例:动态规划解最短路径问题:
最短路径规划实验报告
![最短路径规划实验报告](https://img.taocdn.com/s3/m/e4990f254b73f242336c5ff4.png)
1.实验题目:单源最短路径的dijkstra解法两点间最短路径的动态规划解法Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
注意该算法要求图中不存在负权边。
问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。
(单源最短路径)2.算法描述:1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v 到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。
U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
用动态规划模型求解最短路问题的研究
![用动态规划模型求解最短路问题的研究](https://img.taocdn.com/s3/m/f585cc60561252d380eb6e73.png)
当‘
,
,
“ 发 点 只有一 个
‘
,
点
则‘
,
。
,
,
。
距离为
一 至此 , 可 得最优决 策 函数序列 气 , 其 中
人
飞 万 。‘
丙
算法 , 矩 阵算法 , 动态规划方法等
枷 算法可用 于计算 网络 图中某一点到各 点的最短距
离 , 但实 际问题 中有时需要求 网络 中所 有各点 之间 的最短 距离 , 如果 仍采用
加 算法分别计 算 ,
效率很低 矩 阵算法可用于 计算所 有节点之 间的最短路 径 , 但计算 量较大 , 适 于用计算机计算 动态规
二
,
,
…,
,
式 中 为 阶段变量 为阶段数 , 。分别 为第 阶段 的状态 变量和决 策变量
动态规划可 分为正 向思维法和逆 向思 维法 , 逆 向思 维法是 指从问题 目标状 态 出发倒 推 回初始状
态或边界状 态 的思维方法 , 而 正 向思维法则正 好与之相反 在运 用求解最短路问题时 , 则有两种解法
划方法主要是研究与解决多阶段决策过程 的最优化问题 , 是求最短路 问题的好算法 , 动态规划方法是
将求解分成多 阶段进行 , 求 出的不 但是全过程 的解 , 而 且包括后部子过程 的一族解 , 在某些情况下 , 实
际问题需要族解时 , 更显其优越性
动态规划所处理的问题 是一个 多阶段 决策间题 , 一 般由初始状态开始 , 通过对中间阶段决策 的选
收稿 日期 二双刃名一 一
— 作者简介 王 百级 盯
, 女 , 白城 师范 学院毅学 系讲 师 , 研 究方 向 橄分 方 权理 论 。
用动态规划模型求解最短路问题 的研究
动态规划实现最短路径问题
![动态规划实现最短路径问题](https://img.taocdn.com/s3/m/3155bd7ff56527d3240c844769eae009581ba295.png)
动态规划实现最短路径问题⼀、设计最短路径的动态规划算法 <算法导论>中⼀般将设计动态规划算法归纳为下⾯⼏个步骤: 1)分析最优解的结构 2)递归定义最优解的值 3)⾃底向上计算最优解的值 4)从计算的最优解的值上⾯构建出最优解⼆、最短路径的结构 从最优解的结构开始分析(我们假设没有权值为负的路径),对于图G<V,E>的所有结点对最短路径的问题,我们能知道⼀条最短路径的⼦路径都是最短路径。
假设⽤邻接矩阵W=w(ij)来表⽰输⼊带权图,考虑从结点i到结点j的⼀条最短路径p,如果p最多有m(m为有限值)条边。
若i=j,则p的权值为0⽽且不包含其他边。
若i ≠ j,可以将i到j的路径转换为i -> k、k->j。
三、⼀个给定的图 1)给定⼀个有向图 2)我们可以给出这个有向图的邻接矩阵四、C++实现1 #include <iostream>2 #include<fstream>3 #include<sstream>4 #include<vector>5 #include<string>6using namespace std;7const int Max_Num = 100;89 typedef struct Point {10int n; //点的个数11double p[Max_Num];12double q[Max_Num];13int root[Max_Num][Max_Num];14double w[Max_Num][Max_Num];15double e[Max_Num][Max_Num];16 }Point;1718 vector<Point> points;19 vector<string> res;20 vector<int> num;2122void file_read();23void createPoint();24void optimalBST();25void printRoot(Point P);26void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite);27 template <class Type>28 Type stringToNum(const string& str) {29 istringstream iss(str);30 Type num;31 iss >> num;32 iss.str("");33return num;34 }3536void file_read() {37string str2, str1 = "", result;38 