完整版五年级奥数 复杂平均数问题

合集下载

五年级奥数-平均数问题

五年级奥数-平均数问题

平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。

如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。

苹果和桃平均每箱37个.求一箱苹果多少个?一箱桃多少个?①1箱苹果+1箱梨+1箱桔子=42×3=126个②1箱桃+1箱梨+1箱桔子=36×3=108个③1箱苹果+1箱桃=37×2=74个.方法一:由①-②可知:1箱苹果比一箱桃多126-108=18个,再根据等式③就可以算出,一箱桃有(74-18)÷2=28个,1箱苹果有28+18=46个。

方法二:将①+②+③就有了2箱苹果、2箱梨、2箱桔子、2箱桃。

(126+108+74)÷2=308÷2=154个,就是苹果、梨、桔子、桃各一箱的重量。

减去①便得到桃的重量:154-126=28个,由③可得苹果:74-28=46个【举一反三】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?2 、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵.三个小组各植树多少棵?例2、一次数学测试,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?女生每人比全班平均分高92-91。

2=0.8分,而男生每人比全班平均分低91。

2—90.5=0.7分.全体女生高出全班平均分0.8×21=16。

8分,应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生.【举一反三】1、两组学生进行跳绳比赛,平均每人跳152下。

五年级奥数培优教程之平均数问题

五年级奥数培优教程之平均数问题

平均数问题(1)班级姓名专题解析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数【例1】:有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?【练习与思考】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?2、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。

三个小组各植树多少棵?【例2】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?【练习与思考】1、两组学生进行跳绳比赛,平均每人跳152下。

甲组有6人,平均每人跳140下,乙组平均每人跳160下。

乙组有多少人?2、有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。

这块田是多少亩?3、把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?【课后练习】:1、期中考试后,李林的语文、数学平均分是91分,语文、英语平均分是88分,数学、英语平均分是93分,李林三门功课各得多少分?2、5位同学身高由高到低从左到右排成一行,左起3位同学的平均身高是150厘米,右起3位同学的平均身高是147厘米,5位同学的平均身高是148.5厘米。

小明在中间,小明的身高是多少厘米?3、8个数从小到大排成一列,它们的平均数是32,前5个数的平均数是24,后5个数的和是210,中间两个数的平均数是多少?4、把奶糖和水果糖混在一起,成为什锦糖,平均每千克售价9.13元。

(完整版)五年级奥数平均数问题讲座及练习答案

(完整版)五年级奥数平均数问题讲座及练习答案

(完整版)五年级奥数平均数问题讲座及练习答案五年级奥数平均数问题讲座及练习答案我们研究平均数问题,首先要掌握以下基本数量关系:①总数量÷总份数=平均数②平均数×总份数=总数量③总数量÷平均数=总份数。

在总数量不变情况下“移多补少”,得到平均数是解决这类题的重要思想和解题思路,找准总数量与对应的总份数是难点。

例1、修路队修两条公路,第一条路长900米,用10天修完,第二条路的长比第一条的2倍多100米,用的时间是第一条的1.8倍,这个修路队,修完这两条公路平均每天修多少米?分析:要想求出结果,就要先求出两条路的总长(总数量),再求出修完这条公路共需要的天数(总份数)和平均数。

解: (900+900×2+100)÷(10+10×1.8)=2800÷28=100(米)答:修完这两条公路平均每天修100米。

例2. 一个水果店三种水果的单价平均是1.6元,已知香蕉比苹果贵0.2元,比柚子便宜0.5元,请你算一算每种水果的单价多少元。

分析:这是一道平均数问题逆向思考题,根据已知条件给出平均价钱是1.6元,这样就可以求出三种水果单价和的钱数,即1.6×=4.8(元),在此基础上再根据三种水果单价的数量之间的关系,运用假设思想求出问题的答案,可以用下面的线段图表示上述关系。

解:(1.6×3+0.2-0.5)÷3=4.5÷3=15(元)1.5-0.2=1.3(元) 1.5+0.5=2(元)答:香蕉单价是1.5元,苹果单价是1.3元,柚子的单价是2元。

