贪心、分支限界、动态规划解决最短路径问题
动态规划实现最短路径问题
动态规划实现最短路径问题⼀、设计最短路径的动态规划算法 <算法导论>中⼀般将设计动态规划算法归纳为下⾯⼏个步骤: 1)分析最优解的结构 2)递归定义最优解的值 3)⾃底向上计算最优解的值 4)从计算的最优解的值上⾯构建出最优解⼆、最短路径的结构 从最优解的结构开始分析(我们假设没有权值为负的路径),对于图G<V,E>的所有结点对最短路径的问题,我们能知道⼀条最短路径的⼦路径都是最短路径。
假设⽤邻接矩阵W=w(ij)来表⽰输⼊带权图,考虑从结点i到结点j的⼀条最短路径p,如果p最多有m(m为有限值)条边。
若i=j,则p的权值为0⽽且不包含其他边。
若i ≠ j,可以将i到j的路径转换为i -> k、k->j。
三、⼀个给定的图 1)给定⼀个有向图 2)我们可以给出这个有向图的邻接矩阵四、C++实现1 #include <iostream>2 #include<fstream>3 #include<sstream>4 #include<vector>5 #include<string>6using namespace std;7const int Max_Num = 100;89 typedef struct Point {10int n; //点的个数11double p[Max_Num];12double q[Max_Num];13int root[Max_Num][Max_Num];14double w[Max_Num][Max_Num];15double e[Max_Num][Max_Num];16 }Point;1718 vector<Point> points;19 vector<string> res;20 vector<int> num;2122void file_read();23void createPoint();24void optimalBST();25void printRoot(Point P);26void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite);27 template <class Type>28 Type stringToNum(const string& str) {29 istringstream iss(str);30 Type num;31 iss >> num;32 iss.str("");33return num;34 }3536void file_read() {37string str2, str1 = "", result;38 ifstream fileRead("in.dat");39if (fileRead.is_open()) {40while (getline(fileRead, str2, '\n')) {41if (str2.find("") != -1) {42 str1.append(str2 + "");43 }44else {45 num.push_back(stringToNum<int>(str2));46if (str1 != "") {47 res.push_back(str1);48 }49 str1 = "";50 }51 }52 res.push_back(str1);53 fileRead.close();54 }55 }5657void createPoint() {58string temp;59 Point P;60for (int i = 0; i < res.size(); i++) {61 vector<string> temp_str; //存放按照空格分开后的数字62int n = num[i];63 stringstream input(res[i]);64while (input >> temp) {65 temp_str.push_back(temp);66 }67 P.n = n;68for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);69for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]);70 points.push_back(P);71 }72 }7374//根据书上的伪代码:接收概率列表p1....pn和q0.....qn以及规模n作为输⼊计算出e和root75void optimalBST(){76 Point P;77for(int i = 0; i<res.size(); i++) {78 vector<string> temp_str; //存放按照空格分开后的数字79int n = num[i];80string temp;81 stringstream input(res[i]);82while (input >> temp) {83 temp_str.push_back(temp);84 }85 P.n = n;8687for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);88for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]); 8990//初始化只包括虚拟键的⼦树91for (int i = 1;i <= P.n + 1;++i){92 P.w[i][i-1] = P.q[i-1];93 P.e[i][i-1] = P.q[i-1];94 }95//由下到上,由左到右逐步计算96for (int len = 1;len <= P.n;++len){97for (int i = 1;i <= P.n - len + 1;++i){98int j = i + len - 1;99 P.e[i][j] = Max_Num;100 P.w[i][j] = P.w[i][j-1] + P.p[j] + P.q[j];101//求取最⼩代价的⼦树的根102for (int r = i;r <= j;++r)103 {104double temp = P.e[i][r-1] + P.e[r+1][j] + P.w[i][j];105if (temp < P.e[i][j])106 {107 P.e[i][j] = temp;108 P.root[i][j] = r;109 }110 }111 }112 }113 points.push_back(P);114 }115 }116117void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite){118int root_node = P.root[i][j];//⼦树根节点119if (root_node == P.root[1][P.n]){120//输出整棵树的根121 fileWrite << "k" << root_node << "是根" << endl;122 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);123 printOptimalBST(root_node +1 , j, root_node, P, fileWrite);124return;125 }126127if (j < i - 1){128return;129 }else if (j == i - 1){//遇到虚拟键130if (j < r)131 fileWrite << "d" << j << "是" << "k" << r << "的左孩⼦" << endl;132else133 fileWrite << "d" << j << "是" << "k" << r << "的右孩⼦" << endl;134return;135 }136else{//遇到内部结点137if (root_node < r)138 fileWrite << "k" << root_node << "是" << "k" << r << "的左孩⼦" << endl; 139else140 fileWrite << "k" << root_node << "是" << "k" << r << "的右孩⼦" << endl; 141 }142 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);143 printOptimalBST(root_node + 1, j, root_node, P, fileWrite);144 }145146//输出最优⼆叉查找树所有⼦树的根147void printRoot(Point P){148 cout << "各⼦树的根:" << endl;149for (int i = 1;i <= P.n;++i){150for (int j = 1;j <= P.n;++j){151 cout << P.root[i][j] << "";152 }153 cout << endl;154 }155 cout << endl;156 }157158int main(){159 file_read();160 optimalBST();161 ofstream fileWrite("out.dat");162 Point P ;163for(int i = 0; i<points.size(); i++) {164 P = points[i];165 printRoot(P);166 printOptimalBST(1,P.n,-1, P, fileWrite);167 }168 fileWrite.clear();169return0;170 } 上述代码是将给定的邻接矩阵从⽂件中读取 然后根据输⼊的邻接矩阵求出最短路径。
