1 第1节 简谐运动

合集下载

第1节 简谐运动

第1节 简谐运动

mg = kx 0
x0
o x
x
2
F = mg − k( x 0 + x ) = −kx
物体仍受回复力作用,作谐振动。 物体仍受回复力作用,作谐振动。
合力为: 在任意位置 x 处,合力为:
dx 2 2.判断位移与时间是否满足微分方程: 2 + ω x = 0 判断位移与时间是否满足微分方程: 判断位移与时间是否满足微分方程 dt
E
t
弹性力是保守力总机械能守 即总能量不随时间变化。 恒,即总能量不随时间变化。 •谐振能量与振幅的平方成正比。 谐振能量与振幅的平方成正比。 谐振能量与振幅的平方成正比 弹簧振子的 动能的时间平均值: 动能的时间平均值 结论: 动能和势能 T 1 1 1 2 2 2 的平均值相 Ek = ∫ kA sin (ωt + ϕ )dt = kA 4 T 0 2 等,且等于 势能的时间平均值: 势能的时间平均值 1 2 总机械能的 1 T1 2 E P = ∫ kA cos2 (ωt + ϕ )dt = 4 kA 一半。 一半。 0 2 T
θ
l
T
M = −mgl sin θ
“ – ”表示力矩与 θ 张角方向相反。 表示力矩与 张角方向相反。
2
2
mg
dθ dθ M = Iβ = I 2 即: I 2 = −mgl sin θ dt dt 2 d θ mgl + θ =0 当 θ < 5° 时 sin θ ≈ θ 有: 2
dt
I
8
2 d 2θ mgl dθ g 2 + θ = 0 ∵ I = ml ∴ 2 + θ = 0 2 dt I dt l g 2 结论 在角位移很小的 令 ω = l 时候, 时候,单摆的振 2

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

第1节简谐运动1.平衡位置是振子原来静止的位置,振子在其附近所做的往复运动,是一种机械振动,简称振动。

2.如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x­t图像)是一条正弦曲线,这样的振动叫做简谐运动,它是一种最简单、最基本的振动,是一种周期性运动。

3.简谐运动的位移一时间图像表示质点离开平衡位置的位移随时间变化的关系,而非质点的运动轨迹。

由该图像可以确定质点在任意时刻偏离平衡位置的位移和运动情况。

一、弹簧振子1.弹簧振子如图所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。

2.平衡位置振子原来静止时的位置。

3.机械振动振子在平衡位置附近所做的往复运动,简称振动。

二、弹簧振子的位移—时间图像1.振动位移从平衡位置指向振子某时刻所在位置的有向线段。

2.建立坐标系的方法以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。

一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。

3.图像绘制用频闪照相的方法来显示振子在不同时刻的位置。

三、简谐运动及其图像1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x­t图像)是一条正弦曲线,这样的振动叫做简谐运动。

2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。

弹簧振子的运动就是简谐运动。

3.简谐运动的图像(1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。

(2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。

1.自主思考——判一判(1)平衡位置即速度为零时的位置。

(×)(2)平衡位置为振子能保持静止的位置。

(√)(3)振子的位移-5 cm小于1 cm。

(×)(4)简谐运动的轨迹是一条正弦(或余弦)曲线。

(×)(5)简谐运动是一种匀变速直线运动。

高中物理选修一 讲义 第1节 简谐运动

高中物理选修一 讲义 第1节 简谐运动

第1节简谐运动学习目标要求核心素养和关键能力1.知道什么是弹簧振子,理解振动的平衡位置和位移。

2.知道弹簧振子的位移—时间图像,知道简谐运动的过程及其图像。

3.会结合简谐运动的图像分析运动过程特点。

1.核心素养科学思维:理解弹簧振子的理想化模型和简谐运动的“对称性”思维。

2.关键能力物理建模能力和数形结合分析问题的能力。

知识点一弹簧振子钟摆来回摆动,水中浮标上下浮动,担物行走时扁担下物体的颤动,树梢在微风中的摇摆……在生活中我们会观察到很多类似这样的运动。

这些运动的共同点是什么?提示钟摆来回摆动,水中浮标上下浮动,扁担下物体的颤动、树梢的摇摆等都是以某个位置为中心来回往复运动。

❶机械振动物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动。

❷平衡位置弹簧未形变时,物体所受的合力为0,处于平衡位置。

❸弹簧振子(1)组成:小球和弹簧组成的系统称为弹簧振子,简称振子(2)理想化模型弹簧振子是一种理想化模型,近似条件①弹簧的质量与小球相比可以忽略。

②小球运动时空气阻力很小,可以忽略。

③小球与杆之间无摩擦。

1.平衡位置振子不振动时,保持静止状态的位置;振子振动时,速度最大的位置。

2.振动特征(1)有一个“中心位置”,即平衡位置。

(2)运动具有往复性。

3.弹簧振子的位移及其变化位移指相对平衡位置的位移,由平衡位置指向振子所在的位置。

当振子从平衡位置向最大位移处运动时,位移增大;反之,位移减小。

4.运动学分析当振子从平衡位置向最大位移处移动时,位移在增大,速度在减小;当振子向平衡位置移动时,位移减小,速度增大,平衡位置处位移为零,速度最大;最大位移处速度为零。

【例1】(多选)弹簧上端固定在O点,下端连接一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,关于小球的平衡位置,下列说法正确的是()A.在小球运动的最低点B.在弹簧处于原长时的位置C.在小球速度最大时的位置D.在小球原来静止时的位置答案CD解析平衡位置是振动系统不振动时,小球(振子)处于平衡状态时所处的位置,可知此时小球所受的重力大小与弹簧的弹力大小相等,即mg=kx,也即小球原来静止的位置,故选项D正确,A、B错误;当小球处于平衡位置时,其加速度为零,速度最大,选项C正确。

第一节简谐运动详解

第一节简谐运动详解

动 如果质点所受的力与它偏
离平衡位置位移的大小成正
比,并且总是指向平衡位置,
质点的运动就是简谐运动。
简谐运动 回复力的公式:
F= - k x
做一做
第 一 节 简 谐 运 动
引入哪些量描述这加速度等 物理量来描述匀变速直线运动;用 角速度、周期、转速、线速度等物 理理来描述匀速圆周运动的特征, 那么,我们用哪些物理量来描述简 谐运动的特征呢?
特点?
1.机械振动 机械振动:物体在平衡位置附近的往复运动。
(1 )平衡位置--原来静止时的位置(对称性)
第 一
(2)运动具有往复性(周期性)

寻找生活中的实例




问题2:如何研究这种较为复杂的
运动?——理想化
体会理想化的过程及意义
2.弹簧振子的模型
第 一
实际模型(阻力) 小球的质量远远大于轻质弹簧的质量
规定向右为正方向 7. 简谐运动特征分析
P5页图
A OB
位移x 回复力F
大小 方向 大小
方向
A→O
O
O→B
B
B→O
O
O→A
加速度a 大小 方向
速度v 动能
大小 方向
弹性势能
机械能
问题3:为什么振子会做这 种形式的往复运动?
——尝试从受力角度进行分 析
4. 回复力的大小和方向
—回复力的大小:F=kx(胡克定律)
—回复力的方向:总是指向平衡位置、与振动位
第 移的方向始终相反
一 节
—根据力的作用效果命名的 —一个振动的形成要有回复力,还要阻力足够小。
简 谐 运
5.简谐运动的(动力学 定义)

简谐运动

简谐运动

物体在平衡位置附近所做的往复运动叫 做机械振动,简称振动。
一、机械振动
B
O C
这些物体的运动和受力共同特点是什么?
(1)、围绕着“中心”位置 (2)、“往复”运动
(3)、回复力
二、弹簧振子——理想化模型
O
1、概念: 小球和弹簧所组成的系统称作弹簧振子, 有时也把这样的小球称做弹簧振子或简称振子。 2、理性化模型: (1)不计阻力 (2)弹簧的质量与小球相比可以忽略。
B
O
C
弹簧振子运动时,弹力与位移有什么关系?
取平衡位置O为x轴的原点,设x轴的正方 向向右。根据胡克定律,物体所受的弹力
F = -kx
简谐运动
ቤተ መጻሕፍቲ ባይዱ
证明: 竖直悬挂的弹簧振子做简谐运动
证明步骤: 1、找平衡位置 2、找回复力 3、找F=kx 4、找方向关系
l1
证明:平衡状态时有: 当向下拉动x长度时弹簧所受的合外 力为F=-k(x+l1)+mg
二、弹簧振子——理想化模型
思考:振子的运动是怎样一种运动呢?
二、弹簧振子——理想化模型
• 研究弹簧振子的运动
振子的位移x都是相对于平衡位置的位移,以平衡位 置为坐标原点O,沿振动方向建立坐标轴。规定在O点右 边时位移为正,在左边时位移为负。
位移 回复力 回复加速度
O
B 小球 位置
O→C
右↑
位移
mg=-kl1
=-kx-kl1+mg =-kx
(符合简谐运动的公式)
三、简谐运动
1、定义:物体在跟位移大小成正比而方向相反的回 复力作用下的振动叫简谐振动; 2、简谐运动的特征 受力特征:F= -kx
运动特征:a= -kx/m