想一想,如果假设和苹果单价一样多,该怎样列式?例3.五名裁判给一名运动员评分,去掉一个最高分和一个最低分,平均得分9.58分;如果只去掉一个最高分,均分为9.46分;如果只去掉一个最低分,均分为9.66分。

求这名运动员的最高得分和最低得分分别是多少?分析:该题实质上是已知部分数的平均数,求个别数.依题意:去掉最高分和最低分后,该运动员的总得分为:9.58×3(分);去掉最高分后,该运动员的总得分为:9.46×4(分);去掉最低分后,该运动员的总得分为:9.66×4(分);因此,该运动员的最高分为:9.66×4-9.58×3=9.1(分)例4.一辆汽车以每小时100千米的速度从甲地开往乙地,到达乙地后,又以每小时60千米的速度从乙地返回甲地,求这辆汽车往返一次的平均速度.分析:往返一次的平均速度=往返一次的总路程÷往返一次的总时间.这一数量关系是正确解答这道题的关键.由于往返一次的总路程题目没有告诉我们,我们不妨假设甲地到乙地的路程为S千米.所以: S×2÷( S÷100+S÷60) (请根据提示试着思考并解答)我也能行1.甲、乙两数的平均数是1.58,再加上丙则平均数是3.52,丙数是多少?解:根据甲、乙两数的平均数是1.58可知甲、乙两数的和是1.58×2=3.16.又根据加上丙数后三数的平均数是3.52可知三数的和是10.56。

五年级奥数题及答案:平均数问题(高等难度)

五年级奥数题及答案:平均数问题(高等难度)
五年级奥数题及答案:平均数问题(高等难度)
3×4=12个枣,因此我们得到:
5x+5=3x+15+12, 解得 x=11.
一般秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。所以,丙班有11个小孩,乙班有15个小孩,甲班有19个小孩,甲班每人分12个枣,乙班每人分15个枣,丙班每人分20个枣。一共分了12×19+15×15+20×11=673个枣。【小结】通过方程解决问题是常用的方法。

五年级奥数题:平均数问题

五年级奥数题:平均数问题

★这篇《五年级奥数题:平均数问题》,是特地为⼤家整理的,希望对⼤家有所帮助!
1.平均数问题
⽤1,2,3三张数字卡⽚,可以组成6个不同的3位数,它们的平均数是?
解答:这6个不同的三位数分别是
123,132,213,231,312,321,
它们的和是1332,
所以平均数是1332÷6=222
【⼩结】本题是排列和平均数的综合应⽤。

2.平均数问题
⽤5,6,7,8,9五张数字卡⽚,可以组成多少个不同的五位数,它们的平均数是?
解答:这些5位数共有5×4×3×2×1=120个。

这些数中,5在万位上、千位上、百位上、⼗位上、个位上依次出现24次,其他的数字类似。

这些数的和是(5+6+7+8+9)×(10000+1000+100+10+1)×24=9333240
平均数是9333240 ÷120=77777
【⼩结】计算这些数的和时可以从各个数字分别考虑。

五年级奥数平均数问题

五年级奥数平均数问题
【举一反三】
甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分数错抄成87分,因此算得的四人平均分为88分。求甲在这次考试中得了多少分?
例4、一位同学在期中测试中,除数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
例6、小芳与四名同学一起参加一次数学竞赛,那四位同学的成绩分别为78分、91分、82分、79分,小芳的成绩比五人的平均成绩高6分。求小芳的数学成绩。
【举一反三】
两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳多少下?
例7、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?
【举一反三】
小明前五次数学测验的平均成绩是88分,为了使平均成绩达到92.5分,小明要连续考多少次满分?
例5、把五个数从小到大排列,其平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?
【举一反三】
十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?
2、有两块棉地,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克,另一块地平均每亩产量是85千克。这块地是多少亩?
3、某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?
4、老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵,求有多少个同学在做花?
8、把一份书稿平均分给甲、乙去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字??

