新人教版17.1.1勾股定理(第一课时)课件

合集下载

八年级数学(新人教版)17.1《勾股定理》第1课时课件(PPT.共15张)

八年级数学(新人教版)17.1《勾股定理》第1课时课件(PPT.共15张)
将上面的题的“离地2m的地方断裂”改为“木杆的总长度 为8m”,“杆顶离赶脚距离为4m”等条件不变,求木杆在 什么地方断裂? 提示:在Rt△ACB中,根据勾股定理建立一个方程(参考1 题的方法),问题可获得解决!
巩固练习:
1. 图中边上标注的数字和字母代表边长,请快速求出图中未知数的值:
2. a、b代表直角△ABC的锐角∠A和∠B,c为斜边,请根据条件填空: (1). 若a:b=1:2,c = 5,则a = ( (2). 若a + c = 10,b = 4,则a =( (3). 若∠A =30°,b = 2,则则a =( ), b = ( ), c = (
略解: 在Rt△ABC中,根据勾股定理可知:
用木板的最短边 (宽)与门框的 最长的入口处AC (对角线)比较 是本题的切入点.
因为AC大于木板的宽2.2m,所以木 板能从门框内通过.
书上同步练习P26(学生练习,教师在 互动中给出答案)
1小题:
1小题:
例2(教材P25)
分析:本题的关键是抓住移动梯子AB移动的 距离BD = OD – OB,而OD 和OB可以 化归在Rt△CDO和Rt△ABO中利用勾 股定理求得. 略解: 在Rt△CDO,根据勾股定理有:
在Rt△ABO中,根据勾股定理有:
一圆柱形的柱子,它的高 是8米,底面半径是2米,一 只壁虎在A点,想要吃到B点 的昆虫,它爬行的最短距离 是多少?(圆周率取3)
故移动梯子AB顶端下滑0.5m时,梯子 的底端并不是也移动了0.5m,而是移动 了0.77m.
1.如图,折叠长方形纸片(四个角都是直角,对边相等) 的一边,使点D落在BC边上的点F处,若AB=8,AD=10. (1).你能说出图中哪些线段的长? (2).求线段EC的长.

人教版八下数学课件17.1第1课时勾股定理

人教版八下数学课件17.1第1课时勾股定理

◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
ቤተ መጻሕፍቲ ባይዱ
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )

人教版八年级下册数学优质课件:17.1.1勾股定理

人教版八年级下册数学优质课件:17.1.1勾股定理

从而在数轴上画出表 示 3 , 4 , 5 …… 的点.
11 1
12 13 11 10 1
91
8

7

12 13
4
61
51
11
5.以直角三角形三边为半径作半圆, 这3个半圆的面积之间有什么关系?
C
Sb Sa
A
B Sa+Sb=Sc
Sc
10.长为 3 的线段是直角边为 正整数___2___,___1___的直角三角 形的斜边.
S2 S1 S5
S3
S4
S6
S7
结论:
S1+S2+S3+S4 =S5+S6 =S7
1
1
美丽的勾股树
3.小明用火柴棒摆直角三角形,已知 他摆两条直角边分别用了6根和8根火 柴棒,他摆完这个直角三角形共用火 柴棒多少根?
4.小亮想知道学校旗杆的高度.他发现 旗杆上的绳子垂到地面还多2米;当他 把绳子的下端拉开4米后,下端刚好接 触地面.你能帮他把学校旗杆的高求出 来吗?
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
x2 =81+144 x =15

y2 =169-144
y=5 ②
z2 =625-576 z=7 ③
2.求下列直角三角形中未知边的长:
5
x
16
20
x 12 8
17
x
方法: 可用勾股定理建立方程.
3.在Rt△ABC中, ∠C=90°
C
8
BC
13
解:(1)在Rt△ABC中,由 (2)在Rt△ABC中,由

人教版八年级数学下册课件:17.1-勾股定理(第1课时)(共40张PPT)

人教版八年级数学下册课件:17.1-勾股定理(第1课时)(共40张PPT)

