《自动控制原理》MATLAB分析与设计

合集下载

11自动控制原理MATLAB实验指导书

11自动控制原理MATLAB实验指导书

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。

2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。

3.在simulink 仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。

2)改变模块参数。

在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。

图1-1 SIMULINK 仿真界面 图1-2 系统方框图3)建立其它传递函数模块。

按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math ”右边窗口“Gain ”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。

《自动控制原理》MATLAB用于频域分析实验

《自动控制原理》MATLAB用于频域分析实验
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
1、曲线1
k = 500;
num = [1,10];
den = conv([1,0],conv([1,1],conv([1,20],[1,50])));
《自动控制原理》MATLAB用于频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、
Matlab2014b版
三、实验原理
1、奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
通过使用Matlab2014b版,加深了解系统频率特性的概念以及典型环节的频率特性。
七、结论
本实验验证的典型环节的频率特性。
八、实验心得体会(可略)
常用格式:
nyquist (num,den)
或nyquist (num,den,w) 表示频率范围0~w。
或nyquist (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:
2、对数频率特性图(波特图)
MATLAB为用户提供了专门用于绘制波特图的函数bode
常用格式:
bode (num,den)
或bode (num,den,w) 表示频率范围0~w。
或bode (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:系统开环传函为 绘制波特图。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

matlab课程设计自动控制原理

matlab课程设计自动控制原理

matlab课程设计自动控制原理一、教学目标本课程的目标是使学生掌握自动控制原理的基本概念和MATLAB在自动控制领域的应用。

通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和设计方法,熟练运用MATLAB进行自动控制系统的分析和仿真。

知识目标:学生通过本课程的学习,应掌握自动控制基本理论、MATLAB基本操作和自动控制系统仿真方法。

技能目标:学生应能熟练使用MATLAB进行自动控制系统的建模、仿真和分析,具备一定的实际问题解决能力。

情感态度价值观目标:培养学生对自动控制技术的兴趣和热情,提高学生运用现代技术手段进行科学研究的能力,培养学生的创新精神和团队合作意识。

二、教学内容本课程的教学内容主要包括自动控制原理的基本概念、MATLAB的基本操作和自动控制系统的仿真方法。

1.自动控制原理:包括自动控制系统的组成、数学模型、稳定性分析、控制器设计和校正方法等。

2.MATLAB基本操作:包括MATLAB的安装和启动、变量和数据类型、矩阵运算、编程和函数的使用等。

3.自动控制系统仿真:包括MATLAB仿真环境的设置、Simulink的介绍和应用、控制系统仿真的方法和步骤等。

三、教学方法本课程采用讲授法、案例分析法和实验法相结合的教学方法。

1.讲授法:通过教师的讲解,使学生掌握自动控制原理的基本概念和MATLAB的基本操作。

2.案例分析法:通过分析实际案例,使学生理解和掌握自动控制系统的建模和仿真方法。

3.实验法:通过上机实验,使学生熟练掌握MATLAB自动控制系统仿真工具的使用,提高学生的实际操作能力。

四、教学资源本课程的教学资源包括教材、多媒体资料和实验室设备。

1.教材:选用《自动控制原理》和《MATLAB基础教程》作为主要教材,为学生提供系统的理论知识和实践指导。

2.多媒体资料:制作课件、教学视频等,以图文并茂的形式展示自动控制原理和MATLAB的操作方法。

3.实验室设备:提供计算机和MATLAB软件,供学生进行自动控制系统的仿真实验。

matlab自动控制原理课程设计

matlab自动控制原理课程设计

matlab自动控制原理课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB在自动控制原理中的应用,培养学生利用MATLAB进行自动控制系统分析和设计的能力。

具体目标如下:1.知识目标:(1)理解自动控制系统的的基本概念、原理和特点;(2)熟悉MATLAB的基本操作和功能,掌握MATLAB在自动控制原理中的应用;(3)了解自动控制系统的常见分析和设计方法,并能运用MATLAB 进行实现。