五年级奥数12_平均数问题

五年级奥数12_平均数问题

五年级奥数12_平均数问题第一讲平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。

如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。

苹果和桃平均每箱37个。

求一箱苹果多少个?一箱桃多少个?①1箱苹果+1箱梨+1箱桔子=42×3=126个②1箱桃+1箱梨+1箱桔子=36×3=108个③1箱苹果+1箱桃=37×2=74个。

方法一:由①-②可知:1箱苹果比一箱桃多126-108=18个,再根据等式③就可以算出,一箱桃有(74-18)÷2=28个,1箱苹果有28+18=46个。

方法二:将①+②+③就有了2箱苹果、2箱梨、2箱桔子、2箱桃。

(126+108+74)÷2=308÷2=154个,就是苹果、梨、桔子、桃各一箱的重量。

减去①便得到桃的重量:154-126=28个,由③可得苹果:74-28=46个【举一反三】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?2 、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。

三个小组各植树多少棵?例2、一次数学测试,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?女生每人比全班平均分高92-91.2=0.8分,而男生每人比全班平均分低91.2-90.5=0.7分。

全体女生高出全班平均分0.8×21=16.8分,应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

五年级奥数平均数问题含答案

五年级奥数平均数问题含答案

五年级奥数---平均数问题1、五年级一班的同学进行数学测试,根据前五次检测的平均成绩就是80,她想使成绩再提高一些,那她第六次考多少分才能使这六次的平均成绩达到82分?2、两组数据,第一组16个数据的与就是98,第二组的平均数就是11、两组数的平均数就是8,那么第二组有几个数据?3、一次数学测验,全班平均分就是91、2分,已知女生有21人,平均每人92分,男生平均每人90、5分,求男生有多少人?4、一位同学在期中测试中,除了数学外,其她几门功课的平均成绩就是94分,如果数学算在内,平均每门95分。

已知她数学得了100分,问这位同学一共考了多少门功课?5、把五个数从小到大排列,平均数就是38,前三个数的平均数就是27,后三个数的平均数就是48,中间的一个数就是多少?6、五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分,求五一班男生与女生分别就是多少人?7、东东参加数学测试,她第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分,那么东东第四次测验得了多少分?8、甲乙丙三人的平均年龄就是22岁,其中甲乙的平均年龄就是18岁,乙丙的平均年龄就是25岁,那么乙的年龄就是多少岁?9、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,,两组同学平均每人跳多少下?10、小华的前几次数学测验的平均成绩就是80分,这一次得了100分,正好把这几次的平均分提高到85分。

这一次就是她第几次测验?11、两地相距360千米,一艘汽艇顺水行全程需要10小时,已知水流速度为6千米/小时,求往返平均速度。

12、以2为首的连续52个自然数的平均数就是多少?13、有四个数,从第二个起,每个数都比前一个数大3,已知这四个数的平均数就是24、5,其中最大的一个数就是多少?14、把一份书稿平均分给甲乙两人去打,甲每分钟打30个字,乙每分钟打20个字。

小学五年级奥数平均数问题

小学五年级奥数平均数问题

【导语】平均数,统计学术语,是表⽰⼀组数据集中趋势的量数,是指在⼀组数据中所有数据之和再除以这组数据的个数。

它是反映数据集中趋势的⼀项指标。

以下是⽆忧考整理的《⼩学五年级奥数平均数问题》相关资料,希望帮助到您。

1.⼩学五年级奥数平均数问题 1、今年前5个⽉,⼩明每⽉平均存钱4.2元,从6⽉起他每⽉储蓄6元,那么从哪个⽉起⼩明的平均储蓄超过5元? 答案与解析: 前5个⽉共存:4.2*5=21(元) 第6个⽉共存:21+6=27平均5元要求总存款:5*6=30(元) 第7个⽉共存:21+6*2=33平均5元要求总存款:5*7=35(元) 第8个⽉共存:21+6*3=39平均5元要求总存款:5*8=40(元) 第9个⽉共存:21+6*4=45平均5元要求总存款:5*9=45(元) 所求:第10个⽉起⼩明的平均储蓄超过5元。