1. 请你利用今天学习的面积法证明教材习 题17.1第13题.
2. 课下每个同学制作一张勾股定理的数学 小报,并自己上网查阅与勾股定理有关的 知识,证明方法和应用等,然后小组交流、 展示.
图1
图2
图3
证明1:
大正方形的面积可以表示为 也可以表示为
(a+b)2 ;
4 ab C2 2
c a
b
c a
b
c a
b
c a
b
∵ (a+b)2 = 4 ab C2 2
a2+2ab+b2 = 2ab +c2 ∴a2+b2=c2
毕达哥拉斯(Pythagoras)是古 希腊数学家,他是公元前五世纪的 人,比商高晚出生五百多年.希腊 另一位数学家欧几里德(Euclid, 是公元前三百年左右的人)在编著 《几何原本》时,认为这个定理是 毕达哥达斯最早发现的,所以他就 把这个定理称为“毕达哥拉斯定 理”,以后就流传开了.
b
∴a2+b2=c2
我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所 著的《勾股方圆图注》中,用四个全等的直角三角形拼成一个中空的正方形 来证明的.每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正 方形面积叫弦实,这个图也叫弦图.2002年的国际数学家大会将此图作 为大会会徽.
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3.由上面的条件可知,这三
个正方形的边长分别是1、1
和2,那么刚才的面积关系可
以用一个等量关系式来描述
2

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

17.1勾股定理(第1课时)课件(共23张PPT)

17.1勾股定理(第1课时)课件(共23张PPT)

让我们一起再探究:等腰直角三角形三边关系
C A B 9 C A B 图2-2 4 9 4 18 8
图2-1
(图中每个小方格代表一个单位面积)
C A B 图2-1 A B
S正方形c
C
1 4 3318 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
弦 勾

图1-1
漂亮的勾股树
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 ab 2
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
C A B 图2-1 A B
S正方形c
C
1 6 2
2
1 8(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半

人教版八年级数学 下册课件:17.1 勾股定理(第1课时)(共16张PPT)

人教版八年级数学 下册课件:17.1 勾股定理(第1课时)(共16张PPT)


勾a
c
b

求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x

20


快 方法小结: 可用勾股定理建立方程.

例2、如图:是一个长方形零件图,根据所给的尺寸 ,求两孔中心A、B之间的距离
40
A
90 C
160
பைடு நூலகம்
B 40
设直角三角形中的两条直角边
长分别为a 和 b ,斜边为c。
A B
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,
就把这一证法称为“总统”证法。 D
bc Aa
C
c a
bD
青朱出入图


b
c

a
①②
无字证明
勾股定理
如果直角三角形两直角边分别为a,b,斜边
为c,那么 a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的平方.
也角友

来三家 观角 作 相

察形 客 传

下三 , 两 面边 发 千

的的 现 五

图某 朋 百 案种 友 年

,数 家 前

看量 用 , 看关 砖 一

你系 铺 次

能, 成 毕 发同 的 达

现学 地 哥

什们 面 拉 么, 反 斯
?我 映 去
们直朋
数学家毕达哥拉斯的发现:

人教版八年级下册《17.1勾股定理》第一课时公开课教学课件 (共28张PPT)

人教版八年级下册《17.1勾股定理》第一课时公开课教学课件 (共28张PPT)

B
A C
正方形A 正方形B 正方形C 的单位 的单位 的单位
面积 面积 面积
图1 9
25 34
图2
C
图2 4 9 13
A
图1
B
每个小方格的面积均为1 图18.1-2
A、B、 C面积 关系
直角三 角形三 边关系
SASBSC
a²+b²=c²
1
2
补全
分割
勾股定理
由上面的例子,我们猜想:
如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a²+b²=c²。
毕达哥拉斯(公元前572— 前492年)古希腊著名的哲 学家、数学家、天文学家。
情境引入
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋友家 的用砖铺成的地面中反映了直角三 角形三边的某种数量关系。
毕达哥拉斯(公元前572— 前492年)古希腊著名的哲 学家、数学家、天文学家。
合作 & 交流☞
a2 c2 b2, b2 c2 a2;
bc a
3.作用:已知直角三角形任意两边长,
求第三边长.
(注意:哪条边是斜边)
学以致用
巩固
提高
拓展
x 看图求出正方形的面积 的值。
144 x
81
36 x
100
返回主界面
学以致用
巩固
提高
拓展
.求下列直角三角形中未知边的长: 5
8
17
x
x
16
20
x 12
我知道了… … c2=a2+b2
知识延伸
神 奇 的 毕 达 哥 拉 斯 树ቤተ መጻሕፍቲ ባይዱ
A

新人教版17.1勾股定理1课件

新人教版17.1勾股定理1课件

c a
b
大正方形的面积可以表示为:
1 (2). ab 4 (a b) 2 2 2 所以:c 2ab (a b) 2
(1).c 2
化简得: a 2
b c
2
2
2002年在北京召开的国际数学家大会(ICM-2002)的会标,其图 本网站版权所有 案正是“弦图”,它标志着中国古代的数学成就.
17.1勾股定理
藤县太平四中 莫素芳
毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、
天文学家。相传2500多年前,有一次他在朋友家做客时,发现朋 友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系, 进而发现直角三角形三边的某种数量关系.
正方形A、B、C面积之间有 什么数量关系吗?
a b c
b
即 直角三角形两直角边的平方和等 于斜边的平方。 弦 c 勾a 在西方又称毕达 哥拉斯定理耶! b

