电路原理课件之第四章
合集下载
电路原理课件_第4章_谐振互感三相 (1)
g g 1 IL U ( ) ( j 0C ) U I C j 0 L
g
g
电感电流与电容电流幅值相同,相位差180°
2)并联谐振品质因数
谐振时电路感纳(容 纳)与电导之比。
1 0 L R
IL C Q R 1 1 IR L U
R
1 U 0 L
R 当 Q 0 L
i2 u22
di2 U12 e12 M dt
3)同名端 二个线圈间绕向不同时,产生的互感电压方向不同。
1
di1 0 , 图1:当 i1 增加时 dt 线圈2互感电压方向为 2 2 。 di1 u2 M dt
di1 0, dt 线圈2互感电压方向为 2 2。
i1
2
u1
减小电阻或增大电感可使UL变大。电压放大。
对于电流源:采用并联谐振方法 。
IL R Q并 0 L I S
增大电阻或减小电感可使IL变大。电流放大。
4.2 互感耦合电路
1)互感现象 邻近线圈间由于磁通 的交链,一个线圈电流的 变化会在另一线圈产生感 应电势(互感电势),这 一现象为互感偶合。 线圈1中通以电流
dψ1 dL1i1 di1 L1 线圈1 的自感电势 e11 dt dt dt
用电压降表示 线圈2 的互感电势
di1 U11 e11 L1 dt
互感电压 参考方向
dψ21 dMi1 di1 e21 M dt dt dt
用电压降表示
i1 u11
u21
di1 U 21 e21 M dt
同理: 当 i 2 变化时,引起 的变化, 二个线圈中产生感应电势, 线圈2 的自感电势: 用电压降表示:
电力电子应用技术最新版精品课件-第四章交流-交流变换电路
t
不通io过零后, VT2开通, VT2导通角小于π; iG1
➢ 原有的io表达式仍适用,只是α ≤ωt <∞;
O iG2
➢
过渡过程和带R-L负载的单相交流电路在ωt = α (α
O io
iT1
t t
< φ)时合闸的过渡过程相同;
O iT2
t
➢ io由两个分量组成:正弦稳态分量、指数衰减分量; <时阻感负载图交4-流5 调压电路工作波形
交流调功电路:以交流电周期为单位控制晶闸管的通断,改变通态周期数和断态 周期数的比,调节输出功率平均值的电路。
交流斩波调压电路:改变占空比,调节输出电压有效值。 交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。
■ 应用 灯光控制(如调光台灯和舞台灯光控制)
异步电动机软起动
异步电动机调速
VD1 V1
i1
斩波控制
u1
V2 VD2
斩波控制
V3
VD4
R
uo
VD3 V4 L
续流通道 续流通道
图4-9 交图流4斩-波7 调压电路图
■ 特性
4.3 交流斩波电压电路
➢ 电源电流的基波分量和电源电压同相位, 即位移因数为1;
➢ 电源电流不含低次谐波,只含和开关周期 T有关的高次谐波;
➢ 功率因数接近1。
图4-7 三相交流调压电路基本形式及输出波形
4.2 交流调功电路
■ 交流调功电路——以交流电源周波数为控制单位 ■ 交流调功电路 VS 交流调压电路
➢ 相同点:电路形式完全相同
➢ 不同点:控制方式不同——将负载与电源接通几个周波,再断开几个周波, 改变通断周波数的比值来调节负载所消耗的平均
第四章-正弦交流电路的相量法
.
原理:
+.
I
.
U
IC
.
.
I1
IC
R
jL
j 1 C
12
.
U
.
I
.
IC
-
a)
.
b) I 1
图4-11 功率因数的提高
根据图4-11分析如下:
a)电路图 ; b)相量图
并联电容前,总电流
I
I1
,电压超前电流的相位差为
; 1
并联电容后,总电流
I
I1
IC
,电压超前电流的相位差为 2
因 2 1 故 cos 2 cos 1 首页
U
Z1
+
Z2
•
U2
-
1053.13 -
图4-2 例4-1图
首页
U 2 Z2I (1 j7)1036.87V 7.07 81.87 1036.87 V 70.7 45 V
U1 Z1I (5 j15)1036.87V 15.8171.57 1036.87 V 158.1108.44 V
Y Y
对比可得
Y 1 Z
•
•
当电压、电流关联参考方向时,相量关系式U Z I
也可表示为 U I 或 I YU
Y
首页
二、用复导纳分析并联电路
图4-6所示是多支路并联电路,根据相量形式的基尔霍
夫电流定律,总电流
.