2.技能目标:(1)能够运用MATLAB进行自动控制系统的建模、仿真和分析;(2)能够运用MATLAB进行自动控制系统的控制器设计和参数优化;(3)能够结合自动控制理论,对实际控制系统进行MATLAB仿真和调试。

3.情感态度价值观目标:(1)培养学生对自动控制理论和实践的兴趣,提高学生学习的积极性;(2)培养学生勇于探索、严谨治学的科学态度;(3)培养学生团队协作、交流分享的良好习惯。

二、教学内容根据教学目标,本课程的教学内容主要包括以下三个方面:1.MATLAB基本操作和功能介绍:MATLAB的安装和配置、基本数据类型、运算符、矩阵操作、函数编写等。

2.自动控制原理:控制系统的基本概念、数学模型、稳定性分析、控制器设计、系统校正等。

3.MATLAB在自动控制原理中的应用:控制系统建模、仿真、分析方法,控制器设计及参数优化,实际控制系统调试等。

三、教学方法本课程采用多种教学方法相结合,以提高学生的学习兴趣和主动性:1.讲授法:用于讲解自动控制原理的基本概念、理论和方法。

2.案例分析法:通过分析实际案例,使学生更好地理解自动控制原理及其在工程中的应用。

3.实验法:让学生动手实践,利用MATLAB进行控制系统建模、仿真和分析。

4.讨论法:学生进行分组讨论,促进学生间的交流与合作,培养学生的团队协作能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将采用以下教学资源:1.教材:《MATLAB自动控制原理与应用》。

自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析

自动控制原理的MATLAB仿真与实践第5章  线性系统的频域分析
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
margin(G);[Gm,Pm,Wcg,Wcp]= margin(G): 直接求出系统G的幅值裕度和相角裕度。 其中:Gm幅值裕度;Pm相位裕度;Wcg幅值裕度 处对应的频率ωc;Wcp相位裕度处对应的频率ωg。
nichols(G);nichols(G,w):绘制单位反馈系统开环传 递尼科尔斯曲线。
20
>>clear; num=[2, 3];den=[1, 2, 5, 7]; %G(s)的分子分母 多项式系数向量
p=roots(den) 求根结果:
%求系统的极点
p=
-0.1981 + 2.0797i
-0.1981 - 2.0797i
-1.6038 可见全为负根,则s右半平面极点数P=0。 绘制Nyquist曲线: >> nyquist(num,den) %绘制Nyquist曲线
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。

《自动控制原理》实验教案2012

《自动控制原理》实验教案2012

《自动控制原理》武汉工程大学电气信息学院2012年11月25日《自动控制原理》实验说明一、实验条件要求硬件:个人计算机;软件:MATLAB仿真软件(版本6.5或以上)。

带上课用教材和纸笔二、实验内容实验1 认识MATLAB实验2 基于MATLAB的控制系统建模实验3 基于MATLAB的控制系统时域及稳定性分析实验4 基于MATLAB的控制系统频域及根轨迹分析三、实验报告要求说明认真阅读教材,深刻理解和掌握自动控制原理的基本概念和原理,掌握利用MATLAB对控制系统进行仿真分析和设计。

针对每个命令,查看帮助文件,加强练习,认真完成实验报告。

实验1 认识MATLAB一、实验目的1.了解MA TLAB的发展过程及MATLAB在自动控制中的用途。

2.掌握MA TLAB的基本指令。

二、实验要求实验前复习教材中的相关内容,做好实验预习报告。

三、实验内容及步骤1.MA TLAB的基本操作(1) MATLAB命令窗口计算机安装好MATLAB之后,双击MA TLAB图标,即进入命令窗口,此时意味着系统处于准备接受命令的状态,可以在命令窗口中直接输入命令语句。