勾股定理的运用
已知直角三角形的任意两条边长,求第 三条边长.
2 2 2 c =a +b 2 2 2 a =c -b 2 2 2 b =c -a
A
b c
C
a
B
本网站版权所有
用四个全等三角形拼图证明。
证法一: 用 拼 图 法 证 明b
.a、b、c 之间的关系 2 a 2 +b 2 =c
a c b
∵S大正方形 =(a+b)2=a2+b2+2ab
bS大正方形=4S直角三角形+ S小正方形 c a=4·1 ab+c2
c a
=c2+2ab b ∴a2+b2+2ab=c2+2ab 2 2 2 ∴a +b =c

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版
C C. 49 D. 148
5.求斜边长17 cm、一条直角边长15 cm的直角三 角形的面积.
解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64, ∴ x=±8(负值舍去), ∴另一直角边长为8 cm,
直角三角形的面积是
(cm2).
a
∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
证法3 美国第二十任总统伽菲尔德的“总统证法”. 如图,图中的三个三角形都是直角三角形,求证: a2 + b2 = c2.
a
b
c
证明:
S梯形
1 (a 2
b)(a
b),
S梯形
1 2
ab
1 2
ab
1 2
c2,
c a
∴a2 + b2 = c2.
AC2+ 1
4
BC2.
∴阴影部分的面积为
1 2
AB2= 9 .
2
8.(创新题)如图17-10-12,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求 AD的长.
解:∵∠D=90°,
∴AD2=AB2-BD2=AC2-CD2.
∴172-(9+CD)2=102-CD2.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3

C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜

17.1勾股定理(第1课时)课件

17.1勾股定理(第1课时)课件

( A)
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
议一议:
24m 9m
?
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
AC=__1_5_______
10 6
x
X=_____8_____
x 102 62 64 8
2.求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12
长度) 长度) 位长度)
9
9 18
图2-2
A、B、 C面积 关系 直角三 角形三 边关系
4
4
SA+SB=SC
两直角边的平方和 等于斜边的平方
8
(图中每个小方格代表一个单位面积)
探究:如图,每个小方格的面积为1个单位, 你能写出正方形A、B、C的面积吗?
A的 B的
B
面积 面积
A C
图2
(单位长度) (单位长度)
对比观察,你能验证勾股定理 的正确性吗?
b
a
a
c
cb
a a
b ca
bc
c
a
bc
b
a
b
a
b

17.1.1 勾股定理(1) 公开课获奖课件

17.1.1 勾股定理(1) 公开课获奖课件

(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为 c,那么a2+b2=c2.
(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般 的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之 多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.
①用多媒体课件演示. ②小组合作探究:
a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你 能通过剪、拼把它拼成弦图的样子吗?
b.它们的面积分别怎样表示?它们有什么关系?
c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证 法.想一想还有什么方法?
师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边 有关,我国把它称为勾股定理.
拼图实验,探求新知 1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生 观察思考. 2.组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法. 引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面 积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明. 归纳验证,得出定理
蔡琰(作者有待考证)的《胡笳十八 拍》 郭璞的《游仙诗》
鲍照的《拟行路难》 庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了 ,就不 贴了orz 。
最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。

新人教版17.1.1勾股定理第一课时.ppt

新人教版17.1.1勾股定理第一课时.ppt

a
c
b
证法一: 用 拼 图 法 证 明
a2 +b2 =c2
证法一:
a、b、c 之间的关系
ab
b
ca
a c cb
ba
a2 +b2 =c2
证法二:
c b
a
弦图
现在我们一起来探 索“弦图”的奥妙吧!
它们的面积和: a2 b2
朱实 朱实 黄实 朱实
朱实
c ba
b a
a
经过证明被确认正确的命题叫做定理.
2002年国际数学家大会会标
弦图
它标志着我 国古代数学 的成就!
这个图形里 到底蕴涵了什 么样博大精深 的知识呢?
勾股定理
毕达哥拉斯(公元前572----前492年),古希腊著 名的哲学家、数学家、天文学家。
A
B
C
SA+SB=SC
SA+SB=SC
C A
B
图甲
A的面积 B的面积 C的面积
图甲 4 4 8
b
即:直角三角形两直角边的平方和等于 斜边的平方。
勾股命定题1理如: 果如直果角直三角角三形角的形两的直角两边直长角分边长分 别为别a为,ba,,斜b, 斜边边长长为为c,c那, 那么么aa22 b2 cc22..
用赵爽弦图证明勾股定理
b
a
a2 b2 =
c b
a
c2
小结:
勾股定理
如果直角三角形两直角边分别为a、b,
斜边为c,那么
ac

例题讲解
例2、求出下列直角三角形中未知边的长度
x x
6
5
13 8
解:(1)由勾股定理得: (2)由勾股定理得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图甲
SA+SB=SC
2.观察图乙,小方格
49
的边长为1.
4 16
⑵正方形A、B、C的
8 25
面积有什么关系?

PPT学习交流
9
SA+SB=SC C
Aa c b
图甲 B
图乙 a
bc C
SA+SB=SC
猜想a、b、c 之间的关系?
PPT学习交流
a2 +b2 =c2
10
命题1:如果直角三角形的两直角边长分 别为a、b,斜边长为c,那么a2+b2=c2
BC的长为__5__或_____7__
.
B
B
4
4
C3 A
PPT学习交流
A3 C
27
提高训练
2、一个直角三角形的三边长为三个连 续偶数,则它的三边长分别为 B( )
A 2、4、6 C 4、6、8
B 6、8、10 D 8、10、12
PPT学习交流
28
提高训练
3、如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则
正方形A,B,C,D的面积之和为_____4_9_____cm2。
C D
B A
7cm
PPT学习交流
29
勾股定理
如果直角三角形两直角边分别为a、b,
斜边为c,那么
ac
a2 b2 c2
b
即:直角三角形两直角边的平方和等于
斜边的平方。
PPT学习交流
30
两直边的平方和等于斜边的平方
PPT学习交流
7
SA+SB=SC
A
图乙
A 图甲
C
B
4 4 8
B C
SA+SB=SC
2.观察图乙,小方格
9 的边长为1.
16
⑴⑵正正方方形形AA、、BB、、CC的
25
的 面积有什么关系?
面积各为多少? PPT学习交流
8
SA+SB=SC
C Aa c
b B
A 图乙 a
Bb c C
PPT学习交流
1
2002年国际数学家大会会标
PPT学习交流
2
弦图
它标志着我 国古代数学 的成就!
这个图形里 到底蕴涵了什 么样博大精深 的知识呢?
PPT学习交流
3
勾股定理
PPT学习交流
4
毕达哥拉斯(公元前572----前492年),古希腊著 名的哲学家、数学家、天文学家。
A
B
C
SA+SB=SC
c b
a
b
a
a2 b2 = c 2
PPT学习交流
16
小结:
勾股定理
如果直角三角形两直角边分别为a、b,
斜边为c,那么
ac
a2 b2 c2
b
即:直角三角形两直角边的平方和等于
斜边的平方。 在西方又称毕达
勾a
c弦
哥拉斯定理!
b
PPT学习交流
股 19
例题讲解
例1、求下图中字母所代表的正方形的面积。
A
625
81
225 400
B
144
225
PPT学习交流
23
练一练
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



PPT学习交流
24
例题讲解
例2、求出下列直角三角形中未知边的长度
x x
6
5
13 8
解:(1)由勾股定理得: (2)由勾股定理得:
x2=62+82
∵ x2+52=132
PPT学习交流
5
SA+SB=SC
C A
B 图甲
4 4 8
C
1.观察图甲,小方格
的边长为1.
⑴ ⑵正方形A、B、C的
的面积有什么关系?
面积各为多少? PPT学习交流
6
毕达哥拉斯(公元前572----前492年),古希腊著名的哲 学家、数学家、天文学家。
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC 对于等腰直角三角形有这样的性质:
x2 =36+64
∴ x2=132-52
x2 =100
x2=169-25 x2=144
x=10
x=12
PPT学习交流
25
练一练
2.求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x

20


快 方法小结: 可用勾股定理建立方程.

PPT学习交流
26
提高训练
1、已知:Rt△ABC中,AB=4,AC=3,则
朱实
c ba
b a
a
经过证明被确认正确的命题叫做定理.
勾命 股题1定如 :理 如 果直 果角 直三角角三形角 的 角形 两 边角 直 的 长边 分 两长 直分
别别 为 a为 ,ba,,斜 b,斜边边长 长c,c为 为 那 ,那么 么 aa22b2 cc22..
PPT学习交流
15
用赵爽弦图证明勾股定理
a
c
b
PPT学习交流
11
证法一: 用 拼 图 法 证 明
PPT学习交流
a2 +b2 =c2
12
证法一:
a、b、c 之间的关系
a2 +b2 =c2
ab
b
ca
a c cb
ba
PPT学习交流
13
证法二:
c b
a
弦图
现在我们一起来探 索“弦图”的奥妙吧!
PPT学习交流
14
它们的面积:a和 2 b2
朱实 朱实 黄实 朱实
相关文档
最新文档