化工流体流动与传热ppt课件
化工原理(流体流动) PPT
气体混合物的组成通常以体积分率表示。
对于理想气体,体积分率与摩尔分率、压力分率是相等的。
液体混合物: 液体混合时,体积往往有所改变。若混合前
后体积不变,则1kg混合液的体积等于各组分单独存在时的体 积之和,则可由下式求出混合液体的密度ρm。
1
a1
a2
an
m
1 2
n
式中 α1、α2、…,αn —— 液体混合物中各组分的质量分率; ρ1、ρ2、…,ρn —— 液体混合物中各组分的密度,kg/m3;
愈大,所以应该使用两种密度接近的指示液。
二、液面测定
1—容器; 2—平衡器的小室; 3—U形管压差计
说明: 1. 图中平衡器的小室2中所装的液体与容器里的液体相同。 2. 平衡器里的液面高度维持在容器液面容许到达的最大高度处。 3. 容器里的液面高度可根据压差计的读数R求得。液面越高,
读数越小。当液面达到最大高度时,压差计的读数为零。
指示液密度ρ0,被测流体密度 为ρ,图中a、b两点的压力是相 等的,因为这两点都在同一种静 止液体(指示液)的同一水平面 上。通过这个关系,便可求出p1
-p2的值。
注:指示剂的选择
根据流体静力学基本方程式则有:
U型管右侧 U型管左侧
pa=p1+(m+R)ρg pb=p2+mρg+Rρ0g
pa=pb
内容提要
1. 流体静力学 2. 流体在管内的流动 3. 流体的流动现象 4. 流动阻力 5. 管路计算 6. 流量测量 * 7. 习题
要求 掌握连续性方程和能量方程 能进行管路的设计计算
第一节 概 述 流体: 在剪应力作用下能产生连续变形的物体称
为流体。如气体和液体。
化工原理液体流动ppt课件
pp21
dp
-z1 gdz
z2
由于 和 g 是常数,故
J/k g
P
静止液体内压力的分布
a
若将图中的点1移至液面上(压强为p0 ),则上式变为:
上三式统称为流体静力学基本方程式。
精选PPT课件
21
二、流体静力学基本方程式讨论
(1) 适用条件 重力场中静止的,连续的同一种不可压缩流体(或压力
变化不大的可压缩流体,密度可近似地取其平均值 )。 (2)衡算基准 衡算基准不同,方程形式不同:
一、方程式推导
图1-3所示的容器中盛有密度为
ρ的均质、连续不可压缩静止液体。
如流体所受的体积力仅为重力,并取
z 轴方向与重力方向相反。若以容器
底为基准水平面,则液柱的上、下底 z
面与基准水平面的垂直距离分别为Z1、
Z2 。现于液体内部任意划出一底面积 o
为A的垂直液柱。
精选PPT课件 图1-3流体静力学基本方程推19 导
p1p2Rg
精选PPT课件
0
a
b
R
p1 p2
29
(c)微差压差计
p1 p2
在U形微差压计两侧臂的上端装有扩张室,其
直径与U形管直径之比大于10。当测压管中两指示
剂分配位置改变时,扩展容器内指示剂的可认为维
持在同水平面,压差计内装有密度分别为 01 和 0 2
02 的两种指示剂,当 有微压差p 存在时,尽管两
绝对压强 以绝对零压作起点计算的压强,是流体的真实压
强。
表压强 压强表上的读数,表示被测流体的绝对压强比大
气压强高出的数值,即: 表压强=绝对压强-大气压强
真空度 真空表上的读数,表示被测流体的绝对压强低于
《化工原理传热》课件
导热问题的数学描述
导热问题的数学描述通常使 用偏微分方程,如热传导方 程。
解这些方程可以得到导热过 程中的温度分布、热流量等 参数。
通过建立数学模型,可以描 述导热过程中温度随时间和 空间的变化规律。
在实际应用中,还需要考虑 其他因素如边界条件、初始 条件等。
03
对流换热
对流换热基本概念
01
02
04
辐射换热
辐射换热基本概念
定义
01
物体通过电磁波传递能量的过程称为辐射换热。
辐射换热与物质属性
02
物体的辐射换热能力与其发射率、吸收率、反射率和透射率有
关。
辐射换热与温度
03
物体的辐射换热能力随温度升高而增强。
辐射换热计算方法
斯蒂芬-玻尔兹曼定律
描述了物体在绝对黑体条件下辐射换热的规律。