ifstream fileRead("in.dat");39if (fileRead.is_open()) {40while (getline(fileRead, str2, '\n')) {41if (str2.find("") != -1) {42 str1.append(str2 + "");43 }44else {45 num.push_back(stringToNum<int>(str2));46if (str1 != "") {47 res.push_back(str1);48 }49 str1 = "";50 }51 }52 res.push_back(str1);53 fileRead.close();54 }55 }5657void createPoint() {58string temp;59 Point P;60for (int i = 0; i < res.size(); i++) {61 vector<string> temp_str; //存放按照空格分开后的数字62int n = num[i];63 stringstream input(res[i]);64while (input >> temp) {65 temp_str.push_back(temp);66 }67 P.n = n;68for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);69for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]);70 points.push_back(P);71 }72 }7374//根据书上的伪代码:接收概率列表p1....pn和q0.....qn以及规模n作为输⼊计算出e和root75void optimalBST(){76 Point P;77for(int i = 0; i<res.size(); i++) {78 vector<string> temp_str; //存放按照空格分开后的数字79int n = num[i];80string temp;81 stringstream input(res[i]);82while (input >> temp) {83 temp_str.push_back(temp);84 }85 P.n = n;8687for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);88for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]); 8990//初始化只包括虚拟键的⼦树91for (int i = 1;i <= P.n + 1;++i){92 P.w[i][i-1] = P.q[i-1];93 P.e[i][i-1] = P.q[i-1];94 }95//由下到上,由左到右逐步计算96for (int len = 1;len <= P.n;++len){97for (int i = 1;i <= P.n - len + 1;++i){98int j = i + len - 1;99 P.e[i][j] = Max_Num;100 P.w[i][j] = P.w[i][j-1] + P.p[j] + P.q[j];101//求取最⼩代价的⼦树的根102for (int r = i;r <= j;++r)103 {104double temp = P.e[i][r-1] + P.e[r+1][j] + P.w[i][j];105if (temp < P.e[i][j])106 {107 P.e[i][j] = temp;108 P.root[i][j] = r;109 }110 }111 }112 }113 points.push_back(P);114 }115 }116117void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite){118int root_node = P.root[i][j];//⼦树根节点119if (root_node == P.root[1][P.n]){120//输出整棵树的根121 fileWrite << "k" << root_node << "是根" << endl;122 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);123 printOptimalBST(root_node +1 , j, root_node, P, fileWrite);124return;125 }126127if (j < i - 1){128return;129 }else if (j == i - 1){//遇到虚拟键130if (j < r)131 fileWrite << "d" << j << "是" << "k" << r << "的左孩⼦" << endl;132else133 fileWrite << "d" << j << "是" << "k" << r << "的右孩⼦" << endl;134return;135 }136else{//遇到内部结点137if (root_node < r)138 fileWrite << "k" << root_node << "是" << "k" << r << "的左孩⼦" << endl; 139else140 fileWrite << "k" << root_node << "是" << "k" << r << "的右孩⼦" << endl; 141 }142 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);143 printOptimalBST(root_node + 1, j, root_node, P, fileWrite);144 }145146//输出最优⼆叉查找树所有⼦树的根147void printRoot(Point P){148 cout << "各⼦树的根:" << endl;149for (int i = 1;i <= P.n;++i){150for (int j = 1;j <= P.n;++j){151 cout << P.root[i][j] << "";152 }153 cout << endl;154 }155 cout << endl;156 }157158int main(){159 file_read();160 optimalBST();161 ofstream fileWrite("out.dat");162 Point P ;163for(int i = 0; i<points.size(); i++) {164 P = points[i];165 printRoot(P);166 printOptimalBST(1,P.n,-1, P, fileWrite);167 }168 fileWrite.clear();169return0;170 } 上述代码是将给定的邻接矩阵从⽂件中读取 然后根据输⼊的邻接矩阵求出最短路径。
动态规划在最短路径问题中的应用
![动态规划在最短路径问题中的应用](https://img.taocdn.com/s3/m/6ecc94085b8102d276a20029bd64783e09127db4.png)
动态规划在最短路径问题中的应用动态规划是一种解决复杂问题的方法,它将问题分解成更小的子问题,并通过保存子问题的解来避免重复计算,从而提高解决问题的效率。
最短路径问题是在图或者网络中找到从起点到终点的最短路径的问题,可以使用动态规划算法来解决。
本文将介绍动态规划在最短路径问题中的应用及其算法实现。
一、最短路径问题在最短路径问题中,我们需要在图或网络中找到从一个节点到另一个节点的最短路径。
最短路径可以通过边的权重来衡量,权重可以表示距离、时间、代价等。
最短路径问题有多种变体,其中最常见的是单源最短路径和全源最短路径。
单源最短路径问题是在给定一个起点的情况下,找到该起点到其他所有节点的最短路径。
最常用的算法是Dijkstra算法和Bellman-Ford算法。
二、动态规划原理动态规划通过保存子问题的解来避免重复计算,从而提高算法的效率。
它将问题分解成更小的子问题,并使用递推关系来计算子问题的解。
在最短路径问题中,我们可以使用动态规划来计算从起点到每个节点的最短路径。
首先,我们定义一个一维数组dist[]来保存从起点到每个节点的最短路径长度。
初始化时,dist[]的值为无穷大,表示路径长度未知。
然后,我们从起点开始逐步计算每个节点的最短路径长度。
具体的动态规划算法如下:1. 初始化dist[]为无穷大,起点的dist[]为0。
2. 对于每个节点v,按照拓扑顺序进行如下操作:2.1. 对于节点v的所有邻接节点u,如果dist[v] + weight(v, u) < dist[u],则更新dist[u]。
2.2. 拓扑顺序可以根据节点的拓扑顺序进行计算或者使用深度优先搜索(DFS)算法。
三、算法实现下面是使用动态规划算法解决最短路径问题的示例代码:```// 定义图的邻接矩阵和节点个数int graph[MAX][MAX];int numNodes;// 定义dist[]数组来保存最短路径长度int dist[MAX];// 定义拓扑排序和DFS算法需要的变量bool visited[MAX];stack<int> s;// 动态规划算法求解最短路径void shortestPath(int startNode) {// 初始化dist[]数组为无穷大for (int i = 0; i < numNodes; i++) {dist[i] = INT_MAX;}dist[startNode] = 0;// 拓扑排序或DFS计算每个节点的最短路径长度 for (int i = 0; i < numNodes; i++) {if (!visited[i]) {DFS(i);}}// 输出最短路径长度for (int i = 0; i < numNodes; i++) {cout << "Node " << i << ": " << dist[i] << endl; }}// 深度优先搜索void DFS(int node) {visited[node] = true;for (int i = 0; i < numNodes; i++) {if (graph[node][i] != 0 && !visited[i]) {DFS(i);}}s.push(node);}```以上示例代码演示了使用动态规划算法求解最短路径问题的基本原理和步骤。
最短路径问题的动态规划算法
![最短路径问题的动态规划算法](https://img.taocdn.com/s3/m/ea4638d74bfe04a1b0717fd5360cba1aa8118c17.png)
最短路径问题的动态规划算法动态规划是一种解决复杂问题的有效算法。
最短路径问题是指在给定的图中找到从起点到终点路径中距离最短的路径。
本文将介绍动态规划算法在解决最短路径问题中的应用。
1. 最短路径问题简介最短路径问题是图论中的经典问题之一,旨在找到从图中一点到另一点的最短路径。
通常使用距离或权重来衡量路径的长度。