2、蔡琛在期末考试中,政治、语⽂、数学、英语、⽣物五科的平均分是89分.政治、数学两科的平均分是91.5分.语⽂、英语两科的平均分是84分.政治、英语两科的平均分是86分,⽽且英语⽐语⽂多10分.问蔡琛这次考试的各科成绩应是多少分? 分析解题关键是根据语⽂、英语两科平均分是84分求出两科的总分,⼜知道两科的分数差是10分,⽤和差问题的解法求出语⽂、英语各得多少分后,就可以求出其他各科成绩。

解:①英语:(84×2+10)÷2=89(分) ②语⽂:89-10=79(分) ③政治:86×2-89=83(分) ④数学:91.5×2-83=100(分) ⑤⽣物:89×5-(89+79+83+100)=94(分) 答:蔡琛这次考试英语、语⽂、政治、数学、⽣物的成绩分别是89分、79分、83分、100分、94分。

 2.⼩学五年级奥数平均数问题 1.⼀位登⼭运动员以每⼩时6千⽶的速度从⼭脚登上⼭顶,⼜以每⼩时4千⽶的速度⽴即从⼭顶按原路返回⼭脚。

(完整版)五年级奥数_复杂平均数问题

(完整版)五年级奥数_复杂平均数问题

复杂平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。

如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。

苹果和桃平均每箱37个。

求一箱苹果多少个?一箱桃多少个?①1箱苹果+1箱梨+1箱桔子=42×3=126个②1箱桃+1箱梨+1箱桔子=36×3=108个③1箱苹果+1箱桃=37×2=74个。

方法一:由①-②可知:1箱苹果比一箱桃多126-108=18个,再根据等式③就可以算出,一箱桃有(74-18)÷2=28个,1箱苹果有28+18=46个。

方法二:将①+②+③就有了2箱苹果、2箱梨、2箱桔子、2箱桃。

(126+108+74)÷2=308÷2=154个,就是苹果、梨、桔子、桃各一箱的重量。

减去①便得到桃的重量:154-126=28个,由③可得苹果:74-28=46个【举一反三】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?2 、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。

三个小组各植树多少棵?例2、一次数学测试,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?女生每人比全班平均分高92-91.2=0.8分,而男生每人比全班平均分低91.2-90.5=0.7分。

全体女生高出全班平均分0.8×21=16.8分,应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

【举一反三】1、两组学生进行跳绳比赛,平均每人跳152下。

小学五年级奥数 平均数问题

小学五年级奥数 平均数问题

平均数问题(一)[知识要点]把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?例36例93分,例16,例94分,少门功课?例5 把五个数从小到大排列,其平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?课堂练习1、一次考试,甲、乙、丙三人平均分91分。

乙、丙、丁三人平均分89分。

甲、丁二人平均分95分,问甲、丁各得多少分?2、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。

三个小组各植树多少棵?4、两组学生进行跳绳比赛,平均每人跳152下。

甲组有6人,平均每人跳14051每千克2。

被改34提高到5、老师带着几个同学在做花,老师做了21朵,同学平均每人做了35朵。

如果师生合起来算,正好平均每人做37朵,求有多少同学在做花?6、小明前五次数学测验的平均成绩是88分。

为了使平均成线达到92.5分,小时要连续考多少次满分?7、甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?8、十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?9、下图中的○内有五个数A、B、C、D、E,□内的数表示与它相连的所有○中的平均数,求C是多少?方法。

例89科平均例均43例例4 下面一串数是一个等差数列:2,5,8, (212)这串数的平均数是多少?例5 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米,剩下的步行,每小时走4千米。

王强行完全程的平均速度是每小时多少千米?例6 在暑假中,圆圆看一本故事书,第一天读83页,第二天读64页,第三天读74页,第四天读了71页,第五天读的页数比五天中平均读的页数还多12页,圆圆在第五天读了多少页?课堂练习1、甲、乙、丙、丁4人的平均年龄是84岁,已知甲与乙的平均年龄是72岁,23是104、千克,5、6分少41、求等差数列3,7,11,……,643的平均数。