.
.
.
I I1 I2 In
.
.
.
Y1 U1 Y2 U2 Yn Un
因并联电容前后电路消耗的有功功率是相等的,故
并联电容前
P UI1 cos 1
第四章 有源逆变电路
逆变状态和整流状态的区别:控制角 a 不同 0<a < /2 时,电路工作在整流状态
/2< a < 时,电路工作在逆变状态
第二节
三相有源逆变电路
2.逆变角的概念:
为实现逆变,需一反向的EM ,而Ud因a﹥π/2已自动变为负值,满足逆 变条件。因而可沿用整流的办法来处理逆变时有关波形与参数计算等 各项问题。 把 a >π /2时的控制角用π - a =β 表示,β称为逆变角。 整流状态:α<π/2, 相应的β>π/2;
第三节
结论:
逆变失败与最小逆变角的限制
1.β不能等于零。
2.β不能太小,必须限制在某一允许的最小角度内。
第三节
逆变失败与最小逆变角的限制
二、 确定最小逆变角βmin的依据
有源逆变时允许采用的最小逆变角 应等于
min=d +g+q′
d ——晶闸管的关断时间tq折合的电角度
tq大的可达200~300ms,折算到电角度约4~5。
极流入,该电源吸收电能。电源输出或吸收功率的大小由电势与电流
的乘积来决定。 ( EG ﹥ EM,整流; EG ﹤ EM :逆变 ) (3) 两个电源反极性相连,如果电路的总电阻很小,将形成电源间 的短路, 应当避免发生这种情况。
第一节 逆变的概念
三、 有源逆变产生的条件
改变EM的极性; Ud极性也必须相反。 怎样使Ud方向相反?
有源逆变电路的控制电路在设计时,应充分考虑变压器漏电 感对晶闸管换流的影响以及晶闸管由导通到关断存在着关断
时间的影响,否则会由于逆变角β 太小造成换流失败,导致
逆变颠覆的发生。 以共阴极三相半波电路为例, 分析由于β 太小而对逆变电 路产生的影响。
第四章场效应管放大电路
一、N沟道MOS管的直流参数 (1).开启电压VT:
N沟道MOS管,在VGS<VT时,不能形成导电 沟道,管子处于截止状态;只有当VGS≥VT时,才有沟 道形成。 VT——开启电压。
这种在VGS=0时没有沟道,只有VGS≥VT时才能 形成感生导电沟道的MOS管称为增强型MOS管。
第四章 场效应管放大电路
→形成由栅极指向P型
衬底的纵向电场
+
→将靠近栅极下方的空 穴向下排斥
-
→形成耗尽层。
第四章 场效应管放大电路
现假设vDS=0V,在s、g间加一电压vGS>0V 当vGS增大时→耗尽层增宽,并且该大电场会 把衬底的自由电子吸引到
耗尽层与绝缘层之间,形
成一N型薄层,构成漏-源 之间的导电沟道,称为反
N沟道耗尽型 MOS管 与 N沟 道 增 强型MOS管基本相 似。
区别:耗尽型
MOS 管 在 vGS=0 时 ,漏-源极间已有 导电沟道产生;
增强型MOS管要
在vGS≥VT时才出现 导电沟道。
5.1.5
第四章 场效应管放大电路
N沟道耗尽型MOSFET 在栅极下方的SiO2 层中掺入了大量的金 属正离子。所以当 vGS=0 时 , 这 些 正 离 子 已经感应出反型层, 形成了沟道。
夹断区
VT
2VT
第四章 场效应管放大电路
①截止区: vGS<vT
无导电沟道,iD=0,管子处于截止区.