01背包各种算法代码实现总结(穷举,贪心,动态,递归,回溯,分支限界)
01背包各种算法代码实现总结(穷举,贪⼼,动态,递归,回溯,分⽀限界)2020-05-22所有背包问题实现的例⼦都是下⾯这张图01背包实现之——穷举法:1.我的难点:(1)在⽤穷举法实现代码的时候,我⾃⼰做的时候认为最难的就是怎么将那么多种情况表⽰出来,⼀开开始想⽤for循环进⾏多次嵌套,但是太⿇烦,⽽且还需要不断的进⾏各种标记。
我现在的⽔平实在太菜,然后就在⼀篇中看到⼀个特别巧妙的枚举算法,如下所⽰:int fun(int x[n]){int i;for(i=0;i<n;i++)if(x[i]!=1) {x[i]=1; return;}//从遇到的第⼀位开始,若是0,将其变成1,然后结束for循环,得到⼀种解法else x[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
得到另⼀种解法。
} 虽然我现在也不知道为什么会这样,但是确实是个很好的规律,找到这个规律后,就可以很轻松的⾃⼰写出各种排列情况,以后遇到排列的问题,就⽤这个⽅法。
语⾔不好描述,上图⽚演⽰(是歪的,凑活看吧。
):(2)算法思想:x[i]的值为0/1,即选或者不选w[i]的值表⽰商品i的重量v[i]的值表⽰商品的价值所以这个算法最核⼼的公式就是tw=x[1]*w[1]+x[2]*w[2]+.......+x[n]*w[n]tv=x[1]*w[1]+x[2]*v[2]+......+x[n]*v[n]tv1:⽤于存储当前最优解limit:背包容量如果 tw<limit&&tv>tv1 则可以找到最优解2.代码实现(借鉴)#include<stdio.h>#include<iostream>using namespace std;#define n 4void possible_solution(int x[n]){int i;for(i=0;i<4;i++) //n=4,有2^4-1种解法if(x[i]!=1){x[i]=1;return; //从遇到的第⼀位开始,若是0,将其变成1,然后结束循环,得到⼀种解法}elsex[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
动态规划在最短路径问题中的应用
动态规划在最短路径问题中的应用动态规划是一种解决复杂问题的方法,它将问题分解成更小的子问题,并通过保存子问题的解来避免重复计算,从而提高解决问题的效率。
最短路径问题是在图或者网络中找到从起点到终点的最短路径的问题,可以使用动态规划算法来解决。
本文将介绍动态规划在最短路径问题中的应用及其算法实现。
一、最短路径问题在最短路径问题中,我们需要在图或网络中找到从一个节点到另一个节点的最短路径。
最短路径可以通过边的权重来衡量,权重可以表示距离、时间、代价等。
最短路径问题有多种变体,其中最常见的是单源最短路径和全源最短路径。
单源最短路径问题是在给定一个起点的情况下,找到该起点到其他所有节点的最短路径。
最常用的算法是Dijkstra算法和Bellman-Ford算法。
二、动态规划原理动态规划通过保存子问题的解来避免重复计算,从而提高算法的效率。
它将问题分解成更小的子问题,并使用递推关系来计算子问题的解。
在最短路径问题中,我们可以使用动态规划来计算从起点到每个节点的最短路径。
首先,我们定义一个一维数组dist[]来保存从起点到每个节点的最短路径长度。
初始化时,dist[]的值为无穷大,表示路径长度未知。
然后,我们从起点开始逐步计算每个节点的最短路径长度。
具体的动态规划算法如下:1. 初始化dist[]为无穷大,起点的dist[]为0。
2. 对于每个节点v,按照拓扑顺序进行如下操作:2.1. 对于节点v的所有邻接节点u,如果dist[v] + weight(v, u) < dist[u],则更新dist[u]。
2.2. 拓扑顺序可以根据节点的拓扑顺序进行计算或者使用深度优先搜索(DFS)算法。
三、算法实现下面是使用动态规划算法解决最短路径问题的示例代码:```// 定义图的邻接矩阵和节点个数int graph[MAX][MAX];int numNodes;// 定义dist[]数组来保存最短路径长度int dist[MAX];// 定义拓扑排序和DFS算法需要的变量bool visited[MAX];stack<int> s;// 动态规划算法求解最短路径void shortestPath(int startNode) {// 初始化dist[]数组为无穷大for (int i = 0; i < numNodes; i++) {dist[i] = INT_MAX;}dist[startNode] = 0;// 拓扑排序或DFS计算每个节点的最短路径长度 for (int i = 0; i < numNodes; i++) {if (!visited[i]) {DFS(i);}}// 输出最短路径长度for (int i = 0; i < numNodes; i++) {cout << "Node " << i << ": " << dist[i] << endl; }}// 深度优先搜索void DFS(int node) {visited[node] = true;for (int i = 0; i < numNodes; i++) {if (graph[node][i] != 0 && !visited[i]) {DFS(i);}}s.push(node);}```以上示例代码演示了使用动态规划算法求解最短路径问题的基本原理和步骤。
算法设计与分析-多段图最短路径问题
关于多段图最短路径问题的探讨摘要:本文主要描述的是分别用动态规划法、贪心法和分支限界法来解决多段图最短路径问题时的情况,并在附录中附有实际问题的程序来辅助阐述观点。
文章首先阐述了各个方法的原理,主要的思路是通过输入一组数据,比较三者的输出结果的准确性以及运行时间,以之为基础来分析、讨论三者的性能区别。
另外,众所周知,多段图是有向图的一个简单的模型,它在有向图的基础上忽略了两点之间的线的双向性的问题,并且对点与点之间的线有很多的要求,从而把图简化为可分为几段的模式,文章最后讲述了若这几种方法运行到有向图中的情况,几种方法的对比和它们比较适应的使用情况的讨论,并给出了自己的建议。
关键字:多段图最短路径问题动态规划法分支限界法多段图与有向图的关系有向图最短路径算法引言:当前社会,关于最短路径的问题屡屡出现。
例如在开车自驾游的一个过程中,排除其他影响因素,从一个地点到另一点,这个时候必然是希望有一条距离最短的路程来尽量减少消耗的时间以及花费的(它们在模型中被称为代价),市场上对该问题的解决有很大的需求,因此,这里我将讨论多段图的最短路径的问题。
在早些时间的课程中,我们学习过数据结构这门课程,其中就包括最短路径这方面的讨论。
当时老师给我们介绍了分别面向单源(Dijkstra算法)与非单源(Floyd算法)两种问题的算法法---,这是我们最早的对最短路径方面的理解,也是我们接触的比较早的关于图的问题。
在这学期的算法课程中,我们学习了许多了方法,包括贪心法、动态规划法等算法,它们把以前学习的许多方法都命名并归纳分类起来,其中有许多算法都是可以用来解决这个最短路径的问题的,并且该问题作为一个图的问题,对该问题的继续探讨优化的需求很大,本文将就不同算法在解决该最短路径问题时的不同方法进行对比并给出该问题在不同基础上不同的最终解决方案。
由于时间的限制,本文将重点分析动态规划法下的情况,并会对图的情况加以简化、限制,最后会对其他的图做一些拓展。
数学建模经典问题
数学建模经典问题
数学建模是一种将实际问题转化为数学问题,并运用数学工具解决实际问题的方法。
在数学建模的过程中,我们需要面对各种各样的问题,其中一些问题已经被广泛研究并被视为经典问题。
本文将介绍几个数学建模中的经典问题。
1.旅行商问题
旅行商问题是一个经典的路线优化问题。
假设有一个旅行商要拜访n个城市,每个城市之间的距离是已知的。
旅行商需要找到一条回路,使得他可以在每个城市停留一次,并返回起点城市,同时旅行路程最短。
这个问题是一个NP难问题,可以用动态规划、分支限界等方法求解。
2.背包问题
背包问题是一个经典的优化问题。
假设有一个背包,它的容量为C,有n个物品,每个物品有一个重量和一个价值。