五年级奥数-平均数问题(含答案)

五年级奥数-平均数问题(含答案)

五年级奥数---平均数问题1、五年级一班的同学进行数学测试,根据前五次检测的平均成绩是80,他想使成绩再提高一些,那他第六次考多少分才能使这六次的平均成绩达到82分?2、两组数据,第一组16个数据的和是98,第二组的平均数是11.两组数的平均数是8,那么第二组有几个数据?3、一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求男生有多少人?4、一位同学在期中测试中,除了数学外,其他几门功课的平均成绩是94分,如果数学算在内,平均每门95分。

已知他数学得了100分,问这位同学一共考了多少门功课?5、把五个数从小到大排列,平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间的一个数是多少?6、五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分,求五一班男生和女生分别是多少人?7、东东参加数学测试,他第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分,那么东东第四次测验得了多少分?8、甲乙丙三人的平均年龄是22岁,其中甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?9、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,,两组同学平均每人跳多少下?10、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。

这一次是他第几次测验?11、两地相距360千米,一艘汽艇顺水行全程需要10小时,已知水流速度为6千米/小时,求往返平均速度。

12、以2为首的连续52个自然数的平均数是多少?13、有四个数,从第二个起,每个数都比前一个数大3,已知这四个数的平均数是24.5,其中最大的一个数是多少?14、把一份书稿平均分给甲乙两人去打,甲每分钟打30个字,乙每分钟打20个字。

五年级奥数----平均数问题(含答案)

五年级奥数----平均数问题(含答案)

五年级奥数----平均数问题(含答案)1.在五次数学测试后,五年级一班的同学平均成绩为80.如果他想提高平均成绩到82分,那么他第六次考试需要得多少分?答案:80 + 6(x-80) = 82,解得x=86,第六次考试需要得86分。

2.两组数据的平均数为8,第一组有16个数据的和为98,第二组的平均数为11.那么第二组有几个数据?答案:设第二组有n个数据,则有(16*8 + 11n)/(16+n) = 8,解得n=4,第二组有4个数据。

3.一次数学测验,全班平均分为91.2分,女生有21人,平均每人92分,男生平均每人90.5分。

求男生有多少人?答案:设男生有x人,则有(21*92 + 90.5x)/(21+x) = 91.2,解得x=15,男生有15人。

4.一位同学在期中测试中,数学得了100分,其他几门功课的平均成绩是94分,如果数学也算在内,平均成绩是95分。

那么这位同学一共考了多少门功课?答案:设共考了x门功课,则有94(x-1)+100 = 95x,解得x=6,这位同学一共考了6门功课。

5.把五个数从小到大排列,平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间的一个数是多少?答案:设这五个数分别为a,b,c,d,e,则有(a+b+c+d+e)/5=38,(a+b+c)/3=27,(c+d+e)/3=48.解得a=12,b=21,c=36,d=51,e=60.中间的数为d=51.6.五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分。

求五一班男生和女生分别是多少人?答案:设男生有x人,女生有(60-x)人,则有94x + 91(60-x) = 92*60,解得x=40,男生有40人,女生有20人。

7.东东参加数学测试,他第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分。

那么东东第四次测验得了多少分?答案:设第四次得了x分,则有(60+70+65+x)/4 =(60+70+65)/3 + 15,解得x=85,东东第四次测验得了85分。

五年级奥数-平均数问题

五年级奥数-平均数问题

平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。

如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。

苹果和桃平均每箱37个.求一箱苹果多少个?一箱桃多少个?①1箱苹果+1箱梨+1箱桔子=42×3=126个②1箱桃+1箱梨+1箱桔子=36×3=108个③1箱苹果+1箱桃=37×2=74个.方法一:由①-②可知:1箱苹果比一箱桃多126-108=18个,再根据等式③就可以算出,一箱桃有(74-18)÷2=28个,1箱苹果有28+18=46个。