最短路径问题有多种算法可以解决,其中动态规划算法是一种常用且高效的方法。
2. 动态规划算法原理动态规划算法的核心思想是将原问题分解为更小的子问题,并存储已解决子问题的结果,以供后续使用。
通过逐步解决子问题,最终得到原问题的解。
在最短路径问题中,动态规划算法将路径分解为多个子路径,并计算每个子路径的最短距离。
3. 动态规划算法步骤(1)定义状态:将问题转化为一个状态集合,每个状态表示一个子问题。
(2)确定状态转移方程:通过递推或计算得到子问题之间的关系,得到状态转移方程。
(3)确定初始状态:设置与最小子问题相关的初始状态。
(4)递推求解:根据状态转移方程,逐步计算中间状态,直到得到最终解。
(5)回溯路径:根据存储的中间状态,找到最短路径。
4. 动态规划算法示例以经典的Dijkstra算法为例,演示动态规划算法在解决最短路径问题中的应用。
假设有带权重的有向图G,其中节点数为n,边数为m。
算法步骤如下:(1)定义状态:对于图G中的每个节点v,定义状态d[v]代表从起点到节点v的最短距离。
(2)确定状态转移方程:d[v] = min(d[u]+w[u,v]),其中u为节点v 的直接前驱节点,w[u,v]为边(u,v)的权重。
(3)确定初始状态:设置起点s的最短距离d[s]为0,其他节点的最短距离d[v]为无穷大。
(4)递推求解:根据状态转移方程逐步计算中间状态d[v],更新最短距离。
(5)回溯路径:根据存储的前驱节点,从终点t开始回溯,得到最短路径。
5. 动态规划算法的优缺点优点:(1)求解速度快,适用于大规模问题。
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告
![动态规划算法实现多段图的最短路径问题算法设计与分析实验报告](https://img.taocdn.com/s3/m/2978f0bdee06eff9aff8074d.png)
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。
有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。
这类问题的解决是多阶段的决策过程。
在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。
对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。
2.理解分段决策Bellman 方程。
每一点最优都是上一点最优加上这段长度。
即当前最优只与上一步有关。
U s 初始值,u j 第j 段的最优值。
⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。
2.图的数据结构采用邻接表。
3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。
4.验证算法的时间复杂性。
最短路径问题的动态规划算法
![最短路径问题的动态规划算法](https://img.taocdn.com/s3/m/83664940854769eae009581b6bd97f192379bf53.png)
最短路径问题的动态规划算法最短路径问题的动态规划算法是一种常用的解决路径优化的方法。
动态规划算法的核心思想是将原问题拆分成若干个子问题,通过递推关系找到最优解。
在最短路径问题中,我们通常希望找到从起点到终点的最短路径。
首先,我们需要定义一个二维数组dp,其中dp[i][j]表示从起点到达坐标(i, j)的最短路径长度。
初始化dp数组,将起点的值设为0,其他位置的值设为无穷大(即表示不可达)。
接下来,我们需要确定动态规划的状态转移方程。
对于任意一个坐标(i, j),它可以从上方的坐标(i-1, j)、左方的坐标(i, j-1)、右方的坐标(i, j+1)、下方的坐标(i+1, j)四个位置中的某一个到达。
因此,可以得到状态转移方程如下:
dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i][j+1], dp[i+1][j]) + 1
其中,min表示取其中的最小值。
通过以上状态转移方程,我们可以逐步更新dp数组,直到最终得到终点的最短路径长度。
需要注意的是,动态规划算法的时间复杂度通常是O(n^2),其中n 表示问题规模。
因此,在处理大规模最短路径问题时,需要考虑算法的效率,可能需要进行剪枝等优化操作。
总的来说,最短路径问题的动态规划算法在路径优化领域有着重要的应用价值,通过合理定义状态转移方程和优化算法效率,可以找到从起点到终点的最短路径长度,为路径规划提供有效的解决方案。
floyd算法求最短路径问题的步骤
![floyd算法求最短路径问题的步骤](https://img.taocdn.com/s3/m/bc86cc4602d8ce2f0066f5335a8102d276a26102.png)
floyd算法求最短路径问题的步骤Floyd算法是一种用于求解最短路径问题的动态规划算法。
它能够计算出任意两点之间的最短路径长度,并且可以同时得到最短路径的具体路径。
下面是Floyd算法求解最短路径问题的步骤:
1. 创建一个二维数组dist,用于存储任意两点之间的最短路径长度。
初始化时,将所有的元素设为无穷大(表示不可达),但对角线上的元素设为0。
2. 创建一个二维数组path,用于存储任意两点之间最短路径的中间节点。
初始化时,将所有的元素设为-1。
3. 根据给定的图或者网络,将直接相连的两个节点之间的距离填入`dist`数组中。