旅行商需要在这些物品中选择一些放入背包,使得背包的重量不超过C,同时所选物品的总价值最大。
这个问题也是一个NP难问题,可以用动态规划、贪心算法等方法求解。
3.热传导方程
热传导方程是一个经典的偏微分方程,描述了物体内部温度的变化。
它可以用来模拟热传导过程,例如烤面包、冷却热水等。
热传导方程可以用有限元方法、有限差分方法等数值方法求解。
4.计算几何
计算几何是一个经典的数学分支,研究几何问题的计算方法。
例如,给定n个点,如何寻找一个最小的圆,使得这n个点都在圆内或圆上。
这个问题可以用Welzl算法等方法求解。
这些经典问题在数学建模中经常出现,它们不仅有理论研究的价值,而且对于实际应用也有着很大的意义。
在数学建模的过程中,我们应该灵活运用各种数学工具,以便更好地解决实际问题。
贪心算法和动态规划的区别与联系
贪⼼算法和动态规划的区别与联系
联系
1.都是⼀种推导算法
2.都是分解成⼦问题来求解,都需要具有最优⼦结构
区别
1.贪⼼:每⼀步的最优解⼀定包含上⼀步的最优解,上⼀步之前的最优解则不作保留;
动态规划:全局最优解中⼀定包含某个局部最优解,但不⼀定包含前⼀个局部最优解,因此需要记录之前的所有的局部最优解
2.贪⼼:如果把所有的⼦问题看成⼀棵树的话,贪⼼从根出发,每次向下遍历最优⼦树即可(通常这个“最优”都是基于当前情况下显⽽易见的“最优”);这样的话,就不需要知道⼀个节点的所有⼦树情况,于是构不成⼀棵完整的树;
动态规划:动态规划则⾃底向上,从叶⼦向根,构造⼦问题的解,对每⼀个⼦树的根,求出下⾯每⼀个叶⼦的值,最后得到⼀棵完整的树,并且最终选择其中的最优值作为⾃⾝的值,得到答案
3.根据以上两条可以知道,贪⼼不能保证求得的最后解是最佳的,⼀般复杂度低;⽽动态规划本质是穷举法,可以保证结果是最佳的,复杂度⾼。
4.针对0-1背包问题:这个问题应⽐较选择该物品和不选择该物品所导致的最终⽅案,然后再作出最好选择,由此就导出许多互相重叠的⼦问题,所以⽤动态规划。
算法的技术手段范文
算法的技术手段范文下面将介绍一些常见的算法的技术手段。
1.分治法分治法将问题划分为若干个规模较小的子问题,然后分别解决这些子问题,最后将各个子问题的解合并得到原问题的解。
这种技术手段在快速排序和归并排序等算法中有广泛的应用。
2.动态规划动态规划将问题划分为多个阶段,根据问题的最优子结构特性,将其解决过程划分为多个阶段的决策过程。
动态规划算法通常需要使用递归和数组的结构来存储中间计算结果,以避免重复计算。
背包问题、最短路径问题等都可以使用动态规划算法来解决。
3.贪心法贪心法在每一步都选择当前最优解,然后继续向下一步迭代,直到得到最终解。
贪心法通常快速且简单,但不能保证得到全局最优解,有时只能得到近似解。
经典的贪心算法有霍夫曼编码和最小生成树算法等。
4.回溯法回溯法通过不断尝试和回溯来达到求解问题的目的。
在过程中,若当前路径不能满足问题的条件,就退回到上一步重新选择路径。
回溯法广泛应用于解决组合、排列、图的遍历等问题。
5.枚举法枚举法是穷举所有可能的解,然后从中选择最优解的一种方法。
枚举法常用于求解排列、组合等问题。
虽然在大规模问题上效率较低,但是在规模较小的问题上,可以得到精确的解。
6.分支限界法分支限界法通过不断扩展最优解的空间,并用界限函数排除不可能达到最优解的部分空间,从而提高算法的效率。
分支限界法常用于解决最优化问题,如旅行商问题、0-1背包问题等。
7.近似算法近似算法是用于求解NP难问题的一种方法,通过折中计算精确性和效率,给出一个近似解。
近似算法的设计思路包括贪心法、局部、随机化等。
近似算法不保证得到全局最优解,但可以在多项式时间内给出一个接近最优解的解。
8.随机算法随机算法利用随机数的性质来解决问题,通过随机挑选可能的解进行,以期望找到一个满足条件的解。
随机算法通常用于解决优化问题,如模拟退火算法和遗传算法等。
总之,算法的技术手段是多种多样的,通过合理的选择和组合,可以提高算法的效率和准确性。
贪心算法最短路径问题c语言代码
贪心算法最短路径问题c语言代码贪心算法最短路径问题C语言代码在计算机算法的领域中,贪心算法是一种常见的解决问题的方法。
贪心算法是一种寻找最优解的方法,就是在每个步骤中都采取最优的选择,这样每一步的最优解最终就可以得到整体的最优解。
在实际应用中,贪心算法通常被用于NP问题的解决,例如最短路径问题。
本文将介绍如何用C语言实现贪心算法解决最短路径问题。
1. 最短路径问题概述最短路径问题是一种图论问题,是指在一个有权重的有向图或无向图中,从一个指定的起点节点到达一个指定终点节点的最短路径问题。
在实际应用中,最短路径问题的应用非常广泛,例如地图导航、网络寻路、信息传递等等。
2. 贪心算法的原理贪心算法是一种自顶向下的设计方法,它主要依赖与一种贪心的选择方法。
在每个步骤中,都会选择能够最优化当前直接的步骤的答案。
因此,当遇到问题难以确定最优解时,可以使用贪心算法。
一般来说,贪心算法的优点是简单易懂,并且在特定情况下能够得到准确的答案。
3. C语言代码实现快速查找从起点到所有节点的距离是这个问题的关键,可以使用某种最短路算法,例如Dijkstra算法或贪心算法。
在这里,我们使用贪心算法解决最短路径问题。
以下是C语言代码示例:#include <stdio.h> #include <stdlib.h> #include <string.h>#define V 6int min_distance(int distance[], int visited[]) { int min_index, min_distance = INT_MAX;for (int i = 0; i < V; i++) { if (visited[i] == 0 && distance[i] <= min_distance){ min_distance = distance[i]; min_index = i; } }return min_index; }int dijkstra(int graph[V][V], int source, int destination) { int distance[V], visited[V], count; memset(distance, 0, sizeof(distance)); memset(visited, 0, sizeof(visited));for (int i = 0; i < V; i++){ distance[i] = INT_MAX; }distance[source] = 0;for (count = 0; count < V - 1; count++){ int u = min_distance(distance, visited);visited[u] = 1;for (int v = 0; v < V; v++){ if (!visited[v] && graph[u][v] &&distance[u] != INT_MAX && distance[u] + graph[u][v]< distance[v]) { distance[v] =distance[u] +graph[u][v]; } } }return distance[destination]; }int main() { int graph[V][V] = { { 0, 1, 0,0, 0, 0 }, { 0, 0, 9, 0, 0,0 }, { 2, 0, 0, 3, 0, 1 }, { 0, 0, 0, 0, 2, 0 }, { 4,6, 0, 2, 0, 0 }, { 0, 0, 0,0, 1, 0 } };int source = 0, destination = 5;int distance = dijkstra(graph, source,destination);printf("The shortest distance from node %dto %d is: %d\n", source, destination, distance);return 0; }4. 结尾在本文中,我们介绍了贪心算法解决最短路径问题的原理和C语言代码实现。
五大常用算法 模拟退火算法
五大常用算法模拟退火算法随着科技的不断发展,算法在实际应用中也变得越来越多样。
其中“五大常用算法”是解决问题最常用的算法之一,而模拟退火算法更是在优化问题中独具一格。
什么是“五大常用算法”?“五大常用算法”是指在计算机科学中,被认为是解决问题最常用的五种基本算法,即贪心算法、分治算法、回溯算法、动态规划算法和分支限界算法。
这五种算法在解决不同类型的问题时,各有特点和优缺点。
如何使用“五大常用算法”?1.贪心算法在贪心算法中,每一步都选择当时看起来最好的选择,即以局部最优解为出发点,通过相邻的两个最优点组成的最优解,最终求得全局最优解。
贪心算法适用于解决最优化问题。
2.分治算法分治算法是将问题拆分成小问题解决,再合并进行更高级别的解决,直至最终得到全局解决方案。
其中,子问题规模往往比原问题规模小。
分治算法适用于求解大规模问题。
3.回溯算法回溯算法也称试探算法,通过逐步试探所有可行解,找到最优解。