方法二:将①+②+③就有了2箱苹果、2箱梨、2箱桔子、2箱桃。

(126+108+74)÷2=308÷2=154个,就是苹果、梨、桔子、桃各一箱的重量。

减去①便得到桃的重量:154-126=28个,由③可得苹果:74-28=46个【举一反三】1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?2 、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵.三个小组各植树多少棵?例2、一次数学测试,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?女生每人比全班平均分高92-91。

2=0.8分,而男生每人比全班平均分低91。

2—90.5=0.7分.全体女生高出全班平均分0.8×21=16。

8分,应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生.【举一反三】1、两组学生进行跳绳比赛,平均每人跳152下。

五年级奥数专题第三讲 平均数(一)

五年级奥数专题第三讲 平均数(一)

五年级奥数专题第三讲平均数(一)【一】五(1)班第一小组7个同学测量身高,有两个同学的身高都是153厘米,有一个同学的身高是152厘米,身高149厘米的同学有两个,身高147厘米的也有两个,求这个小组同学的平均身高是多少?练习1、小玲四次英语测验的平均成绩是92.5分,第五次测验得100分,小玲五次英语测验的平均成绩成绩是多少?2、小明上学期共参加数学测验五次,前两次的平均分数是93分,后三次的平均分数是88分。

小明五次测试的平均分数是多少?【二】小月期末考试,语文、英语、体育三门的平均成绩是78分,数学成绩公布后,四门的平均成绩提高了5分。

小月数学考了多少分?练习1、甲、乙、丙三个数的平均成绩是76,加上第四个数丁后,它们的平均数是77,丁数是多少?2、五个同学跳绳比赛,前四个同学,平均每人跳82下,这五个同学跳的平均数是81下,第五个同学跳了多少下?【三】有4箱水果,已知苹果、梨、橘子平均每箱44个,梨、橘子、桃平均每箱38个。

苹果和桃平均每箱36个。

求一箱苹果多少个?一箱桃多少个?练习1、一次考试,A、B、C三人平均分92分,B、C、D三人平均分88分,A、D二人平均分94,问A、D各得多少分?2、甲、乙、丙、丁四人称重,乙、丙、丁三人共重122千克,甲、丙、丁三人共重124千克,丙、丁二人的平均体重是42千克,求四人的平均体重是多少千克?【四】一次数学测验,全班平均分是92分,已知女生有20人,平均每人95分,男生平均分90分,求这个班男生有多少人?练习1、两组学生进行跳绳比赛,平均每人跳150下。

甲组有5人,平均每人跳138下,乙组平均每人跳160下,乙组有多少人?2、张伯伯有两块棉田,平均每公亩产量是94.5千克。

已知一块田是6公亩,平均每公亩产量是103.5千克。

另一块田平均每公亩是76.5千克,这块田是多少公亩?【五】五个数的平均数是20,把其中一个数改为5后,这五个数的平均数是17,因此,这个改动的数原来是多少?练习1、某3个数的平均数是5,如果把其中一个数改为6,平均数就变成了7。

五年级下册奥数较复杂的平均数问题人教版

五年级下册奥数较复杂的平均数问题人教版
乙+丙+丁=65×3=195
甲+丙+丁=70×3=210
甲+丙+乙+丁 =(135+180+195+210)÷3=240
240÷4=60
答:甲、乙、丙、丁的平均数是60。
第九页,编辑于星期四:十五点 五十一分。
例4:小红、小华、小明、小军和小强五位同学参加“锦奥杯”
数学邀请赛初赛,已知他们五人平均成绩是88分,小红、小明两人的
6个数总和:27×6=162
前4个数总和:23×4=92
后3个数总和:34×3=102
第4个数:(92+102)-162=32
答:第4个数是32。
第六页,编辑于星期四:十五点 五十一分。
即学即练
甲、乙、丙3个数的平均数是50,甲、乙两数的平均数是55,甲、
丙两数的平均数是50。甲数是多少? 总数量÷总份数=平均数
政治、数学两科的平均分是91分,语文、英语两科的平均分是84分,政治、英语两科的平均分是86分,而且英语比语文多10分。
答:甲、乙、丙、丁的平均数是60。
五科总分:89×5=445(分) 那么这五位同学参加“锦奥杯”的成绩各是多少?
第一页,编辑于星期四:十五点 五十一分。
第12讲
较复杂的平均数问题
甲:50×2-40=60
例1:某班女生人数是男生人数的一半,男生的平均体重是41千克,女生的平均体重是35千克。
丙:50×3-55×2=40
答:第二个班有20人。
答:甲、乙、丙这3个数的平均数是30。
英语:(168+10)÷2=89(分)
政治+英语:86×2=172(分)
答:这两个班同学的平均分是81分。