第1章:第1节 简谐运动

第1章:第1节 简谐运动

第1节简谐运动[先填空]1.定义物体在附近做往复运动,叫做机械振动,简称为.2.平衡位置振动物体所受为零的位置.3.回复力(1)方向:总是指向.(2)作用效果:总是要把振动物体拉回到.(3)来源:回复力是根据力的命名的力.可能是几个力的合力,也可能是由某一个力或某一个力的分力来提供.[再判断]1.机械振动是匀速直线运动.()2.机械振动是匀变速直线运动.()3.机械振动是物体在平衡位置附近所做的往复运动.()[后思考]机械振动的物体到达平衡位置的右侧,它所受的回复力指向什么方向?[核心点击]1.机械振动的特点(1)物体在平衡位置附近做往复运动.(2)机械振动是一种周期性运动.2.回复力的理解(1)回复力的方向总是指向平衡位置.(2)回复力的效果是使偏离平衡位置的物体返回到平衡位置,是产生振动的条件.(3)回复力可以是振动物体所受的某一个力,也可以是物体所受几个力的合力.1.下列运动中属于机械振动的是()A.树枝在风的作用下运动B.竖直向上抛出的物体的运动C.说话时声带的运动D.爆炸声引起窗扇的运动E.匀速圆周运动2.下列关于振动的回复力的说法正确的是()A.回复力方向总是指向平衡位置B.回复力是按效果命名的C.回复力一定是物体受到的合力D.回复力由弹簧的弹力提供E.振动物体在平衡位置所受的回复力是零3.关于振动物体的平衡位置,下列说法正确的是()A.加速度改变方向的位置B.回复力为零的位置C.速度最大的位置D.加速度最大的位置E.合外力一定为零的位置机械振动的理解1.机械振动是物体在平衡位置附近的往复运动.2.回复力的方向总指向平衡位置.3.平衡位置是回复力为零的位置,此位置振动物体速度达到最大,加速度方向改变.[先填空]1.弹簧振子弹簧振子是一种理想化模型,其主要组成部分是一个质量可以忽略不计的和一个质量为m的.图1-1-12.简谐运动(1)定义:如果物体所受回复力的大小与位移大小成,并且总是指向,则物体的运动叫做简谐运动.如弹簧振子的振动.(2)简谐运动的动力学特征:回复力F=.(3)简谐运动的运动学特征:a=-k m x.[再判断]1.弹簧振子是一种理想化的模型.()2.在F=-kx中,负号表示回复力总是小于零的力.() 3.弹簧振子的加速度方向一定与位移相同.()[后思考]弹簧振子的回复力一定是弹簧的弹力吗?[核心点击]1.简谐运动中相关量的变化规律(1)变化规律:当物体做简谐运动时,它偏离平衡位置的位移x、回复力F、加速度a、速度v、动能E k、势能E p及振动能量E,遵循一定的变化规律,可列表如下:(2)两个转折点①平衡位置是速度大小、位移方向、回复力方向和加速度方向变化的转折点;②最大位移处是速度方向变化的转折点.(3)一个守恒:简谐运动过程中动能和势能之间相互转化,但总的能量守恒.2.简谐运动的对称性如图1-1-2所示,物体在A与B间运动,O点为平衡位置,任取关于O点对称的C、D两点,则有:(1)时间对称.(2)位移、回复力、加速度大小对称.(3)速率、动能对称.图1-1-24.如图1-1-3,当振子由A向O运动时,下列说法中正确的是()A.振子的位移大小在减小B.振子的运动方向向左C.振子的位移方向向左D.振子的位移大小在增大E.振子所受的回复力在减小图1-1-35.如图1-1-4所示,一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是()图1-1-4A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点相对平衡位置的位移大小相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动E.从M点到N点振子的动能先增大,再减小6.如图1-1-5所示,质量为m的物体A放在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中,A、B之间无相对滑动,设弹簧的劲度系数为k,求当物体离开平衡位置的位移为x时,B对A的摩擦力大小.图1-1-5分析简谐运动应注意的问题1.位移、速度、加速度和回复力都是矢量,它们要相同,必须大小相等、方向相同.2.回复力是变力,大小、方向发生变化,加速度也随之发生变化.3.要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而确定各物理量及其变化情况.学业分层测评(一)(建议用时:45分钟)[学业达标]1.关于机械振动的位移和平衡位置,以下说法中正确的是()A.平衡位置就是物体所受回复力为零的位置B.机械振动的位移是以平衡位置为起点的位移C.做机械振动的物体运动的路程越大,发生的位移也越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移E.物体从某一位置向平衡位置移动时,位移减小2.有一弹簧振子做简谐运动,则()A.加速度最大时,速度最大B.速度最大时,位移最大C.位移最大时,回复力最大D.回复力最大时,加速度最大E.位移为零时,动能最大3.做简谐运动的弹簧振子在某段时间内速度越来越大,则这段时间内() A.振子的位移越来越大B.振子正向平衡位置运动C.振子速度与位移方向相同D.振子速度与位移方向相反E.振子所受的回复力越来越小4.弹簧振子在做简谐运动的过程中,下列说法正确的是()A.在平衡位置时它的机械能最大B.在最大位移处时它的弹性势能最大C.从平衡位置向最大位移处运动时,它的动能减小D.从最大位移处向平衡位置运动时,它的动能减小E.在振动过程中,系统的机械能守恒5.物体做简谐运动的过程中,有A、A′两点关于平衡位置对称,则下列说法正确的是()A.物体在A点和A′点的位移相同B.物体在两点处的速度可能相同C.物体在两点处的加速度大小一定相同D.物体在两点处的动能一定相同E.物体在两点所受的回复力一定相同6.物体m以O点为平衡位置,在A、B间做简谐运动,如图1-1-6所示,下列说法正确的是()图1-1-6A.物体在A、B两点的速度和加速度都是零B.物体通过O点时,加速度方向发生变化C.回复力方向总是跟物体速度方向相反D.物体离开平衡位置的运动是减速运动E.物体由A到B的过程中加速度先减小后增大7.关于质点做简谐运动,下列说法中正确的是()A.在某一时刻,它的速度与回复力的方向相同,与位移的方向相反B.在某一时刻,它的速度、位移和加速度的方向都相同C.在某一段时间内,它的回复力的大小增大,动能也增大D.在某一段时间内,它的势能减小,加速度的大小也减小E.在某一段时间内,其位移先减小后增大,动能先增大后减小8.如图1-1-7所示,重物静止时处于位置O,向下拉动重物,重物便在平衡位置附近振动起来,那么竖直方向的弹簧振子所做的运动是简谐运动吗?图1-1-7[能力提升]9.当一弹簧振子在竖直方向上做简谐运动时,下列说法中正确的是() A.振子在振动过程中,速度相同时,弹簧的长度一定相等,弹性势能相等B.振子从最低点向平衡位置运动的过程中,弹簧弹力始终做负功C.振子在运动过程中的回复力由弹簧弹力和振子重力的合力提供D.振子在运动过程中,系统的机械能守垣E.振子在平衡位置时,动能最大,重力势能和弹性势能的和最小10.如图1-1-8所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,关于A受力说法中正确的是()图1-1-8A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块B受重力、支持力、A物块对它的压力和摩擦力及弹簧弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力E.物块B所受的弹簧弹力和A对它的摩擦力都是变力11.如图1-1-9所示,一个小球在两个相对的光滑斜面之间往复运动,试说明这个小球是否做简谐运动?图1-1-912.如图1-1-10所示,光滑的水平面上放有一弹簧振子,轻弹簧右端固定在滑块上,已知滑块质量m=0.5 kg,弹簧劲度系数k=240 N/m,将滑块从平衡位置O向左平移,将弹簧压缩5 cm,静止释放后滑块在A、B间滑动,则:图1-1-10(1)滑块加速度最大是在A、B、O三点中哪点?此时滑块加速度多大?(2)滑动速度最大是在A、B、O三点中哪点?此时滑块速度多大?(假设整个系统具有的最大弹性势能为0.3 J)参考答案[先填空]1.平衡位置,振动.2.回复力3.(1)平衡位置.(2)平衡位置.(3)作用效果[再判断]1.(×)2.(×)3.(√)[后思考]【提示】回复力的方向总是指向平衡位置,故方向向左.1.【解析】物体在平衡位置附近所做的往复运动属于机械振动,故A、C、D正确;竖直向上抛出的物体到最高点后返回落地,不具有运动的往复性,因此不属于机械振动,故B错误.匀速圆周运动不是在平衡位置附近往复运动,E错误.【答案】ACD2.【解析】回复力是按效果命名的,是指向平衡位置使振动物体回到平衡位置的力,可以由某个力或某几个力的合力提供,也可以由某个力的分力提供,故A、B正确,C错误;在水平弹簧振子中弹簧的弹力提供回复力,但在其他振动中,不一定由弹簧弹力提供,D错误;振动物体在平衡位置受到的回复力是零,E正确.【答案】ABE3.【解析】振动物体在平衡位置回复力为零,而合外力不一定为零,在该位置加速度改变方向,速度达最大值.故A、B、C正确,D、E错误.【答案】ABC1.弹簧物体.2.(1)正比,平衡位置(2)-kx. (3)-km x.1.(√) 2.(×) 3.(×)[后思考]【提示】不一定.竖直方向的弹簧振子的回复力是由弹簧弹力与重力的合力提供.4.【解析】 本题中位移的参考点应是O 点,所以C 、D 错误.由于振子在O 点的右侧由A 向O 运动,所以振子的位移方向向右,且大小在不断减小,回复力的大小和位移成正比,故减小,正确答案为A 、B 、E.【答案】 ABE5.【解析】 因位移、速度、加速度和弹力都是矢量,它们要相同必须大小相等、方向相同.M 、N 两点关于O 点对称,振子所受弹力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A 错误,B 正确.振子在M 、N 两点的加速度虽然方向相反,但大小相等,故C 选项正确.振子由M ―→O 速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O ―→N 速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D 选项错误.振子由M 到N 的过程中,其动能先增大后减小,故E 正确.【答案】 BCE6.【解析】 A 、B 两物体做简谐运动的回复力由弹簧的弹力提供,当物体离开平衡位置的位移为x 时,回复力大小F =kx ,A 和B 的共同加速度大小a =F M +m =kx M +m,而物体A 做简谐运动的回复力由A 受到的静摩擦力提供,由此可知f =ma =mkx M +m.【答案】 mkx M +m学业分层测评(一)1.【解析】 平衡位置是振动物体所受回复力为零的位置,A 正确.为了描述机械振动的质点的位置随时间的变化规律,人们总是把机械振动位移的起点定在平衡位置上,所以B 正确.当物体无论运动了多少路程后,只要它回到了平衡位置,其总位移为零,可见位移的大小和路程之间不一定有对应关系,所以C 、D 都不正确.物体从某一位置向平衡位置移动时位移减小,E 正确.【答案】 ABE2.【解析】 振子加速度最大时,在最大位移处,此时振子的速度为零,由F =-kx 知道,此时振子所受回复力最大,所以A 错,C 、D 正确;振子速度最大时,是经过平衡位置时,此时位移为零,所以B 错;位移为零时,动能一定最大,E 正确.【答案】 CDE3.【解析】弹簧振子在某段时间内速度越来越大,说明它正向平衡位置运动,故位移越来越小,A错,B对;位移方向是从平衡位置指向振子,故振子速度与位移方向相反,C错,D对;速度增大时,位移减小,回复力也减小,E正确.【答案】BDE4.【解析】弹簧振子在振动的过程中机械能守恒,弹性势能和动能相互转化,由最大位移处向平衡位置运动时,弹性势能转化成动能,在最大位移处,弹簧的弹性势能最大,在平衡位置时动能最大,在振动过程中机械能保持守恒,故B,C,E正确.【答案】BCE5.【解析】做简谐运动的物体关于平衡位置具有对称性.A和A′关于平衡位置对称,振子在A和A′点时位移大小相等,方向相反;物体在两处的速度可能相同,也可能速度大小相等,方向相反;物体在两处的加速度大小相等,方向相反.由于在两处速度大小相等,故动能一定相同.关于平衡位置对称的两点回复力大小相等但方向相反,故A、E错误,B、C、D正确.【答案】BCD6.【解析】物体做简谐运动时,通过平衡位置一次,回复力的方向变化一次,所以加速度方向改变一次,B正确;物体运动到最大位移A、B处时,回复力最大,所以加速度最大,A错误;当物体向平衡位置运动时,回复力的方向跟速度方向相同,C错误;物体由平衡位置向最大位移处运动时,回复力的方向跟速度方向相反,是减速运动,D正确;物体由A到B加速度先减小后增大,E正确.【答案】BDE7.【解析】如图,设O为质点做简谐运动的平衡位置,它由C经过O到B,又由B经过O到C一个周期内,由于质点受到的回复力和位移的方向总是相反的,且质点由B到O和由C到O的过程中,速度的方向与回复力的方向相同,A正确.质点的位移方向与加速度方向总相反,B不正确.质点振动过程中,当回复力增大时,其势能增加,根据机械能守恒定律,其动能必然减小,C不正确.当质点的势能减小时,如从C到O或从B到O阶段,回复力减小,势能减小,质点的加速度大小也减小,D正确.质点由B向C运动时,其位移先减小后增大,动能先增大后减小,E正确.【答案】ADE8.【解析】振子的平衡位置为O,设向下方向为正方向,此时弹簧的形变为x0,根据胡克定律及平衡条件有mg-kx0=0当振子向下偏离平衡位置x时,有F回=mg-k(x+x0)联立以上两式,得F回=-kx,故弹簧振子的振动满足简谐运动的条件,所做的运动是简谐运动.【答案】见解析9.【解析】振子在平衡位置两侧往复运动,速度相同的位置可能出现在关于平衡位置对称的两点,这时弹簧长度明显不等,A错;振子由最低点向平衡位置运动的过程中,弹簧对振子施加的力指向平衡位置,做正功,B错;振子运动过程中的回复力由振子所受合力提供且运动过程中机械能守恒,故C、D对.振动在平衡位置时动能最大,重力势能和弹性势能的和最小,E正确.【答案】CDE10.【解析】物块A受到重力、支持力和摩擦力的作用.摩擦力提供回复力,所以其大小和方向都随时间变化,D选项正确.物块B受重力、支持力、A物块对它的压力和摩擦力及弹簧弹力,其中弹簧弹力和A对它的摩擦力都是变力,故B、E正确.【答案】BDE11.【解析】小球不是做简谐运动.因为小球在斜面上运动的过程中,所受力为恒力,故为匀变速运动,而简谐运动是变加速运动.所以不可能是简谐运动.【答案】不是简谐运动,说明见解析12.【解析】(1)由于简谐运动的加速度a=Fm=-km x,故加速度最大的位置在最大位移处的A或B两点,加速度大小a=km x=2400.5×0.05 m/s2=24 m/s2.(2)在平衡位置O滑块的速度最大.根据机械能守恒,有E pm=12m v2m故v m=2E pmm=2×0.30.5m/s=1.1 m/s.【答案】(1)A点或B点24 m/s2(2)O点 1.1 m/s。