MATLAB语句形式为:》变量= 表达式但键入回车时,该语句被执行。

该语句执行之后,窗口自动显示出执行语句的结果。

如果不希望结果显示在命令窗口,只需要在该语句之后加一个分号“;”即可。

此时尽管没有显示结果,但它依然被赋值并在MATLAB的工作空间中分配了内存。

注意:a.用方向键和控制键可以编辑修改已输入的命令。

b.用命令窗口的分页输出“more off”表示不允许分页;“more on”表示允许分页;“more(n)”指定每页输出的页数。

c.多行命令为“…”。

(2)变量变量的名字必须以字母开头,之后可以是任意字母、数字或下划线;变量名称区分字母的大小写;变量中不能包含标点符号。

MATLAB规定了一些特殊的变量,如果没有特别定义,将其表示为默认值。

(3)数值显示格式任何MATLAB语句执行的结果都可以显示在屏幕上,同时赋值给指定的变量;没有指定变量时,赋值给一个特殊的变量“ans”。

自动控制原理MATLAB分析与设计-仿真实验报告

自动控制原理MATLAB分析与设计-仿真实验报告

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。

2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。

3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。

2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。

图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。

4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。

5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。

图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

自动控制原理实验报告学 院 电子信息与电气工程学院实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、系统的动态性能指标有哪些?三、实验方法 (一) 四种典型响应 1、阶跃响应: 阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点;3、利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2.用Matlab求出253722)(2342++++++=s s s s s s s G 的极点。

广东工业大学《自动控制原理》MATLAB仿真实验指导书

广东工业大学《自动控制原理》MATLAB仿真实验指导书

自动控制原理MATLAB仿真实验指导书李明编写广东工业大学自动化学院自动控制系二〇一四年九月实验项目名称:实验一线性系统的时域响应实验项目性质:MATLAB仿真实验所属课程名称:自动控制原理实验计划学时:2学时一、实验目的1.熟悉控制系统MATLAB仿真的实验环境。

2.掌握使用MATLAB进行系统时域分析的方法,研究一阶系统和二阶系统的时域响应特性。

二、实验环境装有MATLAB6.5或以上版本的PC机一台。

三、实验内容和要求1.了解和掌握MATLAB中传递函数表达式及输出时域函数表达式。

2.利用MATALB观察和分析一阶系统的阶跃响应曲线,了解一阶系统的参数:时间常数对一阶系统动态特性的影响。

3.掌握典型二阶系统模拟电路的构成方法;研究二阶系统运动规律。

研究其重要参数:阻尼比对系统动态特性的影响,分析与超调量%、过渡过程时t的关系。

间s四、实验方法1.MATLAB中建立传递函数模型的相关函数(1)有理分式降幂排列形式: tf()(2)零极点增益模型: zpk()(3)传递函数的连接方式: series(), parallel(), feedback()2.MATLAB中分析系统稳定性的相关函数(1)利用pzmap()绘制连续系统的零极点图;(2)利用roots()求分母多项式的根来确定系统的极点3.MATLAB中分析线性系统的时域响应的相关函数(1)生成特定的激励信号的函数gensig( )(2) LTI 模型任意输入的响应函数lsim( ) (3) LTI 模型的单位冲激响应函数impulse( ) (4) LTI 模型的阶跃响应函数step( )五、 实验步骤1. 线性系统的稳定性分析(1) 若线性系统的闭环传递函数为225()425G s ss,试绘制其零极点分布图,并据此判断系统的稳定性。

(2) 若线性系统的闭环传递函数为229(0.21)()( 1.29)s s G s s s s ,求出该闭环传递函 数的所有极点,并据此判断系统的稳定性。

基于MATLAB的《自动控制原理》实验教学探讨

基于MATLAB的《自动控制原理》实验教学探讨
统实现 复杂 的系统 模型 和控 制 器模 型更 是 困难 。 目前
阵计算 、 图形绘制 、 数据处理 、 图象处理、 方便的 Wi n — dw 编程等便利工具。此外 , os 国际控制界的很多著名
专家将 自己擅 长的 C D方法用 M T A A A L B加 以实现,
形成大量 的 M T A A L B配套 工具箱。这些工具箱将一 流专 家学 者 的理 论 和经 验 与 M T A A L B高 技 术 计 算 环 境 的 内在 效力 及灵 活 性有 机 地集 成 为一体 。用户不 仅 可快速获得特定问题 的准确答案 , 而且能随时对各类 计算 或测试数据进行可视化处理。 2 将 MA L T AB引入 自动控 制 原理 中的 必要性
式和数学表达习惯 , 并在很大程度上摆脱 了传统非交 互式 程序设 计语 言 ( C、O T A 等 ) 编 程模 式 , 如 FR R N 的 代 表 了当今 国际科学 计 算软 件 的先 进水 平 。 目前 MA L B已成为 国际上 控 制界 最 流 行 软件 。 TA
M TA A L B语言执行效率较低 , 但其编程效率与可

M TA A L B语言可在 目前的各种类型的计算机上运 行, 安装简易 。单纯使用 M T A A L B语言进行编程 的程 序可以不做丝毫修改便可直接移植到其它机型上去使 用, 提供学生上机实 习的外部环境 相对简单、 容易 实
现。
简捷、 有效的编程工具。在它的编程环境中, 任何复杂 计算问题及其解的描述均十分符合人们 的逻辑思维方
控制理论 , 可以增 强学生的研 究能 力和 创新 能力 , 并 弥补 了传 统硬件 实验 的不足 , 大大提 高 了实验效 率 , 改善 了实验效

自动控制原理matlab

自动控制原理matlab

自动控制原理matlab
自动控制原理是一门重要的工程学科,旨在实现通过系统反馈控制来达成特定目标的控制系统。

Matlab是一个专业的数学计算软件,广泛应用于各种领域。

自动控制原理与Matlab的结合,可以方便地进行系统建模、控制系统设计、仿真与实现等工作。

在自动控制原理的应用中,系统建模是一个重要的工作。

建模的主要目的是描述系统行为和性质,并在此基础上进行控制器设计。

在建模过程中,需要使用数学模型来描述系统的动态行为,如传递函数、状态空间模型等。

Matlab作为一款强大的数学计算软件,提供了大量的工具来支持系统建模,如控制系统工具箱、系统识别工具箱等。

在控制器设计过程中,经典的控制方法主要包括PID控制、根轨迹设计、频率响应设计等。

这些方法需要根据系统特性进行参数调整,以达到预期的控制效果。

在Matlab中,可以通过调用控制系统工具箱中的函数来方便进行控制器设计和参数调整。

此外,Matlab还提供了仿真工具,可以对系统进行仿真,从而验证控制器的性能和稳定性。

在实现阶段,Matlab还提供了一些特定硬件的接口,如Arduino、Raspberry Pi等,可以实现控制器的实际控制。

通过硬件接口与Matlab的结合,可以实现系统在物理环境中的实时控制,并进行实验
验证。

综上所述,自动控制原理与Matlab的结合,可以方便地进行系统建模、控制器设计、仿真与实现等工作。

在工程实际应用中,这种结合能够大大提高工作效率和控制系统稳定性。

因此,自动控制原理matlab是工程学科中不可缺少的重要组合之一。

《自动控制原理》Matlab求解控制系统数学模型实验

《自动控制原理》Matlab求解控制系统数学模型实验

《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。

如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。

MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。

四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。

➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。

k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。

自动控制原理 - Matlab实验分析完整报告【优秀版】

自动控制原理 - Matlab实验分析完整报告【优秀版】

利用MATLAB 进行自动控制原理的一些分析来自:我是痕痕的弟弟1、已知三阶系统开环传递函数为G (S )=)232(2723+++s s s ,利用MATLAB 程序,画出系统的奈圭斯特图,求出相应的幅值裕量和相位裕量。

解: 程序如下:G=tf(3.5,[1,2,3,2]); %得到系统的传递函数 subplot(1,2,1);nyquist(G); %绘制奈圭斯特曲线gridxlabel('Real Axis')ylabel('Image Axis')[Gm,Pm,Weg,Wep]=margin(G) %求幅值和相角余度及对应的频率G_ c=feedback(G,1); %构造单位反馈系统subplot(1,2,2); %绘制单位阶跃响应曲线step(G_ c)gridxlabel('Time(secs)')ylabel('Amplitude')显示结果:Gm=1.1433 Pm=7.1688 Wcg=1.7323 Wcp=1.6541系统的奈圭斯特图如下(从MATLAB截图显示):2、绘制二阶环节的伯特图。

解:MATLAB程序如下:figure('pos',[30 100 260 400],'color','w');axes('pos',[0.15 0.2 0.7 0.7]);wn=1w=[0,logspace(-2,2,200)]; %得到对数频率数组for zeta=[0.1 0.5 1 2] %分别绘制阻尼系数为0.1、0.5、1、2的二阶环节bode 图G=tf(1,[wn^-2 2*zeta/wn 1]); bode(G ,w); hold on end;grid程序运行后得到如下图(MATLAB 截图显示):从图中可以看出,频率w 接近Wn 时产生谐振,阻尼比的大小确定谐振峰值的大小,阻尼比越小,谐振峰值越大。

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。

图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制原理》MATLAB分析与设计
仿真实验报告
第三章线性系统的时域分析法
1、教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;
(1)原系统的动态性能
SIMULINK仿真图:
仿真结果:
分析:从图中可以看出:峰值时间:tp=3.2s,超调量18.0%,调节时间ts=7.74s。

(2)忽略闭环零点的系统动态性能
SIMULINK仿真图:
仿真结果:
分析:从图中可以看出:峰值时间:tp=3.6s,超调量16.7%,调节时间ts=7.86s。

(3)两种情况动态性能比较
SIMULINK仿真图:
仿真结果:
原系统
忽略闭环零点
分析:通过比较可以看出闭环零点对系统动态性能的影响为:减小峰值时间,使系统响应速度加快,超调量增大。

这表明闭环零点会减小系统阻尼。

3-9系统
SIMULINK仿真图:
仿真结果:
Scope0
分析:从图中可以看出:峰值时间:tp=1.05s,超调量35.1%,调节时间ts=3.54s(△=2%)。

Scope1
分析:从图中可以看出:峰值时间:tp=0.94s,超调量37.1%,调节时间ts=3.44s(△=2%)。

Scope2
分析:由于计算机在计算的过程也存在误差,因此,不同的参数时,两条线重合,需将闭环传递函数计算出来再作比较。

计算出闭环传递函数
SIMULINK仿真图:
分析:从图中可以看出:峰值时间:tp=1.05s,超调量35.1%,调节时间ts=3.54s(△=2%)。

Scope4
分析:从图中可以看出:峰值时间:tp=0.94s,超调量37.1%,调节时间ts=3.44s(△=2%)。

微分反馈系统
结果:比较表明系统的稳定性与前馈控制无关;微分反馈使系统的性能得到了改善。

3、英文讲义P153.E3.3
SIMULINK仿真图:
仿真结果:
4、实例“Disk Drive Read System”,在Ka=100时,试采用微分反馈使系统的性能满足给定的设计指标。

SIMULINK仿真图:
仿真结果:
第四章线性系统的根轨迹法1、英文讲义P157.E4.5 MATLAB程序:
num=[1];
den=[1 -1 0];
rlocus(num,den)
仿真结果:
-0.2
00.20.4
0.60.81 1.2
Root Locus
Real Axis
I m a g i n a r y A x i s
2、P181.4-5-(3)的根轨迹 MATLAB 程序:
G=zpk([],[0 -1 -3.5 -3-2i -3+2i],1); rlocus(G); 根轨迹图:
-15
-10-5
0510
-15-10
-5
5
10
15
Root Locus
Real Axis
I m a g i n a r y A x i s
习题4-10 MATLAB 程序:
G1=zpk([],[0 0 -2 -5],1); G2=zpk([-0.5],[0 0 -2 -5],1); figure(1) rlocus(G1); figure(2) rlocus(G2); 根轨迹图:
-20
-15-10-5
051015
-15-10
-5
5
10
15
Root Locus
Real Axis
I m a g i n a r y A x i s
-25
-20-15-10
-50510
-20-15
-10
-5
5
10
15
20
Root Locus
Real Axis
I m a g i n a r y A x i s
第五章 线性系统的频域分析法 5-10
MATLAB 程序:
G=tf([1,1],conv([0.5,1,0],[1/9,1/3,1])); bode(G);grid 响应曲线:
-100-50
50
M a g n i t u d e (d B
)10
-1
10
10
1
10
2
-270
-225-180-135-90
-45P h a s e (d e g )
Bode Diagram
Frequency (rad/sec)
5-16
MATLAB 程序: K1=1;T1=2;
G1=tf([K1],[conv([conv([1,0],[T1,1])],[1,1])]); G11=feedback(G1,1); K2=2;T2=0.5;
G2=tf([K2],[conv([conv([1,0],[T2,1])],[1,1])]); G21=feedback(G2,1);
K3=2;T3=0.5;
G3=tf([K2],[conv([conv([1,0],[T3,1])],[1,1])]); G31=feedback(G3,1); figure(1);step(G11);grid; figure(2);step(G21);grid; figure(3);step(G31);grid; 响应曲线:
05101520253035404550
0.20.40.60.811.2
1.41.6
1.8Step Response
Time (sec)
A m p l i t u d e
05101520253035404550
0.20.40.60.811.2
1.41.6
1.8Step Response
Time (sec)
A m p l i t u d e
05101520253035404550
0.20.40.60.811.2
1.41.6
1.8Step Response
Time (sec)
A m p l i t u d e
第六章 线性系统的校正
1、习题6-20,根据计算所得K1=5;K2=2.5;
MATLAB 程序: K1=5;K2=2.5; G0=tf(10,[1,10,0]); Gc=tf([K1,K2],[1,0]); G=series(G0,Gc); G1=feedback(G,1); step(G1);grid 响应曲线
0123456
0.2
0.4
0.6
0.8
1
1.2
1.4
Step Response
Time (sec)
A m p l i t u d e
2、习题6-18, MATLAB 程序: t=0:0.01:1;
Ka=10;Kb=0;k1=4.16;K2=52.75;K3=1.24;
G1=tf(20*K2,[1,3+Kb+20*K3,2+20*Ka+Kb+20*K1,20*K2]); step(G1,t);grid; 响应曲线
00.10.20.30.40.50.60.70.80.91
0.10.20.30.40.50.6
0.70.80.9
1Step Response
Tim e (sec)
A m p l i t u d e
分析:本设计联合采用PID 控制器与前置滤波器,使系统具有最小节拍响应,保证系统有良好的稳态性能和动态性能,采用内回路反馈包围被控对象,以减小被控对象参数摄动的影响,使系统具有鲁棒性。

第七章 线性离散系统的分析与校正
1、教材P383.7-20的最小拍系统设计及验证 MATLAB 程序: T=1; t=0:1:10;
sys=tf([0,1],[1,0],T); step(sys,t); axis(1,10,0,1.2);
grid; xlabel('t'); ylabel('c(t)');
012345678910
0.10.20.30.40.50.6
0.70.80.9
1Step Response
t (sec)
c (t )
2、教材7-25的控制器的设计及验证 MATLAB 程序: T=0.1;
sys1=tf([150,105],[1,10.1,151,105]);
sys2=tf([0.568,-0.1221,-0.3795],[1,-1.79,1.6,-0.743],T); step(sys1,sys2,4); grid;
00.51 1.52 2.53 3.54
0.20.40.60.811.2
1.41.6
1.8Step Response
Time (sec)
A m p l i t u d e
当T=0.01时的单位响应曲线
00.51 1.52 2.53 3.54
0.20.40.60.811.2
1.41.6
1.8Step Response
Time (sec)
A m p l i t u d e
MATLAB 程序:
T=0.1; t=0:0.1:2; u=t;
sys=tf([0.568,-0.1221,-0.3795],[1,-1.79,1.6,-0.743],T) lsim(sys,u,t,0); grid;
单位斜坡响应曲线:
00.20.40.60.81 1.2 1.4 1.6 1.82
0.20.40.60.811.2
1.41.61.8
2Linear Simulation Results
Time (sec)
A m p l i t u d e。

相关文档
最新文档