五年级奥数平均数问题

五年级奥数平均数问题
例6、小芳与四名同学一起参加一次数学竞赛,那四位同学的成绩分别为78分、91分、82分、79分,小芳的成绩比五人的平均成绩高6分。求小芳的数学成绩。
【举一反三】
两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳多少下?
例7、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?
五年级奥数平均数问题(总2页)
五年级奥数之平均数问题
把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的数就是平均数。
如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关பைடு நூலகம்必须牢记:
平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个。苹果和桃平均每箱37个。求一箱苹果多少个一箱桃多少个
【举一反三】
甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分数错抄成87分,因此算得的四人平均分为88分。求甲在这次考试中得了多少分
例4、一位同学在期中测试中,除数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
【举一反三】
张明前5次数学测验的平均成绩是88分。为了使平均成绩达到92.5分,张明要连续考多少次满分(满分为100)
例8、有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上、下山的平均速度。
【举一反三】
运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑过程中的平均速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使
它们完全相等, 求得的数就是平均数。

如果灵活的运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:
平均数二总数量+总份数
总数量二平均数X总份数
总份数=总数量+平均数
例1、有4箱水果,已知苹果、梨、桔子平均每箱42个,梨、桔子、桃平均每箱36个苹果和桃平均每箱37个。

求一箱苹果多少个?一箱桃多少个?
①1箱苹果+1箱梨+1箱桔子=42 X3=126个
②1箱桃+1箱梨+1箱桔子=36 X3=108个
③1箱苹果+1箱桃=37 X2=74个。

方法一:由①-②可知:1箱苹果比一箱桃多126-108=18 个,再根据等式③就可以算出,一箱桃有(74-18 )-2=28个,1箱苹果有28+18=46 个。

方法二:将①+②+③就有了2箱苹果、2箱梨、2箱桔子、2箱桃。

(126+108+74 )-2=308十2=154个,就是苹果、梨、桔子、桃各一箱的重量。

减去① 便得到桃的重量:154-126=28 个,由③可得苹果:74-28=46 个
【举一反三】
1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分,问甲、丁各得多少分?
2、甲、乙、丙三个小组的同学去植树,甲、乙两个组平均每组植18棵,甲、丙两组平均
每组植17棵,乙、丙两组平均每组植19棵。

三个小组各植树多少棵?
例2、一次数学测试,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?
女生每人比全班平均分高92-91.2=0.8 分,而男生每人比全班平均分低91.2-90.5=0.7分。

全体女生高出全班平均分0.8 X2仁16.8分,应补给每个男生0.7分,16.8里包含有24个0.7,
即全班有24个男生
【举一反三】
1、两组学生进行跳绳比赛,平均每人跳 152下。

甲组有6人,平均每人跳140下,乙组 平均每人跳160下,乙组有多少人?
例3、五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16,这个改 动的数原来是多少?。

原来五个数的和是:18 X 5=90,改动以后五个数的和是 16 X 5=80,80比90少10 ,这 10就是把那个数改为6后少掉的,因此,这个改动的数原来是 6+10=16
【举一反三】
甲、乙、丙、丁四位同学,在一次考试中四人的平均分是 90分。