在回溯算法中,随着搜索的进行,每次通常只需要记录子问题的局部解,直至最终解决全局问题。
回溯算法适用于要求全部解的问题。
4.动态规划算法动态规划算法是通过将问题拆分成相对独立的子问题进行求解,以解决复杂问题。
动态规划算法中往往需要用到子问题之间的重叠,通过记录下最优解,得到全局的最优解。
5.分支限界算法分支限界算法是将问题的状态空间树划分成多个子树,然后用估价函数来找到最有希望到的子树,将其转化成下一个问题的状态,然后进行搜索。
分支限界算法主要用于求解最优解或全部解的问题。
什么是“模拟退火算法”?模拟退火算法(Simulated Annealing)是一种通用性很强的优化算法,能在较短时间内求得大规模复杂问题的较优解。
该算法来源于固体物理中的“退火”过程,也称为“模拟退火算法”。
模拟退火算法对遗传算法和其他优化算法有着很好的补充作用。
如何使用模拟退火算法?1.初始化问题首先,需要初始化初始解和初始温度。
初始解和初始温度决定了模拟退火算法是否会找到全局最优解。
算法设计方法十一种
算法设计方法十一种
算法设计是解决计算问题的基础和核心。
本文将介绍十一种算法设计方法。
1. 贪心算法:每一步选择当前状态下最优的决策。
2. 动态规划:利用历史信息,按顺序进行决策,将整个问题划分为相似子问题,对每个子问题作出决策,以获得全局最优解。
3. 分治算法:将问题划分为多个相互独立的子问题,分别求解这些子问题,然后组合它们的解来获得原问题的解。
4. 回溯算法:从开头开始,逐步查找更多解决方案,如果无法继续,则返回上一步重新选择一条路径。
5. 分支限界算法:利用树形结构来表示问题的解空间,每次扩展一个节点,直到找到最优解为止。
6. 线性规划:用数学模型来描述问题,通过线性方程和不等式来表示限制条件,利用单纯性法求出最优解。
7. 区间图算法:处理一些与线段重叠有关的问题,如求多个区间的交集或各自覆盖的长度。
8. 图论算法:处理网络结构的问题,如最短路径问题和最小生成树问题。
9. 数论算法:研究数学中的整数和它们的性质,如欧几里得算法求最大公约数和扩展欧几里得算法求最小公倍数。
10. 字符串算法:处理字符串匹配、编辑距离等问题。
11. 概率算法:运用概率统计知识来解决问题,如蒙特卡罗方法解决求π问题。
以上这些算法设计方法不仅在学术界产生了重要的研究意义,同时在实际应用中也有着广泛的应用。
算法设计の研究不仅仅是单个技术问题的研究,同时也是对计算领域的整体认识。
常见八种算法详解 -回复
常见八种算法详解-回复“常见八种算法详解”算法是计算机科学中的重要概念,是解决问题的方法和步骤的描述。
常见八种算法是指八种常用的计算机算法,包括贪心算法、动态规划算法、分治算法、回溯算法、递归算法、穷举算法、分支限界算法和排序算法。
下面将逐一详细介绍这八种算法的原理和应用。
一、贪心算法贪心算法是一种寻找局部最优解的方法,在每一步选择中都采取在当前状态下最好或最优的选择,从而希望最后得到的结果是全局最好或最优的。
贪心算法的核心思想是利用局部最优解构建全局最优解。
其典型应用包括霍夫曼编码、最小生成树算法和最短路径算法等。
二、动态规划算法动态规划算法是一种将问题分解成相互重叠的子问题并解决子问题的优化问题。
动态规划算法的核心思想是通过存储已计算结果来避免重复计算,以达到减少计算时间的目的。
其典型应用包括背包问题、最长公共子序列和矩阵连乘等。
三、分治算法分治算法是一种将问题分解成相互独立且同样类型的子问题,然后递归地解决这些子问题的方法。
分治算法的核心思想是将原问题分解成多个相似的子问题,然后将子问题的解合并成原问题的解。
其典型应用包括归并排序、快速排序和二分查找等。
四、回溯算法回溯算法是一种通过穷举所有可能的解来求解问题的方法。
回溯算法的核心思想是在每一步都尝试所有可能的选项,并根据问题的约束条件和限制条件进行搜索和剪枝,以找到问题的解。
其典型应用包括八皇后问题、0-1背包问题和图的着色问题等。
五、递归算法递归算法是一种通过调用自身来解决问题的方法。
递归算法的核心思想是将大问题转化为相同类型的小问题,然后逐层向下求解小问题,直到达到问题的结束条件。
其典型应用包括计算斐波那契数列、求解阶乘和合并排序等。
六、穷举算法穷举算法是一种通过列举所有可能的解来求解问题的方法。
穷举算法的核心思想是遍历问题的解空间,找到符合问题要求的解。
穷举算法通常适用于问题的解空间较小的情况。
其典型应用包括全排列问题、子集和问题和图的哈密顿回路问题等。
组合优化问题求解方法及其应用
组合优化问题求解方法及其应用组合优化问题是指在一定的约束条件下,在一组可选的元素中选取最优组合的问题。
如何求解组合优化问题一直是计算机科学中的重要研究方向之一。
在实际中,组合优化问题的应用非常广泛,从生产调度到金融风险评估等领域都发挥着重要作用。
本文将介绍几种常见的组合优化问题求解方法及其应用。
一、贪心算法贪心算法是一种简单而常用的求解策略。
它通常从问题的某一个初始状态开始,按照某种局部最优的规则逐步构造问题最终的解,直到满足整个问题的全局最优性。
贪心算法的核心思想就是:每一步都做出一个最优决策,最终达到全局最优解。
贪心算法适用于那些带有最优子结构性质的问题。
所谓最优子结构性质是指:一个问题的最优解包含其子问题的最优解。
比如,在背包问题中,每次选择价值最大的物品来装入背包,就是一种贪心策略。
应用场景:1. 最小生成树问题最小生成树问题是指在一个连通的带权图中选取一棵生成树,使得所有边权之和最小。
Kruskal算法和Prim算法均属于贪心算法,可以高效地求解最小生成树问题。
2. 背包问题背包问题是指在有限的背包容量下,如何装入最有价值的物品。
贪心策略可以用来求解部分背包问题和分数背包问题。
二、分支限界法分支限界法是一种基于搜索的求解策略。
它通过不断缩小问题解空间,逐步约束问题的规模,最终求得最优解。
具体来说,分支限界法将问题解空间分成一个个子空间,在选择某一子空间的同时,通过对该子空间的搜索和剪枝,逐渐减小问题解空间的规模,直到找到最优解。
应用场景:1. 旅行商问题旅行商问题是指在一张带权完全图中,如何找到一条经过所有顶点的最短路径。
分支限界算法是一种高效的求解方法,通过剪枝技术可以显著降低搜索空间。
2. 整数规划问题整数规划问题是指在满足各种限制条件下,找到一组整数变量的最优取值使得目标函数值最小或最大。
分支限界算法可以用来求解整数规划的松弛线性规划问题。
三、动态规划算法动态规划算法是一种基于记忆化搜索的求解策略。
分支定界算法解决最短路径问题
分支定界算法解决最短路径问题分支定界算法是一种常用的解决最短路径问题的方法。
该算法通过不断分支和界定,逐步缩小搜索空间,最终找到最短路径。
本文将介绍分支定界算法的原理、应用以及一些优化技巧。
一、算法原理分支定界算法通过将问题分解为一系列子问题,并对每个子问题进行搜索和剪枝操作,来减小问题的规模。
其基本步骤如下:1. 确定问题的模型:将最短路径问题转化为图论问题,即从起点到终点寻找一条路径,使得路径上的总权重最小。
2. 初始化条件:设定起点和终点,初始化最短路径长度为无穷大。
3. 构建搜索树:从起点开始,依次向下搜索,每次扩展一个节点,并计算当前路径的总权重。
4. 剪枝操作:根据问题的性质,在搜索过程中,剪去不可能产生最优解的路径,减少搜索的时间和空间开销。
5. 更新最短路径:在搜索过程中,记录当前最短路径的长度,并更新最优解。
6. 终止条件:当搜索到达终点或者搜索树为空时,终止搜索,并输出最短路径长度。
二、算法应用分支定界算法在实际问题中有着广泛的应用,其中最短路径问题是其中一个重要的领域。
例如,在交通规划中,分支定界算法可以用于寻找最短路径,以帮助司机选择最优的行驶路线。
在物流配送中,也可以使用分支定界算法来规划货物的最短路径,以减少成本和时间。
此外,在电路布线、网络路由等领域,分支定界算法也有着应用。
三、算法优化为了提高分支定界算法的效率和精确度,可以采取一些优化技巧:1. 启发式搜索:引入启发式函数来指导搜索的方向,选择有可能导致更短路径的节点进行扩展,在一定程度上减少搜索空间。
2. 剪枝策略:根据问题的特点,设计合适的剪枝策略,避免无效搜索和重复计算。
3. 并行计算:利用多线程或分布式计算的方法,同时搜索多个子问题,加速算法的执行速度。
4. 动态规划:在一些具有重叠子问题性质的问题中,可以使用动态规划技术,避免重复计算,减少时间和空间开销。
四、总结分支定界算法是解决最短路径问题的一种有效方法,通过不断分支和界定,可以高效地找到最短路径。
算法论文:旅行商问题的求解方法(动态规划法和贪心法)讲解
旅行商问题的求解方法摘要旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。
关键字:旅行商问题;动态规划法;贪心法;分支限界法1引言旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。
研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。
关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。