②可变电阻区: vDS< vGS-vT
iD
K n [2(GS
T
)DS
2 DS
]
Kn
nCox
2
(W L
)
单位:mA V 2
N沟道MOS管,在VGS<VT时,不能形成导电 沟道,管子处于截止状态;只有当VGS≥VT时,才有沟 道形成。 VT——开启电压。
这种在VGS=0时没有沟道,只有VGS≥VT时才能 形成感生导电沟道的MOS管称为增强型MOS管。
第四章 场效应管放大电路
→形成由栅极指向P型
衬底的纵向电场
+
→将靠近栅极下方的空 穴向下排斥
-
→形成耗尽层。
第四章 场效应管放大电路
现假设vDS=0V,在s、g间加一电压vGS>0V 当vGS增大时→耗尽层增宽,并且该大电场会 把衬底的自由电子吸引到
耗尽层与绝缘层之间,形
成一N型薄层,构成漏-源 之间的导电沟道,称为反
N沟道耗尽型 MOS管 与 N沟 道 增 强型MOS管基本相 似。
区别:耗尽型
MOS 管 在 vGS=0 时 ,漏-源极间已有 导电沟道产生;
增强型MOS管要
在vGS≥VT时才出现 导电沟道。
5.1.5
第四章 场效应管放大电路
N沟道耗尽型MOSFET 在栅极下方的SiO2 层中掺入了大量的金 属正离子。所以当 vGS=0 时 , 这 些 正 离 子 已经感应出反型层, 形成了沟道。
夹断区
VT
2VT
第四章 场效应管放大电路
①截止区: vGS<vT
无导电沟道,iD=0,管子处于截止区.
②可变电阻区: vDS< vGS-vT
iD
K n [2(GS
T
)DS
2 DS
]
Kn
nCox
2
(W L
)
单位:mA V 2
电路原理-动态电路的暂态过程
3. 求解电路中其他变量的初始值。 可在t=0+时刻利用替代定理,用电压等于 uC (0 )的电压源 替代电容元件,用电流等于 iL (0 ) 的电流源替代电感元 件,从而得到只含电阻元件、独立源和受控源的t=0+时 刻的等效电路,再计算电路其他变量的初始值。 4. 根据t>0时的电路方程计算输出变量的(n-1)阶导数 的初始值。
u/V 6
5
t /s
O
O
t /s
4-2 单位阶跃函数和 单位冲激函数
一、单位阶跃函数
单位阶跃函数的定义:
ε (t )
0 ε (t ) 1
t 0 t 0
1 t
O
移位的单位阶跃函数:
ε (t t 0 ) 1
0 ε(t t0 ) 1
t t 0 t t 0
例4-2-2 图示一个已充电且电压为 5 V 的电容元件在
t 0 时,通过开关S闭合使电容元件两极板被短接
放电的电路。求电容的放电电流 iC 。
S(t 0) i C
iC
uC / V
1μF
+ -
u C 5V
1μF
+ -
5 t /s
uC
O
uc 51 (t )
例4-2-3 图示电路,开关S在 t 0 时断开,求电感 电流 i L 和电感电压 uL
0 ε (t ) 1
δ(t ) 0
t 0 t 0
t0
ε (t )
1 t
δ (t ) 1 t
O
dε (t ) δ(t ) dt
δ(t )dt 1
O
【学习课件】第四章线性网络定理电路理论教学
4 8V +
_
D
C_ +
50 10V
4
5 E
1A
A Ux
B
50
4 4
5
Rd
2021/7/13
Rd =50+4//4+5 =57
28
D
C +A
4 +
8V _
50 4
10V RL
等效电路
U
33 5
E
B
1A
Ed =Ux =9V
Rd =57
Rd 57 +
Ed _ 9V
33
U
2021/7/13
29
第三步:求解未知电压U。
B
原电路
I1' A I2'
R1
I3'
+ R3
R2
+
_ E1
B
E1单独作用
I A '' 1
I2''
R1 R3
I3''
R2 +
E2 _
B
E2单独作用
I 1 = I 1 '+ I 1 "I 2 = I 2 '+ I 2 "I 3 = I 3 '+ I 3 "
2021/7/13
10
10 例
4A
10 10
-
u'=4V
u"= -42.4= -9.6V
2021/7/13 共同作用:u=u'+u"= 4+(- 9.6)= - 5.6V14
例3 求电压Us 。
模电课件第四章集成运算放大电路
第四章 集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
《电路原理》第4章 分解方法及单口网络
N
i =0 a + uoc b
i
a b
N0
+ u -
R0
u = i
方法2: uoc 的求法同前;令网络 N 端口短路,求出其短 路电流 isc ,则有 R 0 = u oc i sc 。 证明: a a
N
isc b
uoc
R0
isc b
R0
u oc = i sc
方法3:求出网络 N 的端口VCR,画出由电压源与电 阻串联而成的等效电路。