第1节 简谐运动.ppt

第1节    简谐运动.ppt
位:Hz。
4)、周期和频率之间的关系: f=1/T
5)、周期越小,频率越大,运动越快。
思考:简谐运动的周期跟哪些有关的呢?
15
观察弹簧振子
周期和频率都反映振动快慢,那么它 们与哪些因素有关呢?
①与振幅无关。 ②与弹簧有关,劲度系数越大,周期越小。 ③与振子质量有关,质量越大,周期越大。
16
试一试
19
(3)振动能量的角度
①简谐运动的能量是指振动系统的机械能,振动的 过程就是动能和势能相互转化的过程,在简谐运动 中,振动系统的机械能守恒。 ②在从B到O过程中,动能增加,弹性势能减小,在 平衡位置O时,动能最大,弹性势能为零。 ③对一个确定的振动系统来说,系统的能量仅由振 幅决定,振幅越大,振动系统的能量就越大。
7
区分振幅和位移
对于一个给定的振动:
1、振子的位移是偏离平衡位置的距离,故时 刻在变化;但振幅是不变的。 2、位移是矢量,振幅是标量,它等于最大 位移的数值。
8
(3)振子的运动具有往复性、重 复性、周期性等特点
9
想一想
一个完整的全振动过程,有什 么显著的特点?
在一次全振动过程中,一定是 振子连续两次以相同速度通过同一 点所经历的过程。
6
(2)离开平衡位置有一个最大的距离
①定义:振动物体离开平衡位置的距离,叫位移, 其最大距离,叫做振动的振幅,单位是m。
静止位置:即平衡位置
振幅 振幅
②振幅是描述振动强弱的物理量,常用字母A表示。
③振幅是标量,其大小可直接反映了振子振动能量 (E=EK+EP)的高低。
④振子振动范围的大小,就是振幅的两倍2A
如图所示,为一个竖直方向振 动的弹簧振子,O为静止时的位置, 当把振子拉到下方的B位置后,从 静止释放,振子将在AB之间做简谐 运动,给你一个秒表,怎样测出振 子的振动周期T?

2022秋新教材高中物理第二章机械振动第一节简谐运动课件粤教版选择性必修第一册

2022秋新教材高中物理第二章机械振动第一节简谐运动课件粤教版选择性必修第一册
[答案] (1)10 cm (2)1 s 1 Hz (3)200 cm
解决简谐运动问题的两点技巧 (1)先确定最大位移处(v=0)和平衡位置,才能确定振幅大小。 (2)求某段时间Δt内振子通过的路程时,须先确定这段时间是周期的多少倍, 若Δt=kT,则s=4kA。(k为整数)
[素养训练]
1.关于描述简谐运动的物理量,下列说法正确的是
解析:根据全振动的定义可知,一次全振动应包括四个振幅,并且从一点出发并 同方向回到该点,才是一次全振动,从B→O→C为半个全振动,A选项错误,从 O→B→O→C 的 过 程 中 没 有 再 回 到 起 始 点 , 不 是 一 次 全 振 动 , B 选 项 错 误 ; 从 C→O→B→O→C为一次全振动,从D→C→O→B→O→D为一次全振动,C、D选 项正确。 答案:CD
答案: C
探究(三) 简谐运动中各物理量的变化规律 [问题驱动] 如图所示,O点为振子的平衡位置,A、B分别是振子运动的最右端和最左端。 (1)振子在振动过程中通过O点时速度最大还是最小? (2)振子在振动过程中由A→B的过程中加速度如何变化?
提示:(1)最大。 (2)先减小后反向增大。
[重难释解] 1.水平的弹簧振子运动时,弹性势能与动能相互转化。弹性势能最小时, 动能最大;弹性势能最大时,动能最小。 2.如图所示的水平弹簧振子,其各个物理量的变化关系如下表所示:
()
A.振幅等于四分之一个周期内的路程
B.周期是指振动物体从任一位置出发又回到这个位置所用的时间
C.一个全振动过程中,振子的位移大小等于振幅的四倍
D.频率是50 Hz时,1 s内振动物体速度方向改变100次
解析:由于平衡位置附近速度较大,因此四分之一个周期内走过的路程不一

教科版 3-2第1章第一节《简谐运动》(人教版选修3-4)

教科版 3-2第1章第一节《简谐运动》(人教版选修3-4)

【思考· 提示】
2.(1)振子在某一时刻(位置)
的位移
指物体偏离平衡位置的位移,即以平衡位置
为起点,指向物体所在位置的有向线段,即
公式F=-kx中的x.
(2)振子在某一段时间内的位移
这和运动学中的位移意义相同,即在这段时
间内由初始位置指向末位置的有向线段.
核心要点突破
一、简谐运动中位移、回复力、速度、加速 度的变化规律 1.振动中的位移x都是以平衡位置为起点 的,方向就是从平衡位置指向末位置的方 向,大小就是这两位置间的距离,两个“端 点”位移最大,在平衡位置位移为零.
向心力
二、简谐运动
1.定义:物体在跟偏离平衡位置的位移大小 成正比,并且总指向_________ 平衡位置的回复力的 作用下的振动,叫做简谐运动. 思考 2.振动物体的位移与运动学中学过的位移意 义相同吗?
图 9- 1- 1
2.弹簧振子在一次全振动中,振子的位 移、回复力、加速度、速度的变化规律,如 图9-1-1所示的弹簧振子列表分析如下:
A.由C向O运动时,位移为正值,速度为正 值,加速度为正值
B.由O向B运动时,位移为正值,速度为正 值,加速度为负值 C.由B向O运动时,位移为负值,速度为正 值,加速度为正值 D.由O向C运动时,位移为负值,速度为负 值,加速度为负值
【解析】 在简谐振动中,由于物体的位移 总是以平衡位置O为起始位置,方向分别指 向O的两侧;加速度总是指向平衡位置O; 速度方向即是振子运动的方向.它们的方向 如与规定方向一致则为正值,如与规定方向 相反则为负值. 【答案】 B
A→O O→A′ A′→O O→A 振子运动 位移x方向 向右增大 ________ 向左减小 _________ 向右减小 向左增大 大小变化