如果两个节点之间不存在边,则将距离设为无穷大。
4. 使用三重循环进行计算。
外层循环遍历所有可能的中间节点,中间层循环遍历所有可能的起始节点,内层循环遍历所有可能的目标节点。
如果通过中间节点k可以使得从起始节点i到目标节点j的路径更短,即dist[i][k] + dist[k][j] < dist[i][j],则更新dist[i][j]为新的最短路径长度,并更新path[i][j]为中间节点k。
5. 循环结束后,dist数组中存储的就是任意两点之间的最短路径长度,path数组中存储的是最短路径的中间节点。
6. 如果需要获取具体的最短路径,可以通过回溯path数组来获取。
以起始节点i和目标节点j为例,可以通过不断查找path[i][j],直到找到-1为止,得到最短路径
的节点序列。
以上就是Floyd算法求解最短路径问题的步骤。
该算法的时间复杂度为O(n^3),其中n为节点的数量。
数学最短路径问题讲解
![数学最短路径问题讲解](https://img.taocdn.com/s3/m/1174c707842458fb770bf78a6529647d272834b8.png)
数学最短路径问题讲解数学中的最短路径问题是一个经典的优化问题,主要涉及在图或网络中找到两个节点之间的最短路径。
这类问题在日常生活和工程中有着广泛的应用,如交通路线规划、网络路由、电路设计等。
最短路径问题的常用算法有Dijkstra算法和Bellman-Ford算法。
Dijkstra算法适用于没有负权重的图,它从源节点开始,逐步找到离源节点最近的节点,直到找到目标节点。
Bellman-Ford算法则可以处理包含负权重的图,它通过不断地松弛边的权重来找到最短路径。
下面以一个简单的例子来解释最短路径问题:假设我们有一个有向图,其中节点表示城市,边表示道路,边的权重表示两城市之间的距离。
我们要找出从城市A到城市B的最短路径。
首先,我们需要理解最短路径的含义。
最短路径是指从一个节点到另一个节点经过的边的权重之和最小的路径。
如果存在负权重的边,我们需要找到一个路径,使得经过的边的权重之和加上起点的权重(如果起点有权重)最小。
在解决最短路径问题时,我们可以使用图论中的一些基本概念,如路径、权重、源节点、目标节点等。
路径是指从一个节点到另一个节点经过的一系列边,权重是指路径上边的权重之和。
源节点是指我们开始寻找最短路径的节点,目标节点是指我们要找到最短路径的终点。
最短路径问题的求解方法通常包括贪心算法和动态规划。
贪心算法是指每一步都选择当前看起来最优的选择,希望这样的局部最优选择能够导致全局最优解。
动态规划则是将问题分解为若干个子问题,并从子问题的最优解逐步推导出原问题的最优解。
在实际应用中,我们还需要考虑一些特殊情况,如图中存在负权重的环、图中存在负权重的边等。
对于这些情况,我们需要使用特定的算法来处理,如Bellman-Ford算法或Floyd-Warshall算法等。
总之,最短路径问题是一个经典的的问题,它的求解方法有很多种。
在实际应用中,我们需要根据具体情况选择合适的算法来处理最短路径问题。
最短路径问题练习题
![最短路径问题练习题](https://img.taocdn.com/s3/m/a9d9ce5beef9aef8941ea76e58fafab068dc441a.png)
最短路径问题练习题最短路径问题是图论中的一个经典问题,主要研究在加权图中找到两个顶点之间的最短路径。
这个问题在实际生活中有广泛的应用,比如导航系统中的路线规划、网络中的数据传输等。
以下是一些关于最短路径问题的练习题,供同学们练习和思考。
练习题1:Dijkstra算法的应用给定一个包含6个顶点的图,顶点编号为1到6,边的权重如下所示:- 1-2: 7- 1-3: 9- 2-3: 14- 2-4: 10- 3-4: 15- 3-5: 6- 4-5: 11- 5-6: 2- 3-6: 20请使用Dijkstra算法找出从顶点1到顶点6的最短路径。
练习题2:Bellman-Ford算法的应用考虑一个包含5个顶点的图,顶点编号为A、B、C、D、E,边的权重如下所示:- A-B: 5- A-C: 3- B-C: 1- B-D: 2- C-E: 8使用Bellman-Ford算法计算从顶点A到顶点E的最短路径。
练习题3:Floyd-Warshall算法的应用给定一个包含4个顶点的图,顶点编号为1、2、3、4,边的权重如下所示:- 1-2: 4- 1-3: 5- 2-3: 3- 2-4: 7- 3-4: 2使用Floyd-Warshall算法计算所有顶点对之间的最短路径。
练习题4:有向图中的最短路径问题在一个有向图中,有5个顶点,编号为1到5,边的权重如下所示:- 1->2: 2- 1->3: 3- 2->3: 1- 2->4: 4- 3->4: 5- 3->5: 2- 4->5: 1找出从顶点1到顶点5的最短路径。
练习题5:负权重边的最短路径问题考虑一个包含4个顶点的图,顶点编号为1、2、3、4,边的权重如下所示:- 1-2: 10- 2-3: -3- 3-4: 1在这种情况下,使用Bellman-Ford算法找出从顶点1到顶点4的最短路径,并讨论负权重边对最短路径算法的影响。
解最短路径问题的两种方法及其应用
![解最短路径问题的两种方法及其应用](https://img.taocdn.com/s3/m/30d66c06f011f18583d049649b6648d7c1c708f1.png)
解最短路径问题的两种方法及其应用
最短路径问题是指在一张带权图中找到两个节点之间最短的路径。
最短路径问题是许多计算机科学和应用领域中的一个基本问题。
以下是解决这个问题的两种方法:
1. Dijkstra算法:Dijkstra算法是解决最短路径问题的一种
基本算法,它是基于贪心思想的。
该算法首先确定起始点到其他节
点的距离(记为d),然后不断扩大已确定最短距离的节点集,直
到覆盖所有节点。
Dijkstra算法适用于单源最短路径,即从一个节
点到所有其他节点的最短路径。
2. Floyd算法:Floyd算法也是一种经典的解决最短路径问题
的算法,它是一个动态规划算法。
该算法利用动态规划的思想,通
过比较任意两个节点之间经过第三点(中转点)的路径长度,更新
路径长度。
Floyd算法适用于多源最短路径,即从任意两个节点之
间的最短路径。
这两种算法可广泛应用于各种计算机科学和应用领域,如网页
排名算法、图像处理、计算机网络等。
在实际应用中,我们需要根
据实际问题的特点,选择最适合的算法。
多段图的最短路劲问题,动态规划法 分析最优性原理
![多段图的最短路劲问题,动态规划法 分析最优性原理](https://img.taocdn.com/s3/m/fc430ffbac51f01dc281e53a580216fc700a5316.png)
多段图的最短路劲问题,动态规划法分析最优性原理我们都知道,无论是初中还是高中,数理化的学习过程中都是非常重要的。
其中,最短路劲问题,是数学考试当中常考的题型之一。
它的难度在初中数学中是比较大的。
很多同学在学习该题的时候也十分头疼,因为该问题通常采用动态规划法求解即可。
所谓动态规划法,其实就是由求解方程组而得到结论最优的方法。
那么今天我们就来学习一下如何进行简单易操作并将其运用于实际之中吧!一、解题思路通过观察题目,我们可以得到题目中由图 a,图 b组成的最短路劲问题的求解法:求 a={a, b, c},其中 a、 b、 c表示两段图之间的相交点。
求 a最短路劲,我们可以根据不同的情况选择不同的方法来求解。
当我们在做题过程中遇到困难时,可以通过求解最短路劲问题来了解分析它所需要处理的基本数学原理,从而达到解决此题的目的。
根据题目中提供的信息可知,多段图对于图 b而言,最短路劲要求它具有不同的解题思路。
二、求最优解的基本方法最优解的求解方法有两种:一者为连续变量的最大值问题,二者为连续不变量。
这种问题的解决方法一般为:以图中 A点的起始位置(也就是 A与 B)作为计算基点,依次以 A点、 B 点进行一次求解方程组,再将方程组进行解析,得到最优解;或者以相同的方法求出各点的余数,得出最优解。
求解过程中需要注意两个问题:第一个问题是求方程组时不一定要选择整数、整列代入、整阶运算;第二个问题只要找到方程中关键的最优解即可。
所以在求最优解时需要掌握正确的方法,同时也要注意以下几个方面:三、动态规划法分析分析:将图中已知状态矩阵代入所求题中,可得到:设图中状态矩阵 B和状态矩阵 A是多段图中唯一正确状态的解,因此 B和 C是正确的解;设状态矩阵 A是已知状态矩阵-状态式解,则 AC和 AC是正确的解;由于状态矩阵 B和状态矩阵 A是正确方程组式外部分与状态矩阵 a、b、 c、 d四等分函数相关,因此 AC和 AC就是正确方程组。
两个字符串间的最短路径问题
![两个字符串间的最短路径问题](https://img.taocdn.com/s3/m/fc986f2049d7c1c708a1284ac850ad02df800712.png)
两个字符串间的最短路径问题通常涉及到动态规划(Dynamic Programming)和字符串编辑距离(Levenshtein Distance)的概念。
字符串编辑距离,也被称为Levenshtein Distance,是衡量两个字符串差异的度量标准。
编辑距离定义为将一个字符串转换成另一个字符串所需的最少单字符编辑(插入、删除或替换)的次数。
动态规划是一种解决问题的方法,通过将问题分解为重叠的子问题,并存储子问题的解以避免重复计算,从而提高效率。
最短路径问题可以通过动态规划解决,其基本思路如下:
定义一个二维动态规划数组dp,其中dp[i][j]表示将字符串s1的前i个字符转换为字符串s2的前j个字符所需的最小编辑次数。
初始化dp数组。
对于所有i=0,1,...,len(s1),有dp[i][0]=i,表示将空字符串转换为s2的前j个字符需要插入i个字符。
对于所有j=0,1,...,len(s2),有dp[0][j]=j,表示将s1的前i个字符转换为空字符串需要删除j个字符。
填充dp数组。
对于所有i>0且j>0,如果s1的第i个字符等
于s2的第j个字符,则dp[i][j]=dp[i-1][j-1];否则,dp[i][j]=min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])+1。
最后,dp[len(s1)][len(s2)]就是所求的最小编辑次数,即两个字符串间的最短路径。
这种算法的时间复杂度是O(len(s1)*len(s2)),空间复杂度也是O(len(s1)*len(s2))。
八年级上册体育最短路径问题(田径赛跑)专项练习(含解析)
![八年级上册体育最短路径问题(田径赛跑)专项练习(含解析)](https://img.taocdn.com/s3/m/ed1ba441e97101f69e3143323968011ca300f7f5.png)
八年级上册体育最短路径问题(田径赛跑)
专项练习(含解析)
问题描述
在田径赛跑比赛中,有一条操场跑道,跑道由若干个直线段组成,每个直线段长度不相同。
现在需要选定一个起点和一个终点,选手在跑道上跑步。
假设选手只能走直线,且只能走上方向或右方向,即只能往右或往上走。
那么,选手从起点到终点可能的最短路径长度是多少?