例1: 求图示二端电 路的VCR及其 解: 等效电路。 设端口电压 u 已知,有 或者
a i 5Ω 10V 20Ω b u u
i = u 20 + ( u − 10 ) 5 = 0 .25 u − 2
u = 8 + 4i
a 2A 4Ω b i u
根据VCR,可得等效电路:
a 4Ω i u b
或者
8V
解法2: 前已求得: U OC = 2 V 将原网络端口短接,得:
1
2Ω 2V
2Ω 2I
- 4V +
a I b
2Ω 2V
0
2Ω 2I
- 4V +
a I b
用节点法,有
(0.5 + 0.5) Un1 = 2 I −1− 2 Un1 = −2 I − 4
a 2V 8Ω b
ISC
解得: I = − 0 .25 A , I = − I = 0 .25 A SC U OC R0 = = 8Ω 戴维南等 I SC 效电路:
电流源与单口电阻网络 N1的串联
N1
a
is
b
a
is
N1的等效网 络不是理想 b 电流源。
电路定理
I
I
3
4V 10A
2 3
5A
5
20V 5
4V
2
20V
(a)
(b)
【解】 (1) 电压源单独作用时,电路如图(b)所示
(2) 10A电流源单独作用,电路如图(c)所示
I
3 10A
2
5
(c)
(3) 5A电流源单独作用,电路如图(d)所示
I 3
2 5A 5
(d)
由叠加定理得
4.1.2 齐性定理
定理内容:在线性电阻电路中,当所有激励都 增大或缩小k倍时,响应也同样增大或缩小k倍。
11 / /1
1 0.5
由KCL和VAR得
(2) 求
,电路如图(c)所示。
1
1
I0
1
U 1
U0
0.5U
(c)
(3) 求电流 ,电路如图(d)所示。
I
15
2
3
2 3
(d)
由分流公式
4.2.3 最大功率传递定理
一个线性含源单口电路,当所接负载不同时, 一端口电路传输给负载的功率就不同。
讨论:负载为何值时,能从电路获取最大功率, 及最大功率的值是多少。
u1iˆ1 u2iˆ2 uˆ1i1 uˆ2i2
u2is uˆ1is
iˆ1 0
+
uˆ1 NR
-
iˆ2
+
is
uˆ 2
-
iˆ1 0 iˆ2 is
可得: uˆ1 u2
形式3
i1
+
i2
iˆ1 0
iˆ2
+
+
+
is
第四章 集成运算放大电路
2. 最大输出电压 op-p 最大输出电压U
Uo / V - 10 Uid + ∞ +
-0.4
-0.2 -0.1
0 0.1 0.2 0.3 0.4 Uid / mV
-0.3
-10 线性区
集成运放的传输特性
3. 差模输入电阻 id 差模输入电阻r rid的大小反映了集成运放输入端向差模输入信号 源索取电流的大小。要求rid愈大愈好, 一般集成运放 rid为几百千欧至几兆欧, 故输入级常采用场效应管来 提高输入电阻rid。 F007的rid=2 M 。认为理想集成运 放的rid为无穷大。
动态时,加入差模信号uid,根据差分放大电路的特点, T1 管的集电极电流在静态电流IC1的基础上增加了∆iC1,T2管的集 电极电流在静态电流IC2的基础上减小了∆iC2,∆iC1=-∆iC2。 由于 iC4 和 iC1 是 镜 像 关 系 , ∆iC4=∆iC1 , 因 此 ∆io=∆iC4-∆iC2=∆iC1-(∆iC1)=2∆iC1。 可见这个电流值是单端输出电流的两倍, 即等于 差分放大电路双端输出时的电流值。因此,用电流源作为差分 放大电路的有源负载,可将双端输出信号“无损失”地转换成 单端输出信号。
若电路中有共模信号输入,T3 管和T4 管的集电极电流相等 (忽略T7管的基极电流),T3管和T5管的集电极电流相等,又由于 R1=R3,因此T6管的集电极电流和T5管的集电极电流相等, 如此 推来,T6管和T4管的集电极电流相等,而T16管的基极电流为T4 管和T6管的集电极电流之差,所以T16管的基极电流近似为零, 可见共模信号输出为零,电路具有较高的抑制共模信号的能力。
2. 偏置电路 偏置电路由T8~T13、电阻R4和R5组成。其中T10、T11、 T12 和R4、R5构成主偏置电路,该电路中R5上的电流是F007偏置电 路的基准电流,由图可知
第四章集成运算放大电路
( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1
技能培训专题 电工课件 第四章 三相交流电路
1200
E、eU=311sin(314t-1500)
•
EW
讨论:
讨论
1、对称的三相交流电动势的相位差互差( C )。
A、600 B、900 C、1200 D、1500
2、对称的三相交流电动势的特点是( A C E )。
A、频率相同 B、相位相同 C、幅值相等
D、初相相同
E、相位互差1200
3、三相对称交流电动势在任一时刻的瞬时值之
压升高而被击穿。.