可是,甲在抄分数时, 把自己的分数错抄成87分,因此算得的四人平均分为88分。

求甲在这次考试中得了多少分?
例4、一位同学在期中测试中,除数学外,其它几门功课的平均成绩是 94分,如果数学
算在内,平均每门95分。

已知他数学得了 100分,问这位同学一共考了多少门功课? 100分比95分多5分,这5分必须填补到其它几门功课的成绩中去,是其平均分
94变 为95分。

每门填补95-94=1分,5分可以填补5门功课,所以练数学在内一共考了 5+1=6 门功课。

【举一反三】
小明前五次数学测验的平均成绩是 88分,为了使平均成绩达到92.5分,小明要连续考 多少次满分?
2、把甲级和乙级糖混在一起,平均每千克买 元,乙级糖有2千克,平均每千克多少元? 7元。

已知甲级糖有4千克,平均每千克8
例5、把五个数从小到大排列,其平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?
先求出五个数的和:38 X5=190。

再求出前三个数的和:27 X3=81,后三个数的和:48
X3=144。

用前三个数的和加上后三个数的和,这样,中间的那个数就算了两次,必然190多,而多出的部分就是所求的中间数。

【举一反三】
十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?
例6、小芳与四名同学一起参加一次数学竞赛,那四位同学的成绩分别为78分、91分、82分、79分,小芳的成绩比五人的平均成绩高6分。

求小芳的数学成绩。

四名同学的平均分是(78+91+82+79 )-4=82.5分,后来加进小芳后,因为小芳的成绩比五人的平均分高6分,这6分平均分给这四名同学,82.5+6十4=84分就是五人的平均分。

因此小芳的数学成绩为84+6=90 分。

【举一反三】
两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳多少下?
例7、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。

这一次是他第几次测验?
【举一反三】
张明前5次数学测验的平均成绩是88分。

为了使平均成绩达到92.5分,张明要连续考多少次满分(满分为100)?
例&有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50
千米,求汽车上、下山的平均速度。

如果你想这么解:(30+50 )-2=40千米/小时,这种解法显然是错误的。

因为这样求得的速度是速度的平均数,而不是平均速度。

一般来说,求平均速度需要两个最基本的条件:1、是总路程,2、是总时间。

平均速度
=总路程十总时间。

可这两个条件本题都偏偏没有。

怎么办呢?我们不妨假设这条山路全程是30千米(也可以假设为其他数,因为假设为30千米,那么上山的时间就正好是1小时,方便计算)。

那么,总路程就来回两个全程30 X2=60千米。

总时间就是30十30+30 -^50=1+0.6=1.6 小时
平均速度:60 -1.6=37.5 千米/小时
【举一反三】
运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100 米。

求他在整个长跑过程中的平均速度。

例9、四(1)班有52人,四(2)班48人,数学考试中,两班全体学生的平均分为78分,(2)班的平均分比(1)班的平均分高5分,两个班的平均分各是多少分?
例10、A.B.C.D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:23、26、30、33,问这四个数的平均数是多少?
同步测试
姓名:得分:
1、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人平均体重42千克,丙、丁二人的平均体重是40千克。

求四人的平均体重是多少千克?
2、有两块棉地,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5 千克,另一块地平均每亩产量是85千克。

这块地是多少亩?
3、某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。

被改的数原来是多少?
4、老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。

如果师生合起来算,正好平均每人做了7朵,求有多少个同学在做花?
5、甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?
6、小华读一本书,第一天读83页,第二天读74页,第三天读71页,第四天读64页, 第五天读的页数比这五天中平均每天读的页数多 3.2页,小华第五天读了多少页?
7、五个数排一排,平均数是9。

如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?
&把一份书稿平均分给甲、乙去打,甲每分钟打30个字,乙每分钟打20个字。

打这份
书稿平均每分钟打多少个字?
9、A.B.C.D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:45、60、65、70,问四个数的平均数是多少?
10、李兵期中考试语文、英语、科学的平均成绩是76分,数学成绩公布后,他的平均成绩提高了3分。

李兵的数学成绩是多少?。

相关文档
最新文档