->必须要用友员函数重载的运算符 >> <<程序略。
2.类类型对象之间,类类型和基本类型对象之间用什么函数进行类型转换?归纳进行类型转换的构造函数和类型转换函数的定义形式、调用形式和调用时机。
【解答】构造函数可以把基本类型、类类型数据转换成类类型数据;类类型转换函数可以在类类型和基本数据类型之间做数据转换。
7.4 编程题1.分别使用成员函数和友员函数编写程序重载运算符“+”,使该运算符能实现两个字符串的连接。
【解答】(1)使用成员函数#include <iostream>#include<cstring>using namespace std;class s{ public:s(){ *str = '\0'; }s( char *pstr ){ strcpy( str,pstr );}char *gets(){ return str;}s operator+( s obj );private:char str[10];};s s::operator+( s obj ){ strcat( str,obj.str );return str; //或return *this}int main(){ s obj1( "Visual" ),obj2( " C++" ),obj3;obj3 = obj1 + obj2;cout << obj3.gets() << endl;}(2)使用友员函数#include <iostream>#include<cstring>using namespace std;class s{ public:s(){ *str= '\0'; }s( char *pstr ){ strcpy( str,pstr );}char *gets(){ return str;}friend s operator+( s obj1,s obj2 );private:char str[100];};s operator+( s obj1,s obj2 ){ s tempobj;strcat( tempobj.str,obj1.str );strcat( tempobj.str,obj2.str );return tempobj;}int main(){ s obj1( "Visual" ),obj2( " C++" ),obj3;obj3 = obj1 + obj2;cout << obj3.gets() << endl;}2.定义一个整数计算类Integer,实现短整数 +,-,*,/ 基本算术运算。
要求可以进行数据范围检查(-32768~32767,或自行设定),数据溢出时显示错误信息并中断程序运行。
【解答】#include <iostream>using namespace std;class Integer{ private:short a;public:Integer (short n=0){ a=n;}Integer operator +(Integer);Integer operator -(Integer);Integer operator *(Integer);Integer operator /(Integer);Integer operator =(Integer);void display(){ cout<<a<<endl; }};Integer Integer::operator+(Integer x){ Integer temp;if(a+x.a<-32768||a+x.a>32767){ cout<<"Data overflow!"<<endl; abort(); }temp.a=a+x.a;return temp;}Integer Integer::operator-(Integer x){ Integer temp;if(a-x.a<-32768||a-x.a>32767){ cout<<"Data overflow!"<<endl; abort(); }temp.a=a-x.a;return temp;}Integer Integer::operator*(Integer x){ Integer temp;if(a*x.a<-32768||a*x.a>32767) {cout<<"Data overflow!"<<endl; abort();}temp.a=a*x.a;return temp;}Integer Integer::operator/(Integer x){ Integer temp;if(a/x.a<-32768||a/x.a>32767){ cout<<"Data overflow!"<<endl; abort(); }temp.a=a/x.a;return temp;}Integer Integer::operator=(Integer x){ a=x.a;return *this;}int main(){ Integer A(90),B(30),C;cout<<"A=";A.display();cout<<"B=";B.display();C=A+B;cout<<"C=A+B="; C.display();C=A-B;cout<<"C=A-B="; C.display();C=A*B;cout<<"C=A*B="; C.display();C=A/B;cout<<"C=A/B="; C.display();}3.定义一个实数计算类Real,实现单精度浮点数 +,-,*,/ 基本算术运算。