讨论3、
(3)在三相不对称低压供电系统中,中性线上不允 许安装熔断器或开关,以免断开引起事故。
L1 L2 L3 N
二、三相负载的三角形连接
•
IU
U
U 相 U 线
•
U UV (U L )
•
I WU
ZW
•
IUV
ZV ZU
•
V
IV
•
I VW
•
IW W
•
U U (U )
相电压: 每相负载两端的电压(负载都接在两根火线之间)
零线: 从零点引出的输电线称为零线; 相线:从三个线圈的始端引出的输电线称为相线(火线)
线电压:相线与相线之间的电压;
相电压:相线与中线之间的电压。
中性点 接地后 称零点
+ e–U
+eW –eV +
相电压
U1
线电压
N
V1
W1
一、三相电源的星形连接
颜色标示法,U-V-W相分别用黄-绿-红表示。
eu eW
使用任何电气设备,均要求负载承受的电压等于它的额定电
压,所以负载要采用一定的连接方式,以满足负载对工作电
压的要求。若两个灯泡接反了会怎样?
电工学-第四章(三相交流电)PPT课件
.
46
影响触电危险程度的因素
3. 电流作用时间 电流对人体伤害同作用时间密切相关。可
以用电流与时间乘积(又称电击强度)来 表示电流对人体的危害。触电保护器的一 个主要指表就是额定断开时间与电流乘积 〈30mAs。实际产品可以达到3mAs,故 可有效地防止触电事故。
.
47
影响触电危险程度的因素
.
13
§4-2 三相负载的连接方式
三相负载——接在三相电源上的负载。
对称三相负载——各相负载相同的三相负载,如三相电动机、
大功率三相电路等。
不对称三相负载——各相负载不同,如三相照明电路中的负载。 L1 L2 L3 N
Z3
Z2
Z1
M
3~
.
Байду номын сангаас
14
三相负载也有两种接法:
L1
L1
Z
N L2
Z
Z
L2
L3
L3
4. 电流途经
如果电流不经人体脑、心、肺等重要部位, 除了电击强度较大时可能造成内部烧伤外, 一般不会危及生命。但如果电流流经上述 部位,就会造成严重后果。这是由于电击 会使神经系统麻痹而造成心脏停跳,呼吸 停止。例如,电流从一只手到另一只手, 或由手流到脚,就是这种情况。
.
48
影响触电危险程度的因素
拖动作匀速转动。 定子三相绕组切割 转子磁场而感应出 三相交流电动势。
L1 • L2' •
S
• L3'
2. 三相交流电动势的特点 L3
幅值相等 频率相同 相位差 = 120
.