归纳起来,目前主要算法可分成传统优化算法和现代优化算法。
在传统优化算法中又可分为:最优解算法和近似方法。
最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。
但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。
2正文2.1蛮力法2.1.1蛮力法的设计思想蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。
一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。
在基本的数据结构中,一次处理每个元素的方法是遍历。
2.1.2算法讨论用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。
如对于图1,我们求解过程如下:(1)路径:1->2->3->4->1;路径长度:18;(2)路径:1->2->4->3->1;路径长度:11;(3)路径:1->3->2->4->1;路径长度:23;(4)路径:1->3->4->2->1;路径长度:11;(5) 路径:1->4->2->3->1;路径长度:18;(6) 路径:1->4->3->2->1;路径长度:18;从中,我们可以知道,路径(2)和(4)路径长度最短。
动态规划算法和贪心算法比较和分析
动态规划算法和贪心算法的比较与分析1、最优化原理根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。
解决这类问题的最优化原理:一个过程的最优决策具有这样的性质,即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略。
简而言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。
2、动态规划2.1 动态规划算法动态规划是运筹学的一个分支,与其说它是一种算法,不如说它是一种思维方法更贴切。
因为动态规划没有固定的框架,即便是应用到同一道题上,也可以建立多种形式的求解算法。
许多隐式图上的算法,例如求单源最短路径的Dijkstra算法、广度优先搜索算法,都渗透着动态规划的思想。
还有许多数学问题,表面上看起来与动态规划风马牛不相及,但是其求解思想与动态规划是完全一致的。
因此,动态规划不像深度或广度优先那样可以提供一套模式,需要的时候,取来就可以使用。
它必须对具体问题进行具体分析、处理,需要丰富的想象力去建立模型,需要创造性的思想去求解。
动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
值得注意的是,用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。
最优化原理是动态规划的基础。
任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。
能采用动态规划求解的问题都要满足两个条件:①问题中的状态必须满足最优化原理;②问题中的状态必须满足无后效性。
所谓无后效性是指下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结。
2.2 动态规划算法的基本要素(1)最优子结构。
设计动态规划算法的第一步通常是刻画最优解的结构。
当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。
一个最值问题的三种解法
一个最值问题的三种解法最优解是某一特定方法能够在有限的资源内获得最佳结果。
一个最优解问题,通常需要求解给定条件下,最大或最小化某种函数。
一个最优解问题的解法有多种,本文将介绍三种常用的方法,分别是动态规划、贪心算法和遗传算法。
一、动态规划动态规划是一种最优化解决方案,它利用拆解子问题的技术,来计算一个复杂问题的最终结果。
它的特点在于将原问题拆解成若干规模更小的连续子问题,然后逐一解决,从而求出最终的最优解。
它的优点是可以把复杂问题分解成若干简单问题,易于理解和求解,每一步只需要解决一个子问题,每一步完成后都能获得此步最优解。
二、贪心算法贪心算法是搜索策略的一种,它旨在从当前状态出发,找出最优解。
贪心算法的基本思想是在每一步中找到当前最佳(最优)解,从而获得最终的全局最优解。
贪心算法比动态规划更加简单,可以用更少的计算量获得最优解,只需要在每一步求解中做出最佳选择,最终就能得到一个最优解。
但是,贪心算法并不一定能得到最优解,需要合适的算法设计和技巧。
三、遗传算法遗传算法是一种基于自然选择原理的模拟算法,它可以用来求解最优化问题。
遗传算法以自然界中的基因进化为基础,它可以作为一种基于总体的搜索算法,来求解复杂的全局最优解。
遗传算法的优点在于可以快速简易的搜索全局最优解,即使在搜索空间中的解很少或巨大时依然可以快速准确的搜索出最优解。
综上所述,最优解问题可以采用动态规划、贪心算法和遗传算法等三种方法解决。
每种方法都有其优点和缺点,应根据实际情况选择最合适的解决方案。
同时,任何一种方法都要结合个人特点和经验,以此提高解决问题的效率。
借助这三种方法,找出一个最优解是可能的,但也要根据实际情况,根据问题的特点和资源限制,挑选最合适的方法,按照一定的算法步骤,结合个人的实际情况和经验,最终得以获得最优解。
np难问题常用算法
NP难问题是指那些在多项式时间内无法确定其解的问题。
解决NP难问题常用的算法包括:
1. **启发式算法**:启发式算法是一种基于经验和直觉的算法,它不保证找到最优解,但通常能够在合理的时间内找到一个近似解。
常见的启发式算法包括贪心算法、回溯算法等。
2. **动态规划**:动态规划是一种将问题分解为子问题并解决子问题的算法。
通过将子问题的解存储起来,避免重复计算,可以显著提高算法的效率。
动态规划在求解优化问题、最短路径问题等方面有广泛应用。
3. **分支限界法**:分支限界法是一种用于求解约束满足问题的算法。
它将问题的解空间树进行搜索,通过剪枝来缩小搜索范围,从而提高搜索效率。
分支限界法在求解旅行商问题、背包问题等方面有广泛应用。
4. **概率算法**:概率算法是一种通过随机性来求解问题的算法。
它可以在多项式时间内找到一个近似解,但不一定能够找到最优解。
常见的概率算法包括蒙特卡罗算法、拉斯维加斯算法等。
5. **近似算法**:近似算法是一种在多项式时间内找到一个近似解的算法。
它不保证找到最优解,但通常能够在合理的时间内找到一个近似解。
常见的近似算法包括贪婪算法、模拟退火算法等。
需要注意的是,对于NP难问题,没有一种通用的算法能够在多
项式时间内找到最优解。
因此,在实际应用中,需要根据具体的问题和场景选择合适的算法来解决NP难问题。
动态规划和贪心算法的区别和优劣比较
动态规划和贪心算法的区别和优劣比较动态规划和贪心算法是两种经典的问题求解方法,本文将从定义、区别、优劣比较等方面来详细介绍这两种算法。
一、定义1.动态规划动态规划是一种将复杂问题分解成小问题来解决的算法。
将复杂的问题转化为一系列小问题,然后逐步解决每个小问题,最后将这些小问题的解合成总问题的解。
动态规划一般用于求解最优化问题,如求最长公共子序列、最长递增子序列以及最短路径等。
2.贪心算法贪心算法是一种贪心思想来解决问题的算法。
贪心算法的基本思想是,每步中都采取当前状态下最优的选择,希望从局部最优解的选择中得到全局最优解。
二、区别虽然两种算法的思想都是分解问题,但是两者在实现、时间复杂度等方面有着显著的区别,具体如下:1.实现动态规划算法一般需要用到递归或者记忆化搜索等技巧,其中递归算法通常需要很多空间存储中间结果,因此空间复杂度较高。
而贪心算法通常只需要一次遍历即可求解,因此实现较为简单。
2.时间复杂度动态规划算法的时间复杂度一般较高,通常是指数量级。
而贪心算法的时间复杂度较低,通常是常数级别,因此时间效率较高。
3.解决问题的特点动态规划算法通常解决目标函数具有最优子结构性质的问题,即当前状态下的最优解包含以前状态下的最优解。
而贪心算法通常解决目标函数具有贪心性质的问题,如局部最优解能够推导出全局最优解等。
三、优劣比较动态规划算法和贪心算法在不同情况下具有不同的优劣性,如下所示:1.动态规划的优劣a.优点(1).解决所有具有最优子结构的问题。
(2).可以在时间复杂度为多项式级别,空间复杂度为常数级别的情况下求解问题。
(3).可以考虑状态转移方程中的所有状态,找到最优解。
b.缺点(1).实现比较困难,需要使用递归和记忆化搜索等技巧。
(2).需要很多空间存储中间状态。
(3).如果没有最优子结构,导致算法无法求解。
2.贪心算法的优劣a.优点(1).实现简单,易于理解。
(2).时间复杂度低,适合对实时性要求较高的问题。
最短路径问题解题技巧
最短路径问题解题技巧
解决最短路径问题可以使用以下的技巧:
1. Dijkstra算法:Dijkstra算法是解决带权重有向图的单源最短
路径问题的经典算法。
它采用贪心策略,从起点开始,依次确定与起点距离最短的节点,然后通过这个节点更新与其相邻节点的距离,直到到达目标节点。
2. Bellman-Ford算法:Bellman-Ford算法是解决带负权重边的
有向图的单源最短路径问题的算法。
它采用动态规划的思想,通过多次迭代,逐步更新各个节点的最短路径。
3. Floyd-Warshall算法:Floyd-Warshall算法是解决带权重有向图的所有节点对之间的最短路径问题的算法。
它采用动态规划的思想,通过多次迭代,逐步更新各个节点对之间的最短路径。
4. A*算法:A*算法是一种启发式搜索算法,用于解决带权重
的有向图的单源最短路径问题。
它综合考虑节点的实际距离和启发函数预测的剩余距离,选择当前最有可能达到目标的节点进行搜索。
5. SPFA算法:SPFA算法是Bellman-Ford算法的一种优化版本,用于解决带负权重边的有向图的单源最短路径问题。
它采用队列来存储待更新的节点,避免了重复更新节点的操作,从而提高了算法的效率。
以上是几种常用的解决最短路径问题的算法技巧,根据具体问
题的要求和图的特征,选择适合的算法可以较好地解决最短路径问题。
小学解决问题方法模拟测试
动态规划是一种将问题分解为子问题,并通过求解子问题来求解原问题的方法。回溯法是一种通过递归地尝试所有可能的解来找到问题的解的方法。两者都是解决优化问题的有效方法。
###四、数据结构的基本操作
本题涉及到的数据结构有数列、向量、图形等,掌握这些数据结构的基本操作是解决问题的关键。
1.请简要描述问题解决的基本步骤。
2.请简要介绍启发式策略及其优点和缺点。
3.请简要解释动态规划是如何解决优化问题的。
4.请简要介绍回溯法及其应用场景。
5.请简要描述问题解决的评价指标。
##五、计算题(5道,每题2分,共10分)
1.已知一个数列的前三项分别为1、2、3,且数列的通项公式为$a_n = a_{n-1} + a_{n-2}$,求第10项的值。
1.问题解决的基本步骤包括:理解问题、设计方案、执行方案、测试并优化。
2.启发式策略是一种根据问题特点和经验选择解题步骤的方法,其优点是可以快速找到可行解,缺点是可能无法找到最优解。
3.动态规划是一种将问题分解为子问题,通过求解子问题来求解原问题的方法。其核心思想是状态转移方程,通过保存已解决子问题的解来避免重复计算。
A.时间复杂度
B.空间复杂度
C.正确性
D.效率
10.在解决问题时,以下哪种方法可以用于求解背包问题?
A.动态规划
B.贪心算法
C.回溯法
D.分支限界法
##二、判断题(5道,每题2分,共10分)
1.问题解决的目标是找到问题的最优解。
2.算法策略和启发式策略可以同时使用。
3.动态规划适用于所有问题。
4.问题解决的评价指标包括时间复杂度、空间复杂度和正确性。
3.动态规划的核心思想是将问题分解为子问题,并通过求解子问题来求解原问题。其基本步骤包括:定义状态、建立状态转移方程、_______、计算最终结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法综合实验报告学号: 1004111107 姓名:黄琼莹一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
(2)函数组成getmin():获得该数组的最小值;getJ():根据2进制j和j中1的个数找下一个jgetnextj():返回下一个j的十进制数(3)输入/输出设计本题通过键盘进行输入,通过屏幕进行输出由于题目的输入要求是:第一行输入一个整数n(2<=n<=10),接下来的n行,每行输入n-1个整数,表示i与除了自己之外的所有点之间的距离,按点的编号从小到大顺序输入可以设计两个for循环来实现数据的输入,外层for循环实现一行一行地输入,内层for循环实现某一行中数据的输入53 1 5 83 6 7 91 6 4 25 7 4 38 9 2 3(4)符号名说明N:节点数,即城市的数目matr[20][20]:存邻接矩阵d[20][40000]={0}:存动态填表数据min:花费的最小值,即答案jlist[20]:存放j的二进制数组V[20]:标记节点是不是被访问过tmpres[20]:存放结果的数组(5)算法描述假设从顶点i出发,令d(i,V’)表示从顶点i出发经过V’中各个顶点一次且仅一次,最后回到出发点i的最短路径的长度,开始时,V’=V-{i},于是,旅行商问题的动态规划函数为:d(i,V’) = min{c ik + d(k,V’-{k})} (k∈V’) 1)d(k,{}) = c ki (k ≠ i) 2)简单来说,就是用递归表达:从出发点0到1号点,假设1是第一个,则剩下的路程就是从1经过剩下的点最后回到0点的最短路径. 所以当V’为空的时候, d(k,{}) = c ki (k ≠ i), 找的是最后一个点到0点的距离.递归求解1之后,再继续求V’之中剩下的点,最后找出min.如果按照这个思想直接做,对于每一个i都要递归剩下的V中所有的点,所以这样的时间复杂度就近似于N!,其中有很多重复的工作.可以从小的集合到大的集合算,并存入一个二维数组,这样当加入一个节点时,就可以用到之前的结果,如四个点的情况:邻接矩阵:node 0 1 2 30 5 3 21 5 7 92 3 7 123 2 9 12动态填表:表中元素代表第i个节点经过V集合中的点最后到0点的最短值.如果有多个值,取其中最小的一个.i\Vj 0 1 2 3 1,2(取min) 1,3(取min) 2,3(取min) 1,2,3(取min)0 c[0][i]+d[i][v’]=211 5 10 11 {c[1][2]+d[2][{3}]=21,c[1][3]+d[3][{2}]=24}2 3 12 14 {c[2][1]+d[1][{3}]=18,c[2][3]+d[3][{1}]=26}3 2 14 15 {c[3][1]+d[1][{2}]=19,c[3][2]+d[2][{1}]=24}这样一共循环(2^(N-1)-1)*(N-1)次,就把时间复杂度缩小到O(N*2N )的级别.核心伪代码如下:{for (i =1;i<n;i++) //初始化第0列d[i][0]=c[i][0];for( j=1;j<2^(N-1)-1;j++)for(i=1 ; i<n ;i++){if(子集Vj中不包含i){对Vj中的每个元素k,计算d[i][Vj] = min{c[i][k] + d[k][{Vj-k}] | 每一个k∈Vj};}}对V[2^(n-1)-1]中的每个元素k,计算:d[0][2^(n-1)-1] = min{c[0][k] + d[k][2^(n-1)-2]};输出最短路径:d[0][2^(n-1)-1];}2、贪心法(1)数据结构数组a[][]存放邻接矩阵,取到邻接点的最小权值然后直接跳到所对应节点。
(2)函数组成无(3)输入/输出设计5 43 1 5 8 3 6 73 6 7 9 5 2 31 6 42 6 4 25 7 4 3 3 7 58 9 2 3(4)符号名说明a[][]:存放邻接矩阵vis[]:标记已经过的节点sum :最小花费(5)算法描述贪心法的方法是在每个节点中找到与其他节点的最小距离,并且有顺序下面把城市和到目的地之间的关系用一个矩阵表示。
1 2 3 4 51 max 3 4 6 22 3 max 4 6 53 3 2 max4 44 2 3 1 max 65 46 5 2 max由于使用贪婪算法,每次都选择当前最短的目的地,所以应该会这么走:1-5-4-3-2-1 花费值是2+2+1+2+3=10。
可以明显看出选择一个城市出发,时间复杂性为O(n^2)。
3、分支限界法(1)数据结构利用最小堆取得最小数。
用到了堆的数据结构。
结构体数据结构。
(2)函数组成InitMiniHeap():初始化堆put():入堆RemoveMiniHeap():出堆Traveler():解决TSP问题(3)输入/输出设计5 43 1 5 8 3 6 73 6 7 9 5 2 31 6 42 6 4 25 7 4 3 3 7 58 9 2 3(4)符号名说明MAX_CITY_NUMBER :城市最大数目MAX_COST :两个城市之间费用的最大值City_Graph[MAX_CITY_NUMBER][MAX_CITY_NUMBER]:表示城市间边权重的数组City_Size:表示实际输入的城市数目Best_Cost:最小费用Best_Cost_Path[MAX_CITY_NUMBER]:最小费用时的路径struct MiniHeap:堆(5)算法描述①算法开始时创建一个最小堆,用于表示活结点优先队列②堆中每个结点的子树费用的下界lcost值是优先队列的优先级。
③接着算法计算出图中每个顶点的最小费用出边并用minout记录。
④如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。
⑤如果每个顶点都有出边,则根据计算出的minout作算法初始化。
算法的while循环体完成对排列树内部结点的扩展。
对于当前扩展结点,算法分2种情况进行处理:①首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结点。
如果该叶结点相应一条可行回路且费用小于当前最小费用,则将该叶结点插入到优先队列中,否则舍去该叶结点。
②当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。
由于当前扩展结点所相应的路径是x[0:s],其可行儿子结点是从剩余顶点x[s+1:n-1]中选取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。
对于当前扩展结点的每一个可行儿子结点,计算出其前缀(x[0:s],x[i])的费用cc和相应的下界lcost。
当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。
算法中while循环的终止条件是排列树的一个叶结点成为当前扩展结点。
当s=n-1时,已找到的回路前缀是x[0:n-1],它已包含图G的所有n个顶点。
因此,当s=n-1时,相应的扩展结点表示一个叶结点。
此时该叶结点所相应的回路的费用等于cc和lcost的值。
剩余的活结点的lcost值不小于已找到的回路的费用。
它们都不可能导致费用更小的回路。
因此已找到叶结点所相应的回路是一个最小费用旅行售货员回路,算法可结束。
算法结束时返回找到的最小费用,相应的最优解由数组v给出。
三、源程序及注释:1、动态规划法#include <iostream>#include <math.h>#include <stdio.h>#include <ctime>#include <algorithm>#define max 0x7ffffffusing namespace std;int N;//节点数int matr[20][20];//存邻接矩阵int d[20][40000]={0};//存动态填表数据int getmin(int *sum)//返回该数组中最小非零值{int i = 0;int min = -1,k;for(;i<N;i++){if((min < 0 && sum[i]>0) || (sum[i]>0 && sum[i]<min)){min = sum[i];k = i;}}return min;}void getJ(int jlist[], int c, int n)//根据2进制j和j中1的个数找下一个j{int i = n-1,j;int tmp = 1 , result = 0;while(!jlist[i])i--;//最高位的1的位臵j = i-1;while(jlist[j])j--;//找最高位1之下的最高0if(!jlist[n-1])//若最高位不为1{//将为1的最高一位向上移一位jlist[i]=0;jlist[i+1]=1;}else if(n-1-j==c)//若最高位为1,且j为当前1的个数所能组成的最大的j{for(i=0;i<n;i++)jlist[i]=0;for(i=0;i<c+1;i++)jlist[i]=1;}else//最高位为1,且在当前数目1下还能变更大{//将和最高位之间有隔0的最高的1上移一位,并把这个1之后的所有1 拉到紧邻它后面int k;k=n-1-j;//最高位一共有多少相邻的1while(!jlist[j])j--;//找和最高位隔着0的最高1for(i=0;j+i<n;i++)jlist[j+i]=0;for(i=0;i<=k;i++)jlist[j+i+1]=1;}}int getnextj( int j ){int nextj = 0;//下一个jint c=0;//计数j的二进制有几个1int jlist[20]={0};//存放j的二进制数组int i=0;int tmp = 1;while(j){if(j%2){c++;jlist[i++]=1;}else{jlist[i++]=0;}j/=2;}getJ(jlist,c,N-1);//处理jlistfor(i=0;i<N-1;i++)//将jlist中的2进制转换成int返回{if(jlist[i])nextj += tmp;tmp *= 2;}return nextj;}int main(){int i,j;int min;scanf("%d",&N);//读入点数for(i = 0; i < N; i++)//读入邻接矩阵{for(j = 0;j < N; j++){if(i!=j)scanf("%d",&matr[i][j]);}matr[i][i] = max ;}int V[20]={0};for(i = 0; i < N; i++)V[i]=1;//将所有点设臵为未经过点V[0]=0;//以第0个点为出发点//2^n次方解法for (i =1;i<N;i++) //初始化第0列d[i][0]=matr[i][0];for(j=1;j<pow(2,N-1)-1;j=getnextj(j))for(i=1; i<N ;i++){if(!(j & ( 1<<(i-1) )))//如果集合j中不包含i{//对V[j]中的每个元素k,计算d[i][j] = min{matr[i][k] + d[k][{j-k}]};int jlist[20]={0}; //存放j的二进制数组int tmpres[20]={0};int c=0,k=j,l;while(k){if(k%2){jlist[c++]=1;}else{jlist[c++]=0;}k/=2;}c=0;for(l=0;l<N;l++){if(jlist[l]){tmpres[c++]=matr[i][l+1] + d[l+1][j-(1<<l)];}}d[i][j] = getmin(tmpres);}}int tmpres[20]={0};j = pow(2,N-1)-1;for(i=1;i<N;i++){tmpres[i]=matr[0][i] + d[i][ j - (1<<(i-1) )];}min = getmin(tmpres);//对V[2^(n-1)-1]中的每个元素k,计算:// d[0][2^(n-1)-1] = min{matr[0][k] + d[k][2^(n-1)-2]};//输出最短路径:d[0][2^(n-1)-1];printf("%d\n",min);getchar();return 0;}2、贪心法#include <iostream>#include <stdio.h>#include <cmath>#include <string.h>#define max 10000000using namespace std ;int a[20][20] ;int vis[20] ;int main(){int n , j , i ;memset(vis , 0 , sizeof(vis)) ;scanf("%d" , &n) ;for(i = 0 ; i < n ; i ++){for(j = 0 ; j < n ; j ++){if(i != j){scanf("%d" , &a[i][j]) ;}}a[i][i] = max ;}int sum = 0 , count = 0;int cur , k = 0 ;i = 0 ;vis[0] = 1 ;while(count!=n){cur = max ;for(j = 0 ; j < n ; j ++)//找到邻接点最小的权值,并返回与其相连的节点 {if(a[i][j] < cur && vis[j] == 0 && i != j){cur = a[i][j] ;k = j ;}}sum += a[i][k] ;i = k ;vis[k] = 1 ;count ++ ;if(count == n)//当经过四个节点时,返回第一个节点时将第一个节点标记为0 {vis[0] = 0 ;}}printf("%d\n" , sum) ;return 0 ;}3、分支限界法#include <stdio.h>#include <iostream>using namespace std;#define MAX_CITY_NUMBER 10 //城市最大数目#define MAX_COST 10000000 //两个城市之间费用的最大值int City_Graph[MAX_CITY_NUMBER][MAX_CITY_NUMBER];//表示城市间边权重的数组int City_Size; //表示实际输入的城市数目int Best_Cost; //最小费用int Best_Cost_Path[MAX_CITY_NUMBER];//最小费用时的路径typedef struct Node{int lcost; //优先级int cc; //当前费用int rcost; //剩余所有结点的最小出边费用的和int s; //当前结点的深度,也就是它在解数组中的索引位置int x[MAX_CITY_NUMBER]; //当前结点对应的路径struct Node* pNext; //指向下一个结点}Node;//---------------------定义堆和相关对操作--------------------------------typedef struct MiniHeap{Node* pHead; //堆的头}MiniHeap;//初始化void InitMiniHeap(MiniHeap* pMiniHeap){pMiniHeap->pHead = new Node;pMiniHeap->pHead->pNext = NULL;}//入堆void put(MiniHeap* pMiniHeap,Node node){Node* next;Node* pre;Node* pinnode = new Node; //将传进来的结点信息copy一份保存//这样在函数外部对node的修改就不会影响到堆了 pinnode->cc = ;pinnode->lcost = node.lcost;pinnode->pNext = node.pNext;pinnode->rcost = node.rcost;pinnode->s = node.s;pinnode->pNext = NULL;for(int k=0;k<City_Size;k++){pinnode->x[k] = node.x[k];}pre = pMiniHeap->pHead;next = pMiniHeap->pHead->pNext;if(next == NULL){pMiniHeap->pHead->pNext = pinnode;}else{while(next != NULL){if((next->lcost) > (pinnode->lcost)){ //发现一个优先级大的,则置于其前面pinnode->pNext = pre->pNext;pre->pNext = pinnode;break; //跳出}pre = next;next = next->pNext;}pre->pNext = pinnode; //放在末尾}}//出堆Node* RemoveMiniHeap(MiniHeap* pMiniHeap){Node* pnode = NULL;if(pMiniHeap->pHead->pNext != NULL){pnode = pMiniHeap->pHead->pNext;pMiniHeap->pHead->pNext = pMiniHeap->pHead->pNext->pNext;}return pnode;}//---------------------分支限界法找最优解-------------------------------- void Traveler(){int i,j;int temp_x[MAX_CITY_NUMBER];Node* pNode = NULL;int miniSum; //所有结点最小出边的费用和int miniOut[MAX_CITY_NUMBER];//保存每个结点的最小出边的索引MiniHeap* heap = new MiniHeap; //分配堆InitMiniHeap(heap); //初始化堆miniSum = 0;for (i=0;i<City_Size;i++){miniOut[i] = MAX_COST; //初始化时每一个结点都不可达for(j=0;j<City_Size;j++){if (City_Graph[i][j]>0 && City_Graph[i][j]<miniOut[i]){//从i到j可达,且更小miniOut[i] = City_Graph[i][j];}}if (miniOut[i] == MAX_COST){// i 城市没有出边Best_Cost = -1;return ;}miniSum += miniOut[i];}for(i=0;i<City_Size;i++){ //初始化的最优路径就是把所有结点依次走一遍Best_Cost_Path[i] = i;}Best_Cost = MAX_COST; //初始化的最优费用是一个很大的数pNode = new Node; //初始化第一个结点并入堆pNode->lcost = 0; //当前结点的优先权为0 也就是最优pNode->cc = 0; //当前费用为0(还没有开始旅行)pNode->rcost = miniSum; //剩余所有结点的最小出边费用和就是初始化的miniSumpNode->s = 0; //层次为0pNode->pNext = NULL;for(int k=0;k<City_Size;k++){pNode->x[k] = Best_Cost_Path[k]; //第一个结点所保存的路径也就是初始化的路径}put(heap,*pNode); //入堆while(pNode != NULL && (pNode->s) < City_Size-1){//堆不空不是叶子for(int k=0;k<City_Size;k++){Best_Cost_Path[k] = pNode->x[k] ; //将最优路径置换为当前结点本身所保存的 }// pNode 结点保存的路径中的含有这条路径上所有结点的索引// x路径中保存的这一层结点的编号就是x[City_Size-2]// 下一层结点的编号就是x[City_Size-1]if ((pNode->s) == City_Size-2){ //是叶子的父亲int edge1 = City_Graph[(pNode->x)[City_Size-2]][(pNode->x)[City_Size-1]];int edge2 = City_Graph[(pNode->x)[City_Size-1]][(pNode->x)[0]];if(edge1 >= 0 && edge2 >= 0 && (pNode->cc+edge1+edge2) < Best_Cost){//edge1 -1 表示不可达//叶子可达起点费用更低Best_Cost = pNode->cc + edge1+edge2;pNode->cc = Best_Cost;pNode->lcost = Best_Cost; //优先权为Best_CostpNode->s++; //到达叶子层 }}else{ //内部结点for (i=pNode->s;i<City_Size;i++){ //从当前层到叶子层if(City_Graph[pNode->x[pNode->s]][pNode->x[i]] >= 0){ //可达//pNode的层数就是它在最优路径中的位置int temp_cc = pNode->cc+City_Graph[pNode->x[pNode->s]][pNode->x[i]];int temp_rcost = pNode->rcost-miniOut[pNode->x[pNode->s]];//下一个结点的剩余最小出边费用和 //等于当前结点的rcost减去当前这个结点的最小出边费用if (temp_cc+temp_rcost<Best_Cost){ //下一个结点的最小出边费用和小于当前的最优解,说明可能存在更优解for (j=0;j<City_Size;j++){ //完全copy路径,以便下面修改 temp_x[j]=Best_Cost_Path[j];}temp_x[pNode->x[pNode->s+1]] = Best_Cost_Path[i];//将当前结点的编号放入路径的深度为s+1的地方temp_x[i] = Best_Cost_Path[pNode->s+1]; //??????????????//将原路//径中的深度为s+1的结点编号放入当前路径的//相当于将原路径中的的深度为i的结点与深度W为s+1的结点交换Node* pNextNode = new Node;pNextNode->cc = temp_cc;pNextNode->lcost = temp_cc+temp_rcost;pNextNode->rcost = temp_rcost;pNextNode->s = pNode->s+1;pNextNode->pNext = NULL;for(int k=0;k<City_Size;k++){pNextNode->x[k] = temp_x[k];}put(heap,*pNextNode);delete pNextNode;}}}}pNode = RemoveMiniHeap(heap);}}int main(){int i,j;scanf("%d",&City_Size);for(i=0;i<City_Size;i++){for(j=0;j<City_Size;j++){if(i!=j){scanf("%d",&City_Graph[i][j]);}City_Graph[i][i] = MAX_COST ;}}Traveler();printf("%d\n",Best_Cost);return 0;}四、运行输出结果:(贴出程序运行完成时的屏幕截图或者输出文件的内容)1、动态规划法2、贪心法3、分支限界法五、调试和运行程序过程中产生的问题及采取的措施:1、动态规划问题:对集合的控制有错误,不能正确的表示集合。