发射率修正
02
它主要通过物质分子、原子或分子的振动和相互碰 撞进行热量传递。
03
热传导是三种基本传热方式之一,另外两种是热对 流和热辐射。
傅里叶定律
傅里叶定律是热传导的基本定 律,它描述了热传导速率与温
度梯度之间的线性关系。
公式为:q = -k * grad(T), 其中q为热流密度,k为导热 系数,grad(T)为温度梯度。
传热方式
01
02
总结词:传热主要有三 种方式:热传导、热对 流和热辐射。
详细描述
03
04
05
1. 热传导是指热量在物 质内部通过分子、原子 等微观粒子的运动传递 热量。不同物质导热能 力不同,金属是良好的 导热体。
2. 热对流是指由于物质 宏观运动引起的热量传 递过程,如气体、液体 等流动过程中热量的传 递。对流换热在化工、 能源、动力等领域有广 泛应用。
化工原理第一章流体流动课件
流体静力学基本方程
STEP 02
STEP 01
流体静力学基本方程是流 体静压强与其密度和重力 加速度的关系式。
STEP 03
该方程是流体静力学中的 基础方程,对于理解流体 静力学中的各种现象非常 重要。
该方程可以用来计算流体 的静压强、流体的密度和 重力加速度之间的关系。
静压力对流体的作用力
流体在静压力作用下会产生压缩或膨 胀,这与其弹性有关。
Part
04
流体流动的阻力
流动阻力的产生与分类
流动阻力
流体在管道中流动时,由于流体内部及 流体与管壁之间的摩擦而产生的阻力。
VS
阻力分类
直管阻力和局部阻力。直管阻力是流体在 管道中流动时,由于流体的粘性和管壁的 粗糙度引起的摩擦阻力;局部阻力则是流 体流经管路中的阀门、弯头等局部结构时 ,由于流体的方向和速度发生急剧变化而 引起的阻力。
流体微团的运动分析
流体微团的定义
流体微团是指流体中无限接近的、密合在一起的若干分子组成的微小团体。
流体微团的运动分析
通过对流体微团的运动分析,可以研究流体的宏观运动规律,如速度场、加速 度、角速度等。这些参数对于理解流体动力学的基本原理和工程应用非常重要 。
牛顿粘性定律及流体的分类
牛顿粘性定律的定义
绝对压力
以完全真空为零点测量的 压力,单位为帕斯卡(Pa )。
表压
以当地大气压为基准测量 的压力,单位也为帕斯卡 (Pa)。
真空度
与大气压相比的压力差值 ,单位为帕斯卡(Pa)。
流体静压强分布规律
流体静压强大小与流体的 密度、重力加速度和高度 有关。
在重力场中,流体静压强 随高度增加而减小。
在同一高度上,不同流体 的静压强不同。
化工原理-第一章-流体流动PPT课件
.
4
第一节 流体静力学
研究外力作用下的平衡规律
一、流体的压力
1.定义: 流体垂直作用于单位面积上的力。
2.单位:
lim p
P
A0 A
Pa(帕斯卡,SI制), atm(标准大气压), 某流体柱高度, kgf/cm2(工程大气压) , bar(巴)等
.
5
其之间换算关系为:
1 atm = 760 mmHg = 1.0133×105 Pa = 1.033 kgf/cm2 = 10.33 mH2O = 1.0133 bar
.
6
3.表示方法
绝对压强:以绝对零压作起点计算的压强,是 流体的真实压强;以绝对真空为基准 表压强:绝对压强比大气压强高出的数值;以 当时当地压力为基准 真空度:绝对压强低于大气压强的数值。
.
7
绝对压
表压 真空度 绝压(余压)
实测压力
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
P1-P2=(a- c)Rg
A
.
23
例1-4:常温水在管道中流动,用双U型管测两
点压差,指示液为汞,其高度差为100mmHg,计
算两处压力差如图:
2
1'' 1 1'
2'
R
x
ab
P1= P1’
P2= P2’
Pa= P1’+水 g x
P1’= 汞 g R+ P2
Pb = 水 g x +水 g R + P2’
0
P1 - P2= R g 0
倒U型管压差计? P15
.
20
U管压差计 指示液要与被测流体不互溶,不起化学反
化工原理课程课件PPT之第四章传热
第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3
《化工原理教学》传热-对流课件
为了帮助学生更好地理解对流传热的概念和原理,本课件介绍了化工原理教 学中重要的一部分——传热-对流。
对流基础知识
1 对流定义
对流是物质在流体中的传递过程,常常伴随着随流体运动的热量传递。
2 对流规律
对流是由于温度场引起的流体流动现象,遵循质量守恒、动量守恒和能量守恒的原理。
3 对流换热原理
对流换热是通过流体流动引起的热量传递方式,常见于化工工程和热交换器中。
对流换热的传热机理
1
对流传热的影响因素
2
流体速度、温度梯度、表面特性等因
素会影响对流传热过程的效率。
3
对流传热机制
对流传热通过流体流动和温度差驱动, 实现了物体间的热量交换。
对流传热的计算公式
根据牛顿冷却定律和对流换热系数, 可以计算对流传热的热量传递率。
对流传热的应用
工程中的对流传热应用
对流传热在化工工程、能源行业和热处理等 领域中有着广泛而重要的应用。
实际案例分析
通过对实际案例的分析,探讨对流传热在工 业过程中的是许多工程和技术领 域中必不可少的关键过程。
学习对流传热的意义
掌握对流传热的原理和应用, 对于化工专业的学生和从业人 员至关重要。
未来的发展和应用前景
对流传热的研究和应用将在能 源、环保等领域发挥重要作用。
化工原理 对流传热PPT
Q St
2、对流传热系数
对流传热系数a定义式: Q
St
表示单位温度差下,单位传热面积的对流传热速率。
单位W/m2.k。 反映了对流传热的快慢,对流传热系数大,则传热快。
2018/11/10
3 影响对流传热系数的因素
1.引起流动的原因 自然对流:由于流体内部密度差而引起流体的流动。 强制对流:由于外力和压差而引起的流动。 强 > 自 2.流体的物性
相变 > 无相变
4 对流传热系数经验关联式的建立
一、因次分析 =f(u,l,,,cp,,gt) 式中 l——特性尺寸; u——特征流速。 基本因次:长度L,时间T,质量M,温度 变量总数:8个
由定律(8-4)=4,可知有4个无因次数群。
Nu C Re Pr Gr
a k
2018/11/10
1、对流传热速率表达式
据传递过程速率的普遍关系,壁面和流体间的对流传热速率:
对流传热推动力 系数 推动力 对流传热速率 对流传热阻力 推动力:壁面和流体间的温度差
阻力:影响因素很多,但与壁面的表面积成反比。 对流传热速率方程可以表示为:
T Tw dQ 1 dS
2018/11/10
2018/11/10
二、实验安排及结果整理 以强制湍流为例:Nu=CReaPrk 1.采用不同Pr的流体,固定Re
Nu
k
lgNu=klgPr+lgCRea
双对数坐标系得一直线,斜率为k 2.不同Pr的流体在不同的Re下 lgNu/Prk=algRe+lgC 双对数坐标系中得一直线 斜率为a,截距为C
强化措施: • u,u0.8 • d, 1/d0.2 • 流体物性的影响,选大的流体
化工基础第四章 传热ppt课件
稳态传热 Q ,q ,t fx ,y ,z t 0
不稳定传热:若传热体系中各点的温度,既随 位置的变化,又随时间变化。特点:传热速率、热 通量均为变量。通常连续生产多为稳定传热,间歇 操作多为不稳定传热。
解:换热器的热流密度
2t1t4
l 1lnd21lnd31lnd4
k1 d1 k2 d2 k3 d3
代入数据得
q1ln202 1 16l0 n 21 52 01ln27950 W/m
1.0 18 45 20 0.5 25
【例4-3】工业炉的炉壁,由下列三层组成:
耐火砖 k1=1.4W/(m·K), b1=225mm
湍流主体
➢对流传热 ➢温度分布均匀
层流底层
➢导热 ➢温度梯度大
壁面
➢导热(导热系数较 流体大) ➢有温度梯度
传热壁面
距离
湍流主体
传热壁面
湍流主体
层流 底层
层流 底层
对流传热示意图
传热过程
➢高温流体 ➢湍流主体 ➢壁面两侧 ➢层流底层 ➢湍流主体 ➢低温流体
传热边界层(thermal boundary layer) :温度边界层。
1. 努塞尔特(Nusselt )数
Nu L
表示对流传热系数的特征数
2. 雷诺(Reynolds)数
Re Lu
反映流体的流动状态 对对流传热的影响
3. 普兰特(Prandtl)数
Pr Cp
反映流体的物性对对流传 热的影响
4. 格拉斯霍夫(Grashof)准数
大学化学《化工原理-流体流动1》课件
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy
=
y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B
与
很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi
第一章化工原理流体流动课件
第一章化工原理流体流动课件第一章流体流动液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小,无固定形状,随容器的形状而变化,在外力作用下其内部发生相对运动。
流体随压强的改变而改变自身体积的性质称为流体的压缩性。
压缩性的大小被看作是气体和液体的主要区别。
由于气体在压强增大时体积缩小,而液体则变化不明显,故气体属于可压缩性流体,液体属于不可压缩性流体。
气体在输送过程中若压强和温度变化不大,因而体积和密度变化也不大时,也可按不可压缩流体来处理。
一般气体在常温常压下仍可按理想气体考虑,以简化计算。
在化工生产中,涉及流体流动的规律,主要有以下几个方面:(1)流体阻力及流量、压强的计算(2)流动对传热与传质及化学反应的影响(3)流体的混合第一节流体静力学基本方程流体静力学是研究流体在外力作用下达到平衡的规律。
也即流体在静止状态下流体内部压力的变化规律。
1-1-1 流体的密度单位体积流体所具有的质量称为流体的密度,其表达式为:(1—1)式中:ρ——流体的密度,kg / m3;m——流体的质量,kg;V——流体的体积,m3。
不同流体的密度是不同的,对一定的流体,密度ρ是压力p和温度T的函数,可用下式表达:ρ = f ( p,T )液体的密度随压力的变化甚小,可忽略不计,故常称液体为不可压缩的流体。
温度对液体的密度有一定影响,但改变不大(极高压力下除外),液体的密度ρ一般可从物理化学手册或有关资料中查到。
气体具有压缩性及膨胀性,其密度随压强,温度的变化很大。
当压强不太高,温度不太低时,其密度可近似地按理想气体状态方程式来计算:ρ= m / V = pM / RT (1—2)式中:p——气体的绝对压强,kN / m2或kPa;T——气体的绝对温度,K;M——气体分子的分子量;R——气体常数,8.314 kJ / kmol·K。
若以知标准状态下气体的密度ρ0、温度T0和压力P0,则某状态下(T、P)理想气体的密度ρ也可按下式计算:ρ = ρ0T 0P / TP0(1—3)式中:ρ0——标准状态下(T0=273K P0=101.33 kPa)气体的密度,kg / m3ρ0 = M / 22.4 kg / m3在化工生产中所遇到的流体,往往是含有几个组分的混合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学反应 工程(反
一般为物 理过程
预热 输送 精制 压缩
应过程+ 设备反应 器)核心 地位
冷却(凝) 蒸发 结晶 吸收 精馏
…… 共性问题
……
共性问题
9
化工生产过程:对原料进行化学加工,最终获得 有价值产品的生产过程。
化学反应
化工生产过程 物理过程
反应工程 化工原理 (单元操作)
10
0.1.2 化工单元操作
6
0.1 化学工程学科简介(进展)
0.1.1 化学工业
对原料进行化学加工,以改变物质结构 或组成,或合成新物质,而获得有用产 品的制造工业。 也称化学加工工业,其过程称为化工生 产过程。
7
例如:高压聚乙烯生产的主要步骤
8
高压聚乙烯生产的主要步骤
原料-预处理-化学反应-后处理-产品
一般为物 理过程
化工流体流动与传热
天津大学化工学院
1
教 学 安排
一、学时安排
总学时:56
授课52-54、机动2-4绪论1第一章 流体流动基础
19
第二章 流体输送机械
6
第三章 颗粒与流体之间的相对运动 8
第四章 液体搅拌
0
第五章 传热过程基础
12
第六章 换热器
6
第七章 蒸发
4
2
教学安排
二、教师安排 张裕卿
三、作业安排 (1)每周三由学习委员或班长收、发作业。 (2)题目类型:作业题。
位制。
4.中华人民共和国法定计量单位 中华人民共和国法定计量单位是在SI制基
础上制定的,见教材附录1。
25
二、单位换算
1.物理量的换算 基本物理量中为1m(米)=物理单位制中
100cm(厘米)=英制3.2808ft(英尺) 2.经验公式(或数字公式)的换算 ①物理方程 ②经验方程 换算方法见例0-2。
15
2.数学模型法(半经验半理论方法)
在对实际过程的机理深入分析的基础上, 在抓住过程本质的前提下,作出某种合理简化, 建立物理模型,进行数学描述,得出数学模型。 通过实验确定模型参数。
研究工程问题的方法论是联系各单元操作 的另一条主线。
16
①单元操作设备的选择能力。 ②工程设计能力。 ③操作和调节生产过程的能力。 ④过程开发或科学研究能力。
26
0.7 本章总结
1 目的 (1)了解化学工程学科历史沿革、本课程研究 内容、工程研究方法,课程特点及学习要求。 (2)掌握本课程经常使用的单位制及单位换算 的方法。 2 重点 (1)单元操作分类、理论基础及工程研究方法。 (2)单位制度和单位换算。
27
第一章 流体流动基础
气体和液体统称为流体,包括:单相和多相流 体,多相流态化流体等。
17
0.2 化工过程计算题目类型 化工过程计算题目类型:
(1)设计型 (2)操作型
18
0.3 化工过程计算依赖的基本关系 (1)质量守恒(守恒原理) (2)能量守恒(守恒原理) (3)平衡关系(化工热力学) (4)速率关系(传递方程)
19
0.4 本课程特点
强调: (1)工程观点(实验、合理简化、近似) (2)定量运算 (3)实验技能 (4)设计能力等的培养 (5)学习时强调理论联系实际
22
0.6 单位制和单位换算
0.6.1 单位制分类 任何物理量的大小=数字+单位
23
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度等。
2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。
24
3.国际单位制(SI制) 根据1960年10月国际计量大会通过的一种单
产品、原料多样性、生产过程复杂性—— ,化工生产工艺流程数以万计
可以归纳为: 工艺=化学反应+物理操作(有限个)
(有机组合)
11
化工生产的核心:化学反应过程+反应器 (化学反应工程)
物理操作过程(单元操作): 为化学反应准备必要条件+将反应物分离提纯
获得最终产品
12
单元操作分类
①流体动力学过程:流体输送、沉降、过滤。 ②传热过程:加热、冷却、冷凝、蒸发。 ③传质过程:蒸馏、吸收、萃取、吸附、膜分离。 ④热质同时传递过程:气体的增湿减湿、结晶、
干燥。
13
化工原理(单元操作)的研究内容包括“过 程”和“设备”两个方面。
单元操作
动量传递 热量传递
质量传递
三传理论
传递过程是联系各单元操作的一条主线。
14
化工原理课程的研究方法
1.实验研究方法(经验法) 以量纲分析和相似论为指导,依靠试验来确
定过程变量之间的关系,通常用无量纲数群(或 称准数)构成的关系式来表达。这是工程上一种 通用的基本方法。
四、考试安排 期中、期末进行考试,采用闭卷与开卷相结合的
考试形式,期末成绩80%,期中和平时成绩占20%。
3
教学安排
五、答疑安排 时间及地点:期末统一安排 平时地点:20楼化工原理教研室(832室)
六、有关要求 (1)按时交作业,无特殊情况补交作业无效。 (2)独立完成作业,发现抄袭,责任自负。 (3)累计欠作业1/3者取消考试资格。 (4)点名或抽查累计3次未到者取消考试资格。
Engineering, 6th ed. New York: McGraw.Hill Inc., 2001 (5)陈涛等.《化工传递过程基础》化学工业出版社 (6)柴诚敬.《化工原理学习指南》高等教育出版社,2015 2
0 绪论
0.1 化学工程学科的进展 0.2 单元操作与传递过程 0.3 单位制和单位换算 0.4 本章总结
4
教学安排
七、教材 柴诚敬等. 化工流体流动与传热,化学工业出版社,2007. 八、参考书 (1) 姚玉英等. 化工原理(上). 天津大学出版社, 1999 (2)柴诚敬等.化工原理(上). 高等教育出版社, 2005 (3)202.113.7.181(化工流体流动与传热网络课程) (4)W.L.McCabe, J.C.Smith. Unit Operations of Chemical
20
基础课 技术基础课 专业课 深造或工作岗位
理论知识
有机结合 起桥梁作用
工程实际(经验)
21
0.5 本课程学习要求
几个方面能力的培养: (1)单元操作和设备选择的能力 (2)工程设计能力(工艺过程计算和设备设计, 缺乏数据时,查资料、现场查定、实验测得等) (3)操作和调节生产过程的能力(故障排除、 了解优化生产过程的途经) (4)过程开发或科学研究能力(将可能变为现 实,实现工程目的,这是综合创造能力的体现)