N
L1'
L2
4
三相对称电动势的表达式
第四章差动与集成运算放大电路
其中R′L=Rc∥(1/2RL)。这里R′L≠Rc∥RL,其原因是由于两 管对称,集电极电位的变化等值反相, 而与两集电极相连的
RL的中点电位不变,这点相当于交流地电位。因而对每个单管 来说, 负载电阻(输出端对地间的电阻)应是RL的一半,即
RL/2,而不是RL。
差动放大器对共模信号无放大,对差模信号有放大,这意 味着差动放大器是针对两输入端的输入信号之差来进行放大的,
第4章 差动放大电路与集成运算放大器
如图4.1.1(b)所示。不过,若采用图4.1.1(b)所示电路, 后级的集电极电位逐级高于前级的集电极电位,经过几级耦合 之后, 末级的集电极电位便会接近电源电压,这实际上也是限 制了放大器的级数。
所谓零点漂移,就是当输入信号为零时,输出信号不为零, 而是一个随时间漂移不定的信号。零点漂移简称为零漂。产生 零漂的原因有很多,如温度变化、电源电压波动、晶体管参数 变化等。其中温度变化是主要的,因此零漂也称为温漂。 在阻 容耦合放大器中,由于电容有隔直作用,因而零漂不会造成严 重影响。但是,在直接耦合放大器中,由于前级的零漂会被后 级放大,因而将会严重干扰正常信号的放大和传输。比如,图 4.1.1所示直接耦合电路中,输入信号为零时(即ΔUi=0),输 出端应有固定不变的直流电压Uo = UCE2。
所示。
第4章 差动放大电路与集成运算放大器
第4章 差动放大电路与集成运算放大器
由图4.1.4(a)可以看出,当差动放大器输入共模信号时, 由于电路对称,其输出端的电位Uc1和Uc2的变化也是大小相等、 极性相同,因而输出电压Uoc保持为零。可见,在理想情况下 (电路完全对称),差动放大器在输入共模信号时不产生输出 电压,也就是说,理想差动放大器的共模电压放大倍数为零, 或者说,差动放大器对共模信号没有放大作用,而是有抑制作 用。实际上,上述差动放大器对零漂的抑制作用就是它抑制共 模信号的结果。因为当温度升高时,两个晶体管的电流都要增 大,这相当于在两个输入端加上了大小相等、 极性相同的共模 信号。换句话说,产生零漂的因素可以等效为输入端的共模信 号。显然,Ac越小,对零漂的抑制作用越强。
电路分析原理第四章 线性网络的几个定理及等效网络
电路分析原理(上册)
第四章 线性网络的几个定理及等效网络
第一节 叠加定理 第二节 互易定理 第三节 替代定理 第四节 戴维宁定理 第五节 诺 顿 定 理 第六节 最大功率传输定理 第七节 Y形网络与△形网络的等效变换 ∗第八节 理想电源的转移
第一节 叠加定理
一、叠加定理的陈述 二、叠加定理的证明 三、应用叠加定理要注意的几个问题 四、叠加定理的应用
图4-8 互易现象三, / = / (注意参考方向)
a) 1-1′
2-2′开路 b) 2-2′
1-1′短接
4.互易现象四
1) 在图4-9a中, 1-1′间由电流源IS1激励, 2-2′间的短路电流为I2 2) 在图4-9b中, 2-2′间由电压源S2激励, 1-1′间的开路电压为1
4.互易现象四
/ = / (注意参考方向)
2-2′短接 b) 2-2′
1-1′开路
三、互易定理的形象化讲法
1)互易定理陈述一指出,线性网络中唯一的一个电压源,与任 一支路中零内阻的电流表交换位置时,电流表的读数不变。 2)互易定理陈述二给出,线性网络中的唯一的一个电流源,与 跨接在任意两端、内阻为无穷大的电压表交换位置时,电压表 的读数不变。
图4-9 互易现象四, / = / (注意参考方向)
a) 1-1′
2-2′短接 b) 2-2′
1-1′开路
二、互易定理
1.陈述一(互易定理一) 2.陈述二(互易定理二) 3.陈述三 4.陈述四(互易定理四)
1.陈述一(互易定理一)
图4-10 a) 1-1′
/ = / (注意参考方向)
2-2′短接 b) 2-2′
一、叠加定理的陈述
图4-1 叠加定理示图
a)
第四章 线性网络的几个定理及等效网络
第一节 叠加定理 第二节 互易定理 第三节 替代定理 第四节 戴维宁定理 第五节 诺 顿 定 理 第六节 最大功率传输定理 第七节 Y形网络与△形网络的等效变换 ∗第八节 理想电源的转移
第一节 叠加定理
一、叠加定理的陈述 二、叠加定理的证明 三、应用叠加定理要注意的几个问题 四、叠加定理的应用