09.说课稿:选择性必修1 第二章第1节 简谐运动

09.说课稿:选择性必修1 第二章第1节 简谐运动

选择性必修1 第二章机械振动第1节简谐运动说课稿各位评委专家:大家好!我说课的题目是《简谐运动》。

一、教材分析机械振动是质点运动的一种形式,通过本章的学习,要使学生对质点运动的认识更加全面和深入。

以加速度来对质点运动进行分类:学生在初中只了解匀速直线运动,这是一种加速度为零的运动;在高中物理必修1模块中,学生学习匀变速直线运动,这是具有恒定加速度的运动,而且加速度方向和初速度在同一条直线上;在高中物理必修2模块中,学生学习了抛体运动,这也是具有恒定加速度的运动,但加速度的方向和初速度的方向不在同一条直线上;还学习了匀速圆周运动,这是一种具有变化加速度的运动,但加速度大小不变,只是方向变化;本章所学习的机械振动,是加速度大小和方向都发生变化的运动。

《简谐运动》是人教版高中物理选择性必修一第二章《机械振动》第一节的内容。

《机械振动》是在学生学习了运动学、动力学及功和能的知识后而编排的力学的一个特例。

机械振动是一种比较复杂的机械运动形式,对它的研究为以后学习电磁振荡、电磁波和光的本性奠定了知识基础。

此外机械振动的知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。

《简谐运动》一节是学习本章后面各节内容的基础,是最简单、最基本、最有规律性的机械振动,通过学习,使学生既了解到机械振动的基本特点,又要与以前学过的运动学、动力学、功和能的知识相联系,可起到复习巩固的作用,因此这部分内容在教材中起着承前启后的作用。

二、学情分析通过前面章节的学习,学生已经具备运动学的基本知识及分析物理规律的一定能力,同时在数学课堂上,学生也基本掌握了三角函数的基本内容。

本节课从研究弹簧振子的振动过程出发,去了解简谐运动的特点和理解其运动规律,使学生能顺利地掌握新知识,为本章的学习打好铺垫。

虽然通过初中和高一的学习,学生已有一定的观察、实验能力,但抽象思维、推理和综合分析的能力仍然有限。

因此,本节课通过演示实验和引导学生分析振动的动态过程,来进一步提高学生这几个方面的能力。

第1 节、简谐运动

第1 节、简谐运动

第十一章、机械振动第1 节、简谐运动课前预习1.弹簧振子:把一个有孔的小球装在弹簧的一端,弹簧的另一端固定,小球穿在________杆上,能够自由滑动,两者之间的摩擦可以忽略,弹簧的质量与小球相比________忽略。

把小球拉向右方,然后放开,它就左右运动起来,这样的系统称为弹簧振子。

小球原来静止时的位置叫做________。

2.振动:小球在平衡位置附近的________运动,是一种机械振动,简称________。

3.简谐运动:如果质点的位移与时间的关系遵从________的规律,即它的振动图象(x-t图象)是一条________曲线,这样的振动叫做简谐运动。

________的运动就是简谐运动。

4.正弦函数的一般形式是y=________。

答案:1.光滑的也可以平衡位置2.往复振动3.正弦函数正弦弹簧振子4.A sin(ωx+φ)课堂释疑一、弹簧振子(1)弹簧振子定义:小球与弹簧组成的系统。

是一理想化模型。

①小球看成质点,②忽略弹簧质量,③忽略摩擦力(2)平衡位置定义:振动物体静止时的位置,叫平衡位置。

机械振动总是以某一位置为中心做往复运动,这个中心位置就是平衡位置。

从物体的受力特点来看,物体在平衡位置所受的合力可能为零,也可能不为零,故平衡位置与平衡状态是不同的,如单摆经过最低点。

(3)机械振动1、定义:物体在平衡位置附近所做的往复运动,简称振动。

2、特点:往复性、周期性。

二、弹簧振子的位移—时间图象(1)图象的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系。

(2)图象意义:反映了振动物体相对于平衡位置的位移x随时间t变化的规律。

(3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的。

运动学中位移的含义:“物体的位移是由初位置指向末位置的有向线段”。

而在机械振动中,物体相对平衡位置的位移是以平衡位置为初位置,运动过程中的某一位置为末位置,与振动物体运动方向没任何关系。

理1.1简谐运动及其描述

理1.1简谐运动及其描述

巩固训练
学案P5/例1:弹簧振子以O点为平衡位置在B、C两点之间做简 谐运动。B、C相距20cm。某时刻振子处于B点,经过0.5s,振 子首次到达C点。求:(1)振子的周期和频率;(2)振子在 5s内通过的路程和位移大小;(3)振子在B点的加速度大小跟 它在距离O点4cm处P点加速度大小的比值。 (1) ∵B→C为半周期 ∴T=1.0s;f=1Hz (3) a=f/m=kx/m∝x ∴aB:aP =xB:xP =10:4 =5:2 (2) ∵t=5s=5T 每个周期类振子通过路程为4A ∴5s内路程=20A=200cm 位移与初始时相同,x=10cm
巩固练习
学案P2/1:下列运动中不属于机械振动的有 ( A、树枝在风的作用下的运动
B

B、竖直向上抛出的物体的运动
C、说话时声带的振动 D、爆炸声引起的窗扇的运动
二、弹簧振子
理想化模型
定义:小球和弹簧所组成的系统. 回复力与位移大小成正 比,方向相反 (条件理想化) : ①小球看成质点
②忽略弹簧质量
t=0时,振子x为负的最大值
x/cm 5 O 2 t/s vm O -vm t/s v
振动方程为x=-5cos3.14t(cm)
a am O -am t/s
-5
速度即为x-t图的斜率。
巩固训练
某一弹簧振子的振动图象如图所示,则由图象判断下列说法正确的是 ( ) A、振子偏离平衡位置的最大距离为20cm B、1s到2s的时间内振子向平衡位置运动 C、2s时和3s时振子的位移相等,运动方向也相同 D、振子在2s内完成一次往复性运动 1s~2s,振子从正向最远
t
从O→B′,位移向右增大,速度向右减小,加速度向左增大。 从B′→O,位移向右减小,速度向左增大,加速度向左减小。 从O→B,位移向左增大,速度向左减小,加速度向右增大。 从B→O,位移向左减小,速度向右增大,加速度向右减小。

2.1 简谐运动(解析版)

2.1 简谐运动(解析版)

第1节简谐运动一、弹簧振子及其运动1.对于做简谐运动的弹簧振子,下述说法正确的是()A.振子通过平衡位置时,加速度最大B.振子在最大位移处时,速度最大C.振子在连续两次通过同一位置时,位移相同D.振子连续两次通过同一位置时,动量相同【答案】C【详解】A.振子经过平衡位置时速度最大,加速度是零,A错误;B.振子在最大位移处时速度最小,是零,B错误;C.振子在连续两次经同一位置时,相对于平衡位置的位移相同,C正确;D.动量是矢量,振子连续两次经同一位置时,速度的大小相同,方向相反,则动量大小相同,方向相反,D错误。

故选C。

2.如图所示为一弹簧振子,O为平衡位置,以向右为正方向,则振子在B、C之间振动时()→位移为正、速度为负A.B O→位移为负、速度为正B.O C→位移为正、速度为负C.C O→位移为负、速度为正D.O B【答案】A【详解】A.速度方向即振子运动方向,则B O→位移向左为负,速度向右为正,A正确;→位移向右为正,速度向右为正,B错误;B.O CC.C O→位移向右为正,速度向左为负,C错误;→位移向左为负,速度向左为负,D错误。

故选A。

D.O B二、简谐运动的x-t图像3.如图所示是某振子做简谐运动的图像,以下说法正确的是()A.因为振动图像可由实验直接得到,所以振动图像就是振子实际运动的轨迹B.振动图像反映的是振子位移随时间变化的规律,并不是振子运动的实际轨迹C.振子在B位置的位移就是曲线BC的长度D.振子运动到B点时的速度方向即该点的切线方向【答案】B【详解】ABC.振动图像表示振子位移随时间的变化规律,并不是振子实际运动的轨迹,故B正确,AC错误;D.B点切线的方向不表示振子运动到B点时的速度方向,故D错误。

故选B。

4.如图甲所示,一弹簧振子在A、B间振动,取向右为正方向,振子经过O点时为计时起点,其振动的x -t图像如图乙所示,则下列说法正确的是()A.t4时刻振子在A点B.t2时刻振子在B点C.在t1~t2时间内,振子的位移在增大D.在t3~t4时间内,振子的位移在减小【答案】C【详解】AB.振子在A点和B点时位移最大,由于取向右为正方向,所以振子运动到A点有正向最大位移,运动到B点有负向最大位移,则t2时刻,振子在A点,t4时刻,振子在B点,故AB错误;CD.振子的位移以平衡位置为起点,所以在t1~t2和t3~t4时间内振子的位移都在增大,故C正确,D错误。

第1节 简谐运动(学生版)

第1节 简谐运动(学生版)

第1节简谐运动学习目标核心提炼1.知道机械振动和简谐运动的概念,知道弹簧振子模型的构造。

2.了解简谐运动的特点,明确简谐振动的回复力和位移之间的关系。

3.知道周期、频率、振幅等一系列描述简谐运动的基本概念。

4.理解简谐运动的能量,会分析弹簧振子中动能、势能和机械能的变化情况。

2种运动——机械运动和简谐运动1个模型——弹簧振子5个概念——回复力、位移、周期、频率、振幅1种守恒——能量守恒一、机械振动1.机械振动:物体(或物体的某一部分)在某一位置两侧所做的运动,叫做机械振动,简称。

2.平衡位置:物体原来静止时的位置(即机械振动的物体所围绕振动的位置)。

二、简谐运动1.弹簧振子模型:如图所示,如果小球与杆之间的摩擦,弹簧的质量比小球的质量小得多,也可,则该装置为弹簧振子,其中的小球常称为。

2.回复力(1)定义:振动的物体偏离平衡位置时,都会受到的一个指向的力,这种力叫做。

(2)回复力与位移的关系:F=。

3.简谐运动:如果物体所受的力与它偏离平衡位置的位移大小成,并且总指向,则物体所做的运动叫做简谐运动。

做简谐运动的振子称为。

【思考判断】(1)弹簧振子通过平衡位置时弹簧的弹力一定为零。

()(2)弹簧振子是一种理想化模型。

()(3)水平和竖直方向的弹簧振子提供回复力的方式不同。

()(4)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。

()(5)水平弹簧振子运动到平衡位置时,回复力为零,因此加速度一定为零。

()(6)回复力可以是一个力的分力,也可以是几个力的合力。

()三、振幅、周期和频率1.振幅(1)振幅:振动物体离开平衡位置的距离。

(2)物理意义:表示的物理量,是(“矢”或“标”)量。

2.全振动振动物体完成一次完整的振动过程(以后完全重复原来的运动)叫做一次全振动,例如水平弹簧振子的运动:O→A→O→A′→O或A→O→A′→O→A为一次全振动。

(如图所示,其中O为平衡位置,A、A′为最大位移处)3.周期和频率(1)周期T:做简谐运动的物体完成一次所需要的时间,叫做振动的周期。

3-4第1章第1节 简谐运动

3-4第1章第1节  简谐运动

第一节简谐运动一、预习与知识点梳理(一)、机械振动1.机械振动:物体(或物体的某一部分)在某一中心位置两侧所做的运动,简称振动,这个中心位置称为平衡位置.2.弹簧振子:由小球和弹簧组成的的名称,是一个理想模型.如图所示.(二)、简谐运动1.回复力:当振动的物体离开平衡位置时,所受到的指向的力.2.简谐运动:物体所受的力与它偏离平衡位置的位移大小成,并且总平衡位置的物体的运动.也称简谐振动.公式:F=-kx.(三)、振幅、周期和频率1.振幅:振动物体离开平衡位置的,用A表示,单位是米,符号是m.物理意义:振幅是表示振动的物理量.2.周期和频率周期:振动物体完成一次所用的时间,用T表示,单位是秒,符号是s.频率:单位时间内完成的全振动的,用f表示,单位是赫兹,符号是Hz.周期与频率的关系:f=1T,1 Hz=1 s-1.物理意义:周期和频率都表示振动的快慢.(四)、简谐运动的能量1.振动系统的状态与能量的关系(1)振子的速度与动能:速度,动能.(2)弹簧形变量与势能:弹簧形变量在,因而势能也在.2.简谐运动的能量简谐运动的能量一般指振动系统的,振动的过程就是和互相转化的过程.(1)在最大位移处,最大,为零;(2)在平衡位置处,最大,最小.(3)在简谐运动中,振动系统的机械能,因此简谐运动是一种的模型.3.决定能量大小的因素振动系统的机械能跟有关,越大,机械能就越大,振动就越强,对于一个确定的简谐运动是振动.(五)、弹簧振子的特点及回复力1.弹簧振子的特点(1)弹簧的质量可以忽略不计,可以认为质量全部集中于振子(小球).(2)小球视为质点.(3)忽略一切阻力和摩擦力.(4)弹簧的形变在弹性限度内,则F=kx.2.机械振动中的位移(1)位移是从平衡位置指向振子某时刻所在位置的有向线段,方向为平衡位置指向振子所在位置,大小为平衡位置到该位置的距离.(2)位移也是矢量,若规定振动质点在平衡位置右侧时位移为正,则它在平衡位置左侧时位移就为负.(3)区别机械运动中的位移:机械运动中的位移是从初位置到末位置的有向线段;在简谐运动中,振动质点在任意时刻的位移总是相对于平衡位置而言的,都是从平衡位置开始指向振子所在位置.特别提醒:振动的位移的起始位置都是平衡位置,位移的方向都是背离平衡位置的.3.简谐运动物体的回复力:F=-kx(1)回复力是根据力的效果命名的,它可以是物体所受的合外力,也可以是一个力或某几个力的合力.(2)“负号”表示回复力的方向与位移方向始终相反.(3)公式反映出了回复力F的大小与位移量值间的正比关系,位移越大,回复力越大,位移增大为原来几倍,回复力也增为原来几倍.(4)“k”为F与x间的比例系数.对于弹簧振子,回复力与弹簧弹力有关,公式中k恰等于弹簧的劲度系数;一般情况k不等于弹簧的劲度系数.(5)物体做简谐运动到平衡位置时,回复力等于0,合外力可能不为零(如下节课学习的单摆).(6)据牛顿第二定律,a=Fm=-km x,表明弹簧振子做简谐振动时的振子的加速度大小也与位移大小成正比,加速度方向与位移方向相反.(7)回复力是质点在振动方向上的合外力,它不一定是质点所受的合外力.(六)、周期、振幅、位移和路程1.全振动的特征(1)运动特征:物体第一次以相同的运动状态回到起始位置.(2)物理量特征:位移(x)、加速度(a)、速度(v)第一次同时与初始状态相同.(3)时间特征:历时一个周期.(4)路程特征:振幅的4倍.2.振幅与位移的关系(1)振幅是振动物体离开平衡位置的最大距离;位移是物体相对于平衡位置的位置变化.(2)振幅是表示振动强弱的物理量,在同一简谐运动中振幅是不变的,但位移却时刻变化. (3)振幅是标量;位移是矢量,方向为由平衡位置指向振子所在位置. (4)振幅在数值上等于位移的最大值. 3.振幅与路程的关系(1)振动物体在一个周期内的路程一定为四个振幅. (2)振动物体在半个周期内的路程一定为两个振幅.(3)振动物体在14T 内的路程可能等于一个振幅,可能大于一个振幅,还可能小于一个振幅,只有当14T 的初时刻,振动物体在平衡位置或最大位移处,14T 内的路程才等于一个振幅.特别提醒:振幅大,振动物体的位移不一定大,但其最大位移一定大. (七)、简谐运动中各物理量的变化 1.简谐运动的能量(1)一旦给振动系统以一定的能量(如拉力做功使弹簧振子偏离平衡位置,使系统具有一定的弹性势能),使它开始振动,在振动过程中动能和势能相互转化,但总的机械能不变.(2)振幅决定着系统的总机械能,振幅越大,系统的总机械能越大. (3)简谐运动过程中能量具有对称性. 振子运动经过平衡位置两侧对称点时,具有相等的动能和相等的势能.(4)由于机械能守恒,简谐运动将以一定的振幅永远不停地振动下去,简谐运动是一种理想化的运动.特别提醒:(1)简谐运动中在最大位移处,x 、F 、a 、E p 最大,v =0,E k =0;在平衡位置处,x =0,F =0,a =0,E p 最小,v 、E k 最大.(2)简谐运动中振动系统的动能和势能相互转化,机械能的总量不变,即机械能守恒. 二、典型例题分析 【典例1】 一质量为m ,侧面积为S 的正方体木块,放在水面上静止(平衡),如图所示.现用力向下将其压入水中一段深度后(未全部浸没)撤掉外力,木块在水面上上下振动,试判断木块的振动是否为简谐运动.【变式1】如图所示,一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是().A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点相对平衡位置的位移相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动【典例2】如图所示,弹簧振子在B、C间振动,O为平衡位置,BO=OC=5 cm,若振子从B到C的运动时间是1 s,则下列说法正确的是().A.振子从B经O到C完成一次全振动B.振动周期是1 s,振幅是10 cmC.经过两次全振动,振子通过的路程是20 cmD.从B开始经过3 s,振子通过的路程是30 cm【变式2】弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,B、C相距20 cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,则该振动的周期和频率分别为________、________;振子在5 s内通过的路程及5 s末的位移大小分别为________、________.【典例3】如图所示,质量为m的木块放在弹簧上端,在竖直方向上做简谐运动,当振幅为A时,物体对弹簧的压力最大值是物体重力的1.5倍,则物体对弹簧的最小压力是________,欲使物体在弹簧振动中不离开弹簧,其振幅不能超过________.三、巩固练习1.如图所示,对做简谐运动的弹簧振子m的受力分析,正确的是().A.重力、支持力、弹簧的弹力B.重力、支持力、弹簧的弹力、回复力C.重力、支持力、回复力、摩擦力D.重力、支持力、摩擦力2.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中().A.振子所受的回复力逐渐增大B.振子的位移逐渐增大C.振子的速度逐渐减小D.振子的加速度逐渐减小3.关于振幅的各种说法中,正确的是().A.振幅是振子离开平衡位置的最大距离B.位移是矢量,振幅是标量,位移的大小等于振幅C.振幅等于振子运动轨迹的长度D.振幅越大,表示振动越强,周期越长四、课后练习A卷1.下列运动中属于机械振动的是().A.小鸟飞走后树枝的运动B.爆炸声引起窗子上玻璃的运动C.匀速圆周运动D.竖直向上抛出物体的运动2.关于振动物体的平衡位置,下列说法中不正确的是().A.加速度改变方向的位置B.回复力为零的位置C.速度最大的位置D.加速度最大的位置3.下列说法中正确的是().A.弹簧振子的运动是简谐运动B.简谐运动就是指弹簧振子的运动C.简谐运动是匀变速运动D.简谐运动是机械运动中最简单、最基本的一种4. 做简谐运动的振子每次通过同一位置时,相同的物理量是().A.速度B.加速度C.位移D.动能5.做简谐运动的弹簧振子在某段时间内速度越来越大,则这段时间内().A.振子的位移越来越大B.振子正向平衡位置运动C.振子速度与位移同向D.振子速度与位移方向相反6.一水平的弹簧振子,以平衡位置O点为中心,在A、B两点间做简谐运动,则().A.振子在O点时的速度和加速度都达到最大值B.振子的速度方向改变时,位移方向就改变C.振子的加速度值变大时,速度值一定变小D.振子从A点运动到AO的中点,再运动到O点,两段位移运动时间相等7.下列关于简谐运动振幅、周期和频率的说法中正确的是().A.振幅是矢量,方向从平衡位置指向最大位移处B.周期和频率的乘积不一定等于1C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关8.如图所示,弹簧振子以O为平衡位置,在B、C间振动,则().A.从B→O→C→O→B为一次全振动B.从O→B→O→C→B为一次全振动C.从C→O→B→O→C为一次全振动D.OB的大小不一定等于OC9.关于振幅,下列说法中正确的是().A.物体振动的振幅越大,振动越强烈B.一个确定的振动系统,振幅越大振动系统的能量越大C.振幅越大,物体振动的位移越大D.振幅越大,物体振动的加速度越大10.如图所示,弹簧一端固定在天花板上,另一端挂一质量为m的物体,今托住物体使弹簧没有发生形变然后将物体无初速度释放而做简谐运动,在物体从开始运动到最低点的过程中物体的重力势能________,弹簧弹性势能________,物体动能________,(填“增大”或“减小”)而总的机械能________.11.弹簧振子在做简谐运动的过程中,下列说法中正确的是().A.在平衡位置时它的机械能最大B.在最大位移时它的弹性势能最大C.从平衡位置到最大位移处它的动能减小D.从最大位移到平衡位置处它的机械能减小12.取一根轻弹簧,上端固定在铁架台上,下端系一金属小球,如图1-1-9所示,让小球在竖直方向离开平衡位置放手后,小球在竖直方向做简谐运动(此装置也称为竖直弹簧振子),一位同学用此装置研究竖直弹簧振子的周期T与质量m的关系,为了探索出周期T与小球质量m的关系,需多次换上不同质量的小球并测得相应的周期,现将测得的六组数据标示在以m为横坐标,T2为纵坐标的坐标纸上,即图中用“×”表示的点.(1)根据图中给出的数据点作出T2与m的关系图线.(2)假设图中图线的斜率为b,写出T与m的关系式为________.(3)求得斜率b的值是________.(保留三位有效数字)13.弹簧振子从距离平衡位置5 cm处由静止释放,4 s内完成5次全振动.(1)这个弹簧振子的振幅为________cm,振动周期为________s,频率为________Hz.(2)4 s末振子的位移大小为多少?4 s内振子运动的路程为多少?(3)若其他条件不变,只是使振子改为在距平衡位置2.5 cm处由静止释放,该振子的周期为多少?B卷14.如图所示,A、B两物体的质量都为m,拉A物体的细线与水平方向的夹角为30°时处于静止状态,不考虑摩擦力,设弹簧的劲度系数为k.若悬线突然断开后,A在水平面上做周期为T的简谐运动,当B落地时,A恰好将弹簧压缩到最短,求:(1)A振动时的振幅;(2)B落地时速度的大小.第一节 简谐运动参考答案例1:解析 以木块为研究对象,设静止时木块浸入水中Δx 深,当木块被压入水中x 后所受力如图所示,取向下为正方向,则F =mg -F 浮`①又F 浮=ρgS (Δx +x )② 由①式和②式,得F =mg -ρgS (Δx +x )=mg -ρgS Δx -ρgSx .mg =ρgS Δx ,所以F =-ρgSx . 即F =-kx (k =ρgS ).所以木块的振动为简谐运动.变式1:答案 C例2:答案 D 解析 振子从B →O →C 仅完成了半次全振动,所以周期T =2×1 s =2 s ,振幅A =BO =5 cm.弹簧振子在一次全振动过程中通过的路程为4 A =20 cm ,所以两次全振动中通过路程为40 cm,3 s 的时间为1.5T ,所以振子通过的路程为30 cm. 变式2:答案 1.0 s 1.0 Hz 200 cm 10 cm例3:答案 12mg 2A 解析 物体做简谐运动时在最低点对弹簧的压力最大,在最高点时对弹簧的压力最小.物体在最高点的加速度与在最低点的加速度大小相等,回复力的大小相等.m 在最低点时:F 回=1.5mg -mg =ma ①m 在最高点时:F 回=mg -N =ma ②由①②两式联立解得N =12mg由以上可以得出振幅为A 时最大回复力为0.5mg所以有kA =0.5mg ③欲使物体在振动中不离开弹簧,则最大回复力为mg , 所以有kA ′=mg ④由③和④联立得A ′=2A .巩固练习:1.答案 A 2.答案 D 3.答案 A 课后练习:1.答案 AB 2.答案 D 3.答案 A4.答案 BCD 解析 振子通过同一位置时,位移、加速度的大小和方向都相同,速度的大小相同,但方向不一定相同,因此B 、C 、D 正确.5.答案 BD 解析 因振子速度越来越大,可判定振子正向平衡位置运动,而位移总是背离平衡位置的,因此速度与位移方向相反,所以选项A 、C 错误,B 、D 正确.6.答案 C 解析 振子在O 点时,速度达到最大值,但这时的位移为零,加速度也为零,选项A 错.振子的速度方向改变时,位移方向没有改变,只是从最大值逐渐减小,选项B 错.振子的加速度值变大时,振子一定在做减速运动,速度值一定是变小的,选项C 对.振子从A 点运动到AO 的中点时的速度是从零增加到一定值,从中点再运动到O 点时的速度是从这个值再增加到最大值,因此平均速度是不同的,而两段位移相同,故运动的时间是不相等的,选项D 错.7.答案 D 解析 振幅A 是标量,选项A 错误;周期与频率互为倒数,即Tf =1,选项B 错误;简谐运动的周期与振幅没有关系,周期的长短由系统本身决定,所以选项C 错误,D 正确.8.答案 AC 解析 O 为平衡位置,B 、C 为两侧最远点,则从B 起经O 、C 、O 、B 路程为振幅的4倍,即A 说法对;若从O 起始经B 、O 、C 、B 路程为振幅的5倍,超过一次全振动,即B 说法错;若从C 起经O 、B 、O 、C 路程为振幅的4倍,即C 说法对;因弹簧振子的系统不考虑摩擦,所以振幅一定,D 错.9.答案 AB 解析 物体振动的能量由振幅来决定,振幅越大,振动能量越大,振动越强烈,因此A 、B 正确.振幅是质点离开平衡位置的最大距离,与位移无关,而加速度随时间时刻变化,所以C 、D 不正确.10.答案 减小 增大 先增大后减小 不变解析 挂在弹簧下的物体做简谐运动,选地板为重力势能的零势面,物体从开始运动到最低点这一过程中,物体离地面的距离不断减小,则重力势能不断减小,弹簧的长度不断增大,则弹性势能不断增大,物体由静止变为运动,到达平衡位置时,速度增大到最大,由平衡位置运动到最低点过程中,速度不断减小,所以动能先增大后减小,但总机械能不变.11.答案 BC 解析 简谐运动过程中机械能守恒,因此选项A 、D 错误;在最大位移处,弹簧形变最大,因此弹性势能最大,选项B 正确,从平衡位置到最大位移处,x ↑→v ↓→E k ↓,选项C 正确.12.答案 (1)作图略 (2)T =bm (3)1.23~1.27均可 13.答案 (1)5 0.8 1.25 (2)5 cm 100 cm (3)0.8 s解析 (1)根据题意,振子从距平衡位置5 cm 处由静止释放,说明弹簧振子在振动过程中离开平衡位置的最大距离是5 cm ,即振幅为5 cm.振子在4 s 内完成5次全振动,则T=0.8 s ,又因为f =1T,则f =1.25 Hz.(2)4 s 内完成5次全振动,即振子又回到原来的初始位置,因而位移大小为5 cm ,振子做一次全振动的路程为20 cm ,则5次全振动路程为100 cm. (3)弹簧振子的周期是由弹簧的劲度系数和振子的质量决定的,其固有周期与振幅大小无关,故周期仍为0.8 s.14.答案 (1)3mg2k (2)(2n +1)2gT (n =0,1,2…)解析 (1)线断前,线的拉力F =mg ,设此时弹簧伸长为x 0,F cos 30°=k x 0,得x 0=3mg2k.线断后,在弹力作用下,A 做简谐运动的振幅为A =x 0=3mg2k.(2)A 将弹簧压缩到最短经历的时间为t =⎝ ⎛⎭⎪⎫12+n T (n =0,1,2…),在t 时间末B 落地,速度v 的大小为v =gt =(2n +1)2gT (n =0,1,2…).。

22人教版高中物理新教材选择性必修第一册--第1节 简谐运动

22人教版高中物理新教材选择性必修第一册--第1节 简谐运动

第1节简谐运动课标解读课标要求素养要求1.通过实验,认识简谐运动的特征。

2.能用图像描述简谐运动。

1.物理观念:能建立弹簧振子的理想模型。

2.科学思维:能从简谐运动的图像中了解简谐运动的规律。

3.科学探究:通过对简谐运动图像的绘制,认识简谐运动的特点。

自主学习·必备知识教材研习教材原句要点一弹簧振子小球和弹簧所组成的系统称为弹簧振子,有时也简称为振子。

弹簧振子是一个理想化模型①。

要点二简谐运动如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像图像②是一条正弦曲线③,这样的振动是一种简谐运动。

自主思考①(1)若图中的小球是木头做的,或小球和杆之间的摩擦不能忽略,这个系统可称为弹簧振子吗?系统能看成弹簧振子需要满足什么条件?(2)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型?答案:(1)提示不能看作弹簧振子。

系统看成弹簧振子需要满足两个条件:①小球运动过程中不受阻力;②小球质量远大于弹簧质量。

(2)点电荷、质点等。

②振动图像的坐标系是如何建立的?答案:提示以小球的平衡位置为坐标原点,沿着它的振动方向建立坐标轴。

横坐标表示振子振动的时间,纵坐标表示振子相对平衡位置的位移。

③有同学说,既然弹簧振子的振动图像是一条正弦曲线,那么振子的运动轨迹也应是正弦曲线,结合水平方向的弹簧振子想一下,这种说法对吗?为什么?答案:提示不对,因为振动图像不是运动轨迹。

例如,水平方向的弹簧振子振动时,振子的运动轨迹是一条直线。

名师点睛1.弹簧振子的特点质量特点弹簧质量比小球质量小得多,可以认为质量只集中在振子(小球)上体积特点弹簧振子中与弹簧相连的小球的体积要足够小,可以认为小球是一个质点阻力特点在振子振动过程中,可以忽略弹簧与小球受到的各种阻力2.弹簧振子的平衡也置,不一定在弹簧的原长位置。

如图所示,用手把钢球向上托起一段距离,然后释放,钢球便上下振动,其振动的平衡位置不在弹簧的原长位置,而是在弹力与重力的合力为零的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节简谐运动1.了解什么是机械振动.2.理解平衡位置、回复力、位移、简谐运动的概念.(重点) 3.掌握简谐运动、回复力的特征以及回复力、加速度、速度随位移变化的规律.(重点+难点)一、什么是机械振动1.定义:物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动,简称振动.2.平衡位置:振动物体所受回复力为零的位置.3.回复力(1)方向:总是指向平衡位置.(2)作用效果:总是要把振动物体拉回到平衡位置.(3)来源:回复力是根据力的效果命名的力.可能是几个力的合力,也可能是由某一个力或某一个力的分力来提供.1.(1)小鸟飞走后树枝的往复运动不是机械振动.()(2)平衡位置即速度为零时的位置.()提示:(1)×(2)×二、弹簧振子的振动1.弹簧振子是一种理想模型,其主要组成部分是一个质量可以忽略不计的弹簧和一个质量为m的物体.2.如图所示,弹簧振子运动过程中,各物理量变化情况:振子运动A→O O→A′A′→O O→A位移x方向、大小变化向右、减小向左、增大向左、减小向右、增大弹力F方向、大小变化向左、减小向右、增大向右、减小向左、增大加速度a方向、大小变化向左、减小向右、增大向右、减小向左、增大速度v方向、大小变化向左、增大向左、减小向右、增大向右、减小三、简谐运动1.定义:物体所受回复力的大小跟位移大小成正比,并且总是指向平衡位置,则物体的运动叫做简谐运动.2.特征(1)受力特征:回复力满足F=-kx,其中k为比例系数,负号表示力与位移的方向相反,x 为物体偏离平衡位置的位移.(2)运动特征:加速度满足a=-km x,即做简谐运动的物体加速度的大小与位移的大小成正比,方向与位移方向相反.2.(1)所有的振动都可以看做简谐运动.()(2)简谐运动是匀速运动.()(3)简谐运动的轨迹是一条正弦曲线.()提示:(1)×(2)×(3)×对简谐运动中x、v、a的理解1.简谐运动的位移、速度、加速度(1)位移振动中的位移都是从平衡位置指向振子所在的位置.位移的表示方法是:以平衡位置为坐标原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子的位移用该时刻振子所在位置的坐标来表示.且振子通过平衡位置,位移的方向改变.这与一般运动中的位移不同,一般运动中的位移都是由初位置指向末位置.(2)速度跟运动学中的含义相同.在所建立的坐标轴上,速度的正负号表示速度方向与坐标轴的正方向相同或相反.需要说明的是,速度和位移是彼此独立的两个物理量.如振动物体通过同一个位置,其位移的方向是一定的,而其速度方向却有两种可能(两个“端点”除外):指向或背离平衡位置,且振子在两“端点”速度的方向改变.(3)加速度做简谐运动的物体加速度a=-kxm,可见简谐运动是变加速运动.振子在通过平衡位置时加速度的方向改变.2.简谐运动中位移、速度、加速度的变化规律(1)变化规律:当物体做简谐运动时,它偏离平衡位置的位移x、回复力F、加速度a、速度v、动能E k、势能E p及振动能量E,遵循一定的变化规律,可列表如下:物理量过程x F a v E k E p E远离平衡位置运动增大增大增大减小减小增大不变最大位移处最大最大最大零零最大不变靠近平衡位置运动减小减小减小增大增大减小不变平衡位置零零零最大最大最小不变(2)两个转折点①平衡位置是速度大小、位移方向、回复力方向和加速度方向变化的转折点;②最大位移处是速度方向变化的转折点.(3)一个守恒:简谐运动过程中动能和势能之间相互转化,但总的能量守恒.(1)简谐运动的位移都是相对于平衡位置的位移.(2)位移、加速度(回复力)大小的变化规律是:向着平衡位置运动时,越来越小,平衡位置处为零,最大位移处最大.(3)速度(动能)大小的变化规律是:向着平衡位置运动,越来越大;平衡位置处最大,最大位移处为零.(4)判断物体是否做简谐运动,要看回复力是否满足F=-kx.一弹簧振子做简谐运动,下列说法正确的是()A.若位移为负值,则速度一定为正值,加速度也一定为正值B.振子通过平衡位置时,速度为零,加速度最大C.振子每次通过平衡位置时,加速度相同,速度也一定相同D.振子每次通过同一位置时,其速度不一定相同,但加速度一定相同[思路点拨]解答本题应注意以下两点:(1)在同一位置时,位移、加速度相同,但速度不一定相同.(2)在平衡位置时,加速度为零,速度最大,但速度方向有可能相反.[解析]如图所示.设弹簧振子在A、B之间振动,O是它的平衡位置,并设向右为正.在振子由O向A运动过程中,振子的位移、速度为负值,加速度为正值,故A错.振子通过平衡位置时,加速度为零,速度最大,故B错.当振子每次通过同一位置时,速度大小一样,方向可能向左也可能向右,但加速度相同,故C错,D对.[答案] D(1)在分析简谐运动中各物理量的特点及关系时,可画出振子实际运动的草图,使问题更具体,便于分析.(2)分析简谐运动中各物理量的变化时,一定以位移为桥梁,理清各物理量间的关系:回复力、加速度大小与位移大小成正比,方向与位移方向相反,速度大小随位移的增大而减小,方向有时和位移相同,有时相反.对简谐运动对称性的理解简谐运动是物体在平衡位置附近所做的往复性运动.因此它具有往复性的特点(也可认为,做简谐运动的物体每隔一定时间将重复原先的运动,具有周期性的特点).它又是以平衡位置为中心的振动,因此又具有对称性的特点.如图所示,物体在A与B间运动,O点为平衡位置,任取关于O点对称的C、D两点,则有:1.时间对称t OB=t BO=t OA=t AO,t OD=t DO=t CO=t OC,t DB=t BD=t AC=t CA.2.速率对称(1)物体连续两次经过同一点(非最大位移的点)(如图中的D点)的速度大小相等,方向相反.(2)物体经过关于O点对称的两点(非最大位移的点)(如图中的C与D两点)的速度大小相等,方向可能相同,也可能相反.3.动能对称(1)物体连续两次经过同一点(如图中的D点)的动能相等.(2)物体经过关于O点对称的两点(如图中的C与D两点)的动能相等.4.位移、回复力、加速度对称(1)物体连续两次经过同一点(如图中的D点)的位移、回复力、加速度大小相等,方向相同.(2)物体经过关于O点对称的两点(如图中的C与D两点)的位移、回复力、加速度大小相等,方向相反.(1)由于简谐运动具有往复性的特点,这样就形成了简谐运动的多解问题.分析简谐运动问题时,应认真审题,找出该问题是多解还是唯一解,以保证解答的完整性.(2)关于平衡位置对称的两点,弹性势能或重力势能并不一定相等,即某种形式的势能并不一定具有对称性.如图所示,一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同.那么,下列说法正确的是()A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点对平衡位置的位移相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动[解析]由题意和简谐运动的对称性特点知:M、N两点关于平衡位置O对称.因位移、速度、加速度和力都是矢量,它们要相同,必须大小相等、方向相同.M、N两点关于O点对称,振子所受弹力应大小相等,方向相反,振子位移也是大小相等,方向相反,由此可知,A、B选项错误.振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确.振子由M到O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O到N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D 选项错误.[答案] C简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、加速度、速度、动能等均是等大的(位移、加速度的方向相反,速度的方向不确定);振子经过平衡位置两侧的两段对称路径时间相等;通过平衡位置一侧的一段路径的往返时间也相等.弹簧振子运动的过程中,有A、A′两点关于平衡位置对称,则下列说法错误的是()A.小球在A点和A′点的位移相同B.小球在两点处的速度可能相同C.小球在两点处的加速度大小一定相同D.小球在两点处的动能一定相同解析:选A.A和A′关于平衡位置对称,小球在A和A′点时位移大小相等,方向相反;小球在两处的速度可能相同,也可能速度大小相等,方向相反;小球在两处的加速度大小相等,方向相反.典型问题——简谐运动规律与力学知识的综合如图所示,质量为m的物体放在弹簧上,与弹簧一起在竖直方向上做简谐运动,振动过程中,物体对弹簧的最大压力是物重的1.5倍,则物体对弹簧的最小压力是多少?[思路点拨]首先确定物体对弹簧有最大压力和最小压力的位置,然后对物体进行受力分析,最后根据回复力的实质及竖直方向简谐运动的对称性求解.[解析]物体做简谐运动时在最低点物体对弹簧的压力最大,在最高点时物体对弹簧的压力最小.物体在最高点的加速度与在最低点时的加速度大小相等,回复力的大小也相等.物体在最低点时:F回=1.5mg-mg=ma ①物体在最高点时:F回′=mg-N=ma ②由①②两式联立解得:N =12mg .由牛顿第三定律可知物体对弹簧的最小压力是12mg .[答案] 12mg(1)根据回复力的实质,结合物体的受力情况,分别列出物体在最高点和最低点时的回复力方程,联立求解.(2)求解简谐运动规律与力学知识的综合问题时,在正确对物体进行受力分析的基础上,灵活运用简谐运动的对称性,可收到事半功倍的效果.[随堂检测]1.(多选)下列几种运动属于机械振动的是( ) A .篮球在地面上的上下运动 B .弹簧振子在竖直方向的上下运动 C .秋千在空中来回运动D .浮于水面上的圆柱形玻璃瓶上下振动解析:选BCD.机械振动是物体在平衡位置两侧做往复运动,篮球的上下运动不是在平衡位置两侧的往复运动,A 错误,B 、C 、D 正确. 2.下列振动是简谐运动的有( ) A .手拍乒乓球的运动B .弹簧的下端悬挂一个钢球,上端固定组成的振动系统C .摇摆的树枝D .从高处下落到光滑水泥地面上的小钢球的运动解析:选B.手拍乒乓球,球向上和向下运动过程中受重力,球在到达地面时发生形变,球下移,故乒乓球的运动为机械振动,但因受恒力,不是简谐运动,A 错;B 为弹簧振子,为简谐运动,B 对;C 中树枝摇摆,受树的弹力,但弹力的变化无规律,C 错;D 既不是机械振动,也不是简谐运动,D 错.3.某弹簧振子沿x 轴的简谐振动图象如图所示,下列描述正确的是( )A.t=1 s时,振子的速度为零,加速度为负的最大值B.t=2 s时,振子的速度为负,加速度为正的最大值C.t=3 s时,振子的速度为负的最大值,加速度为零D.t=4 s时,振子的速度为正,加速度为负的最大值解析:选A.t=1 s时,振子在正的最大位移处,振子的速度为零,由a=-kx/m知,加速度为负的最大值,A项正确;t=2 s时,振子位于平衡位置,由a=-kx/m知,加速度为零,B 项错误;t=3 s时,振子在负的最大位移处,由a=-kx/m知,加速度为正的最大值,C项错误;t=4 s 时,振子位于平衡位置,由a=-kx/m知,加速度为零,D项错误.4.(多选)如图所示,弹簧振子在a、b两点间做简谐运动,当振子从最大位移a处向平衡位置O运动过程中()A.加速度方向向左,速度方向向右B.位移方向向左,速度方向向右C.加速度不断增大,速度不断减小D.位移不断减小,速度不断增大解析:选BD.当振子从最大位移a处向平衡位置O运动时,振子受到的合外力向右且不断减小,加速度向右且不断减小,速度方向向右且不断增大,A、C错误;位移由平衡位置指向振子所处位置,方向向左,位移不断减小,故B、D正确.5.如图所示,一轻弹簧上端系于天花板上,下端挂一质量为m的小球,弹簧的劲度系数为k.将小球从弹簧为自由长度时的竖直位置放手,则:(1)小球从放手运动到最低点,下降的高度为多少?(2)小球运动到最低点时的加速度的大小是多少?解析:(1)设放手后弹簧伸长了x后到达平衡位置O点,则有mg=kx,所以x=mgk;小球从平衡位置又下降高度x后运动到最低点,x即为振动过程中球离开平衡位置的最大距离,所以小球由放手到最低点,下降高度为h =2x =2mgk.(2)小球刚放手时,只受重力作用,加速度为g ,球在最高点和最低点关于平衡位置对称,所以在最低点时的加速度大小为g ,方向竖直向上. 答案:(1)2mgk(2)g[课时作业]一、单项选择题1.在水平方向上振动的弹簧振子如图所示,小球受力情况是( )A .重力、支持力和弹簧的弹力B .重力、支持力、弹簧弹力和回复力C .重力、支持力和回复力D .重力、支持力、摩擦力和回复力解析:选A.本题主要对弹簧振子进行受力分析,应当注意,回复力是以效果命名的力,是由弹簧的弹力提供的,故A 正确.2.某一弹簧振子做简谐运动,在下面的四幅图象中,能正确反映加速度a 与位移x 的关系的是( )解析:选B.回复力F =-kx ,又由F =ma 可知应选B 项.3.如图所示,在光滑的水平桌面上有一弹簧振子,弹簧的劲度系数为k .开始时,振子被拉到平衡位置O 的右侧A 处,此时拉力的大小为F ,然后释放振子,振子从初速度为零的状态开始向左运动,经过时间t 后,第一次到达平衡位置O 处,此时振子的速度为v ,则在这一过程中振子的平均速度( ) A .等于 v 2B .等于 FktC .小于 v2D .等于不为零的某值,但根据题设条件无法求出解析:选B.时间t 内的位移x =F k ,则平均速度v =x t =Fkt,故选B 项.4.如图所示,一轻质弹簧下面悬挂一物块组成一个沿竖直方向振动的弹簧振子,弹簧的上端固定于天花板上,当物块处于静止状态时,取它的重力势能为零,现将该物块向下拉一小段距离放手,此后振子在平衡位置上下做简谐运动,不计空气阻力,则( )A .振子速度最大时,振动系统的势能为零B .振子速度最大时,物块的重力势能与弹簧的弹性势能相等C .振子经过平衡位置时,振动系统的重力势能最小D .振子在振动过程中,振动系统的机械能守恒解析:选D.当振子的速度最大时,振子处于平衡位置,弹力与重力大小相等,方向相反,弹性势能不为零,而重力势能为零,A 、B 错;由于系统能量守恒,振子在平衡位置时的速度最大,动能最大,势能最小,但不是重力势能最小,C 错,D 对. 5.如图所示,弹簧振子的质量为0.2 kg ,做简谐振动,当它运动到平衡位置左侧2 cm 时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 时,它的加速度( ) A .大小为20 m/s 2,向右 B .大小为20 m/s 2,向左 C .大小为40 m/s 2,向左D .大小为40 m/s 2,向右解析:选C.在平衡位置左侧时,F 1=-kx 1,在平衡位置右侧时,F 2=-kx 2,得F 2=8 N ,又a 2=F 2m =80.2m/s 2=40 m/s 2,方向向左,C 正确.6.如图所示,质量为m 的物体A 放在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动.设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( ) A .kx B .m M kxC.m m +Mkx D .0解析:选C.A 、B 一起做简谐运动,对A 、B 组成的系统而言,回复力是弹簧的弹力,而对于A而言,回复力则是B对A的静摩擦力.利用整体法和牛顿第二定律求出整体的加速度,再利用隔离法求A受到的静摩擦力.对A、B组成的系统,由牛顿第二定律得F=(M+m)a.又F=kx,则a=kxM+m.对A由牛顿第二定律得f=ma=mM+mkx.由以上分析可知:做简谐运动的物体A由它所受的静摩擦力提供回复力,其比例系数为mM+m k,不再是弹簧的劲度系数k.二、多项选择题7.做简谐运动的振子每次通过同一位置时,一定相同的物理量是()A.速度B.加速度C.位移D.动能解析:选BCD.振子通过同一位置时,位移、加速度的大小和方向、动能都相同.速度的大小相同,但方向不一定相同,故选BCD.8.做简谐运动的弹簧振子,下述说法中正确的是()A.振子通过平衡位置时,速度最大B.振子在最大位移处时,加速度最大C.振子在连续两次通过同一位置时,位移相同D.振子在连续两次通过同一位置时,速度相同,动能相同解析:选ABC.在平衡位置处速度最大,由a=-km x知,在最大位移处加速度最大,连续两次通过同一位置时,位移大小、方向均相同,速度大小相同,动能相同,但速度方向有可能相反,A、B、C正确,D错误.9.如图所示,弹簧下端悬挂一钢球,上端固定,它们组成一个振动的系统.用手把钢球向上托起一段距离,然后释放,钢球便上下振动起来,若以竖直向下为正方向,下列说法正确的是()A.钢球静止时的位置为平衡位置B.钢球所受弹力为零的位置为平衡位置C.钢球振动到距原静止位置下方3 cm处时位移为3 cmD.钢球振动到距原静止位置上方2 cm处时位移为2 cm解析:选AC.小球的回复力由重力与弹力的合力提供,平衡位置是重力与弹力合力为零的位置,即钢球原来静止时的位置,A 正确、B 错误,在平衡位置下方位移为正,在平衡位置上方位移为负,C 正确,D 错误.10.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O 在A 、B 间振动,如图所示,下列结论正确的是( )A .小球在O 位置时,动能最大,加速度最小B .小球在A 、B 位置时,动能最大,加速度最大C .小球从A 经O 到B 的过程中,回复力一直做正功D .小球从A 经O 到B 的过程中,系统机械能不变解析:选AD.小球在平衡位置时动能最大,加速度为零,因此A 选项正确.小球靠近平衡位置时,回复力做正功;远离平衡位置时,回复力做负功.振动过程中总能量不变,因此B 、C 选项错误,D 选项正确.三、非选择题11.如图所示,一质量为M 的无底木箱,放在水平地面上,一轻质弹簧一端悬于木箱的上边,另一端挂着用细线连接在一起的两物体A 和B ,m A=m B =m .剪断A 、B 间的细线后,A 做简谐运动,则当A 振动到最高点时,木箱对地面的压力为多大?解析:本题考查简谐运动的特点及物体受力情况的分析.剪断细线前A 的受力情况:重力:mg ,向下;细线拉力:F =mg ,向下;弹簧对A 的弹力:N =2mg ,向上.此时弹簧的伸长量为Δx =N k =2mg k .剪断细线后,A 做简谐运动,其平衡位置在弹簧的伸长量为Δx ′=mg k处,最低点即刚剪断细线时的位置,离平衡位置的距离为mg k ,由简谐运动的对称性知最高点离平衡位置的距离也为 mg k,所以最高点的位置恰好在弹簧的原长处.此时弹簧对木箱作用力为零,所以此时木箱对地面的压力为Mg .答案:Mg12.如图所示,一质点以O 点为中心在AB 之间做简谐运动,质点从O点开始运动,经过5 s 第一次经过M 点,继续运动,又经过2 s 第二次经过M 点,求质点第三次经过M 点用多长时间?解析:设N 为M 关于O 点的对称点,设从O 到M 用时间t 1,从M 到A 用时间t 2,根据简谐运动的对称性得t ON =t 1,t NB =t 2.(1)若质点开始时向OM 方向运动则有:⎩⎪⎨⎪⎧5 s =t 12 s =2t 2, 所以⎩⎪⎨⎪⎧t 1=5 s t 2=1 s ,质点第三次经过M 点用时间 t =4t 1+2t 2=22 s.(2)若质点开始时向ON 方向运动则有:⎩⎪⎨⎪⎧5 s =3t 1+2t 22 s =2t 2,所以t 1=t 2=1 s 质点第三次经过M 点用时间t =4t 1+2t 2=6 s.答案:22 s 或6 s。

相关文档
最新文档