解析
这道问题可以用最短路径算法解决。
我们可以使用动态规划的思想来找到最短路径。
1. 定义一个二维数组dp,dp[i][j]表示从起点到坐标(i, j)的最短路径长度。
2. 假设操场跑道的起点坐标为(0, 0),终点坐标为(m, n),其中m和n分别表示操场的行数和列数。
3. 初始化第一行和第一列的最短路径长度。
因为在这两行或两列上,选手只能一直往右或往上走,所以最短路径长度为前一个点的最短路径长度加上当前直线段的长度。
4. 从(1, 1)开始遍历操场的每个点,计算到达该点的最短路径长度。
对于每个点,最短路径长度等于上方点和左方点中较小的路径长度加上当前直线段的长度。
5. 最后,dp[m][n]即为起点到终点的最短路径长度。
示例
假设操场的跑道如下所示,其中数字表示直线段的长度:
1 3 5
2 1 4
3 2 1
根据上述解析过程,我们可以得到一个dp数组如下所示:
1 4 9
3 4 8
6 6 9
所以,选手从起点到终点的最短路径长度为9。
以上是关于八年级上册体育最短路径问题(田径赛跑)的专项练习的文档。
希望对你有帮助!。
12个动态规划算法举例
![12个动态规划算法举例](https://img.taocdn.com/s3/m/6d615b2803020740be1e650e52ea551810a6c93d.png)
动态规划是一种用于解决最优化问题的算法。
它通常用于找到最小或最大值。
这里列举了12 个常见的动态规划算法,并给出了每个算法的举例:
1 最长公共子序列(LCS)算法:用于比较两个序列,找出它们之
间的最长公共子序列。
2 最小编辑距离算法:用于比较两个字符串,找出将一个字符串变
为另一个字符串所需的最少编辑操作次数。
3 背包问题算法:用于在限制给定的总体积的情况下选择最优的物
品组合。
4 最短路径算法:用于求解有向图或路径的最短路径。
5 最小生成树算法:用于求解图的最小生成树。
6 线性规划算法:用于求解线性规划问题。
7 矩阵链乘法算法:用于计算矩阵链乘法的最优计算次序。
8 单源最短路径算法:用于求解有向图的单源最短路径问题。
9 拓扑排序算法:用于对有向无环图(DAG)进行拓扑排序。
10图形相似性算法:用两个图形进行对齐,并通过比较它们之间的差异来评估它们的相似程度。
11 11 区间动态规划算法:用于解决区间动态规划问题,例如
最小编辑代价问题。
12 分数背包问题算法:用于在限制给定的总价值的情况下选择
最优的物品组合。
13这些算法的具体细节及实现方式可以通过搜索或者学习相
关的资料来了解。
动态规划应用动态规划解决问题的思路与技巧
![动态规划应用动态规划解决问题的思路与技巧](https://img.taocdn.com/s3/m/6ab30436f56527d3240c844769eae009581ba2f3.png)
动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。
通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。
本文将介绍动态规划的应用,并提供一些思路与技巧。
一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。
2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。
3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。
4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。
5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。
二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。
滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。
2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。
例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。
3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。
4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。
5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。
三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。
floyed算法 例题
![floyed算法 例题](https://img.taocdn.com/s3/m/83eb3165580102020740be1e650e52ea5518ce3e.png)
floyed算法例题
弗洛伊德算法(Floyd's Algorithm),也称为弗洛伊德-沃舍尔算法(Floyd-Warshall Algorithm),是一种用于求解所有顶点对最短路径的动态规划算法。
它可以在有向图或带权图中计算出任意两个顶点之间的最短路径。
下面是一个使用弗洛伊德算法求解最短路径的简单例题:
假设有一个带权有向图如下所示:
图中的边上显示了权重,表示从一个顶点到另一个顶点的距离或代价。
我们要使用弗洛伊德算法计算出所有顶点之间的最短路径。
1.初始化距离矩阵,对于图中的边,用实际的权重赋值;对
于不可达的边,用一个很大的数(例如9999)表示。
2.使用弗洛伊德算法更新距离矩阵。
逐个顶点遍历,以k作
为中介顶点,在i、j两个顶点之间比较是否有更短的路径,
如果有则更新距离矩阵。
o k = A:
o k = B:
o k = C:
o k = D:
3.根据最终的距离矩阵,我们可以得到所有顶点之间的最短
路径。
使用矩阵的对角线元素,可以看出最短路径为:
o A到A的最短路径长度为0;
o A到B的最短路径长度为2,最短路径为A -> B;
o A到C的最短路径长度为1,最短路径为A -> C;
o A到D的最短路径长度为3,最短路径为A -> C -> D。
同样的,我们可以得到其他顶点之间的最短路径。
弗洛伊德算法通过动态规划的方式,逐步优化所有顶点之间的最短路径,时间复杂度为O(V^3),其中V为顶点的数量。
这使得它非常适用于解决小规模的图的最短路径问题。
利用动态规划法求解运输问题的最短路径
![利用动态规划法求解运输问题的最短路径](https://img.taocdn.com/s3/m/56d2f77fa417866fb94a8e0f.png)
K n n 5 0 3 C ia (K n n hpD s na dR sac s tt K n igS i B i ig u mig6 0 9 , hn )。 u migS i ei n eerhI tue u m n hp ul n g ni d
E up n oLd , n n 5 0 , hn ) q ime tC .t .Ku mig6 0 5 C i a 1
.
K y od :y a c rga n ; h ot tP t ; ls g eio e rsD n mip ormmi T e h r s a Mutt e c i w g s e- h ia d s n
中 图分 类 号 : H1 , 2 1 文献标 识 码 : T 60 2 - 3 A
孙 晓 燕 李 自良 彭雄 凤 傅 亚力 梁志 强 2 ห้องสมุดไป่ตู้
( 昆明理工大 学 机 电工程 学院 , 昆明 6 0 9 ) 5 0 3
( 昆 明船 舶设 备集 团有 限公 司 昆船设 计研 究院 , 昆明 6 0 5 ) 5 0 1
Th y a i r g a e d n m c p o r mm ig a p id t ov n h h r s - a h o r n p r t n p obe n p l o s lig t e s o t t p t f a s o t i r l m e e t ao
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● 例:动态规划解最短路径问题:
步骤(1)、(2)已实现。
最优子结构:从起点到终点的最短路径包含了该路径
上各点到终点的最短路径。
递归公式:设v 为图中一个顶点,v 1, v 2,…, v m 为v 的
直接后继,cost(v)表示v 到终点的最短路径
长度,c[u, w]表示边<u,w>上的权,t 为终点,
则cost 满足如下递归公式:
⎪⎪⎩
⎪⎪⎨⎧≠∞=≠+=≤≤无后继且有后继且v t v , t
v , 0v t v , )}cost(v ] v {c[v,min cost(v)i i m i 1
步骤(3) 计算最优值(求最短路径长度):
设有向网G含n个顶点,用邻接矩阵c[1..n, 1..n]表示,起点为s,终点为t 。
有关信息的保存:
数组cost[1..n]: 存储子问题的解。
(cost[i]表示从顶点i到终点t的最短路径长
度。
)
数组succ[1..n]: 存储最短路径的有关信息。
(succ[i]表示顶点i到终点t的最短路径上顶
点i的直接后继。
)
原问题的最优值为cost[s]。
(1) 自底向上的迭代算法
关键:根据递归公式确定迭代顺序(即子问题的求解顺序)。
原则:计算cost[i]时,顶点i的所有后继的cost值应先计算。
计算顺序:按图G的逆拓扑排序顺序。
算法SHORTEST_ROUTE_LEN1
输入:有向网G的顶点数n, 邻接矩阵c[1..n, 1..n], 起点s和终点t , 1<=s, t<=n。
输出:G的从起点s到终点t的最短路径长度cost[s]和最短路径有关信息的数组succ[1..n]。
//对图G拓扑排序,结果存于数组a[1..n]
中。
toposort(c, n, a)
j=n
while a[j]< >t j=j-1 //找出j使得a[j]=t 。
for i=j+1 to n cost[a[j]]=∞//排除无关的顶
点。
cost[t]=0 //从终点开始迭代。
while a[j]< >s
j=j-1; k=a[j]; i0=0 ; min=∞
for i=1 to n
if c[k, i]+cost[i]<min then
i0=i; min=c[k, i]+cost[i]
end if
end for
cost[k]=min ; succ[k]=i0
end while
end SHORTEST_ROUTE_LEN1
(2) 自顶向下的递归算法
关键:对每个子问题标记是否计算过,同一子问题只在第一次递归调用时计算并存储结果。
标记:未求出cost[i]时,cost[i]=-1 。
算法SHORTEST_ROUTE_LEN2
输入:有向网G的顶点数n, 邻接矩阵c[1..n, 1..n], 起点s和终点t , 1<=s, t<=n。
输出:G的从起点s到终点t的最短路径长度minlen 和最短路径有关信息的数组succ[1..n]。
for i=1 to n cost[i]=-1
minlen=routelength(s)
end SHORTEST_ROUTE_LEN2
过程routelength( j )
// 求G中从顶点j到终点t的最短路径长度
cost[j]并返回,//同时求该路径上各顶点的直接
后继存于数组succ中。
if cost[j]=-1 then //cost[j]还未求出
if j=t then cost[j]=0
else
min=∞ ; i0=0
for i=1 to n
if c[j, i]< ∞ then //顶点i为顶点j的后继
x=routelength( i ) //求i到t的最短路
径长度
if c[j, i]+x<min then
min=c[j, i]+x; i0=i
end if
end if
end for
cost[j]=min; succ[j]=i0;
end if
end if
return cost[j]
end routelength
步骤(4) 构造最优解(设存在从起点s到终点的路径) 算法SHORTEST_ROUTE
输入:有向网G的从起点s到终点t的最短路径信息数组succ[1..n]
输出: 有向网G的从起点s到终点t的最短路径。
i=1; b[i]=s
while b[i]< >t
b[i+1]=succ[b[i]]
i=i+1
end while
输出b[1..i]
end SHORTEST_ROUTE
最坏情况下时间复杂性:
算法SHORTEST_ROUTE_LEN1(或2):Θ(n2) 算法SHORTEST_ROUTE:Θ(n)。