图4-8 互易现象三, / = / (注意参考方向)
a) 1-1′
2-2′开路 b) 2-2′
1-1′短接
4.互易现象四
1) 在图4-9a中, 1-1′间由电流源IS1激励, 2-2′间的短路电流为I2 2) 在图4-9b中, 2-2′间由电压源S2激励, 1-1′间的开路电压为1
4.互易现象四
/ = / (注意参考方向)
2-2′短接 b) 2-2′
1-1′开路
三、互易定理的形象化讲法
1)互易定理陈述一指出,线性网络中唯一的一个电压源,与任 一支路中零内阻的电流表交换位置时,电流表的读数不变。 2)互易定理陈述二给出,线性网络中的唯一的一个电流源,与 跨接在任意两端、内阻为无穷大的电压表交换位置时,电压表 的读数不变。
图4-9 互易现象四, / = / (注意参考方向)
a) 1-1′
2-2′短接 b) 2-2′
1-1′开路
二、互易定理
1.陈述一(互易定理一) 2.陈述二(互易定理二) 3.陈述三 4.陈述四(互易定理四)
1.陈述一(互易定理一)
图4-10 a) 1-1′
/ = / (注意参考方向)
2-2′短接 b) 2-2′
一、叠加定理的陈述
图4-1 叠加定理示图
a)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院 吴根忠
4-6
解:
总电路
I1 2Ω
+
I2
3A
10V
5Ω
-
电流源单独作用时
电压源单独作用时
I1′ 2Ω I2′ 3A
5Ω
I1〞 2Ω
+ 10V
I2〞 5Ω
-
分电路
2020/4/12
信息工程学院 吴根忠
分电路
4-7
(1)电流源单独作用时, 电压源相当于短路,分电路如图 所示:
I1′ 2Ω I2′ 3A
-
2020/4/12
信息工程学院 吴根忠
4-15
二、齐性定理
➢ 内容 在线性电路中,当所有激励(电压源和电流
源)都同时增大或缩小 K 倍( K 为实常数)时, 响应(电压和电流)也将同样增大或缩小 K 倍。
激励 e( t )
响应 r( t )
激励 Ke( t )
响应 Kr( t )
2020/4/12
4-42
解:根据戴维南定理
ia
+
NS
u
-
b
Req i a
+
+
uoc
u
-
-
b
ab 端口的伏安特性:
u uoc iReq
2020/4/12
信息工程学院 吴根忠
4-43
ab 端口的伏安特性:
u uoc iReq
由图(b)可知
当 u = 8 V时,i = 10 A 当 u = 10 V时,i = 0
无源 电阻 网络
IR
+ -US
可得: 解得:
2020/4/12
1.5 5 3 5 10
0.3 0.15
当US = 20 V,IS = 5 A时
I 0.3IS 0.15US
0.35 0.15 20 4.5 A
信息工程学院 吴根忠
4-23
§4 - 2 替 代 定 理
2020/4/12
2k
+ 5V +- U 1k -
1k
2k + -6U
+ 10V
-
2020/4/12
信息工程学院 吴根忠
4-11
5V电压源单独作用
2k
+ 5V +- U-′ 1k
1k
2k +
6U′ -
10V电压源单独作用
2k 1k
+ U″ 1k -
2k
+ 6U″
-
+ 10V
-
2020/4/12
信息工程学院 吴根忠
4-12
2020/4/12
信息工程学院 吴根忠
4-30
一、戴维南定理(续)
2k 1k
+ 5V +- U 1k -
2k
+
RR
6U -
等效
+
uoc -
R
Req
2k
+ 5V +- U 1k -
1k
+
2k
+ UOC
6U -
-
2k 1k
+ U 1k -
2k Req +
6U -
2020/4/12
信息工程学院 吴根忠
4-31
(2)
15 (100) 10
150
mA
由叠加定理,Is和Us2共同作用时毫安表电流为:
I
(1) 3
I
(3) 3
40 150 190mA
2020/4/12
信息工程学院 吴根忠
4-21
例
图示电路,当 US = 0,IS = 5 A时,测得I = 1.5 A; US = 10 V,IS = 5 A时,测得I = 3 A;
电
路
b
isc
2020/4/12
信息工程学院 吴根忠
ai
+外
Req u
电
-路
b
4-40
三、 uoc 、 isc 、Req 三种参数(续)
ia
+
NS
u
-
b
已知 isc 、Req
uoc isc Req
已知 uoc 、Req isc uoc Req
已知 uoc 、 isc
Req uoc isc
i= 0a +
+ U-″ 1k
2k
+ -6U″
+ 10V
-
U 4V
2020/4/12
信息工程学院 吴根忠
4-14
(3)叠 加
2k
+ 5V +- U 1k -
1k
2k +
6U -
+ 10V
-
U U U 1V
2k
+ 5V +- U-′ 1k
1k
2k +
6U′ -
2k 1k
+ U-″ 1k
2k
+ -6U″
+ 10V
NS uk +
- -usk
2020/4/12
信息工程学院 吴根忠
++
NS uk
-us
-
ik NS
is
4-26
替代定理的证明1:
+
i
N
u
–
u
+
+
u
–
–
+i u –
2020/4/12
信息工程学院 吴根忠
+i
N
u
–
4-27
替代定理的证明2:
+
i
i
i
uN
+ i
u
+ i
uN
–
2020/4/12
–
信息工程学院 吴根忠
en
响应 rk1 rk2
rkn
激励
e1 e2
en
响应
rk1 rk2
rkn
rk = rk1 + rk2 +…+rkn
rk = rk1 + rk2 +…+ rkn
2020/4/12
信息工程学院 吴根忠
4-19
4-7 图示电路中US1=10V, US2=15V,当开关S在位置1时, 毫安表的读数为I’=40mA; 当S在位置2时,毫安表的读 数为I’’= – 60mA; 求:当开关S在位置3时,毫安表的读数为多少?
外
NS
u
电
-路
b
ai
isc
+外
Req u
电
-路 b
NS 端口的伏安特性 u
i iSC Req
端口伏安特性
i
iSC
u Req
2020/4/12
相同
信息工程学院 吴根忠
诺顿定理得证
4-39
三、 uoc 、 isc 、Req 三种参数
NS
Req a i
++
uoc -
u -
外 电 路
b
ai +外
u -
第四 章 电路定理
2020/4/12
信息工程学院 吴根忠
4-1
目录
§4-1 叠加定理 §4-2 替代定理 §4-3 戴维南定理和诺顿定理 §4-4 特勒根定理 §4-5 互易定理 §4-6 对偶原理
2020/4/12
信息工程学院 吴根忠
4-2
§4-1 叠 加 定 理
2020/4/12
信息工程学院 吴根忠
C
I2 I1 I 3 A U BC U BA U AC 5 V
I3 UBC 1 5 A
I4 I3 I2 8 A
U I4 1 U BC 13 V 根据齐性定理
10 I U I
I 10 A 13
2020/4/12
信息工程学院 吴根忠
4-18
三、叠加定理和齐性定理的应用
激励 e1 e2
4-3
一、叠加定理
➢ 内容 线性电阻电路中,任一电压或电流都是电路
中各个独立电源单独作用时,在该处产生的电压 或电流的叠加。
2020/4/12
信息工程学院 吴根忠
4-4
➢ 使用叠加定理时应注意几点
1、某电源单独作用时,应将其他电源置零:电压源 短路,电流源开路。
2、最后叠加时,要注意电流和电压分量的参考方向 是否与总电流和电压的参考方向一致。一致时前 面取正号,不一致时前面取负号。
信息工程学院 吴根忠
4-16
例 求图示电路中的电流 I 。(梯形电路)
1
+ 10V -
1 1
1
I
1
1
2020/4/12
信息工程学院 吴根忠
4-17
解: 设 I1A
U AC 2I 2 V
I1 U AC 1 2 A
I4 1 ++ 10V U --
B I2 1 A 1
I3
I1 I I′
1
1
1
u u u uoc iReq
a i〞= is
+
u〞= - iReq
u〞 - is = i
b
4-33
➢ 戴维南定理证明(续)
ai +
外
NS
u
电
-路
b
Req a i
++
uoc -
u -
外 电 路
b
NS 端口的伏安特性 u uoc iReq
2020/4/12
戴维南定理得证。
信息工程学院 吴根忠
5Ω
I1 I1
3 2
I 2 I2
5
0
I1
5
5
2
3
15 7
I 2
5
2
2
3
6 7
A
2020/4/12
信息工程学院 吴根忠
4-8
(2)电压源单独作用时, 电流源相当于开路,分电路如 图所示: