二叉排序树查找算法

合集下载

二叉排序树

二叉排序树

9
第9章
第三节
二、二叉排序树(插入)

查找
动态查找表
二叉排序树是一种动态查找表


当树中不存在查找的结点时,作插入操作
新插入的结点一定是叶子结点(只需改动一个 结点的指针) 该叶子结点是查找不成功时路径上访问的最后 一个结点的左孩子或右孩子(新结点值小于或 大于该结点值) 10

第9章
第三节
查找
19
在二叉排序树中查找关 键字值等于37,88,94
3
第9章
第三节
查找
动态查找表
二、二叉排序树(查找函数)中结点结构定义 二叉排序树通常采用二叉链表的形式进行存 储,其结点结构定义如下:
typedef struct BiNode { int data; BiNode *lChild, *rChild; }BiNode,*BitTree;
4
第9章
第三节
查找
动态查找表
2、二叉排序树的定义 定义二叉排序树所有用到的变量 BitTree root; int
//查找是否成功(1--成功,0--不成功) //查找位置(表示在BisCount层中的第几个位置
BisSuccess;
int
int
BisPos;
BisCount;
//查找次数(相当于树的层数)
7
第9章
第三节
查找
动态查找表
二、二叉排序树(查找函数)
else { BisSuccess = 0; root=GetNode(k);//查找不成功,插入新的结点}
} BiNode * GetNode(int k) { BiNode *s; s = new BiNode; s->data = k; s->lChild = NULL; s->rChild = NULL; return(s);}

二叉排序树

二叉排序树

②若*p结点只有左子树,或只有右子树,则可将*p的左子 树或右子树直接改为其双亲结点*f的左子树,即: f->1child=p->1child(或f->1child=p->rchild); free(p); *f
F *p P P1
*f
F
*f
F *p P
*f
F
Pr
P1
Pr
③若*p既有左子树,又有右子树。则:
-1 0
47
-1
47
47
0
31 69
69
25
0
47
0
25
0
47
-1 0
31
0
69
0
40
69
40
69
0
25 76
40
76
(a)
AL、BL、BR 都是空树
(b) AL、BL、BR 都是非空树
LR型调整操作示意图
2
A
-1
0
C
AR C BL CL CR AR
0 0
B BL CL S
B
A
CR
(a) 插入结点*s后失去平衡
31
0 0 -1
31
0 1
28
0
25
0 0
47
0
25
-1
47
0
25
0
31
0
16 0
28
16
28
0
16 30
30
47
(c) LR(R)型调整
RL型调整操作示意图
A B C A BR CR B BR
AL
C
AL
CL CR

五种查找算法总结

五种查找算法总结

五种查找算法总结一、顺序查找条件:无序或有序队列。

原理:按顺序比较每个元素,直到找到关键字为止。

时间复杂度:O(n)二、二分查找(折半查找)条件:有序数组原理:查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

如果在某一步骤数组为空,则代表找不到。

这种搜索算法每一次比较都使搜索范围缩小一半。

时间复杂度:O(logn)三、二叉排序树查找条件:先创建二叉排序树:1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;3. 它的左、右子树也分别为二叉排序树。

原理:在二叉查找树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。

时间复杂度:四、哈希表法(散列表)条件:先创建哈希表(散列表)原理:根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。

时间复杂度:几乎是O(1),取决于产生冲突的多少。

五、分块查找原理:将n个数据元素"按块有序"划分为m块(m ≤ n)。

每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。

然后使用二分查找及顺序查找。

数据结构 二叉排序树

数据结构 二叉排序树

9.6.2 哈希函数的构造方法
构造哈希函数的目标:
哈希地址尽可能均匀分布在表空间上——均 匀性好; 哈希地址计算尽量简单。
考虑因素:
函数的复杂度; 关键字长度与表长的关系; 关键字分布情况; 元素的查找频率。
一、直接地址法 取关键字或关键字的某个线性函数值为哈希地址 即: H(key) = key 或: H(key) = a* key + b 其中,a, b为常数。 例:1949年后出生的人口调查表,关键字是年份 年份 1949 1950 1951 … 人数 … … … …
9.4 二叉排序树
1.定义:
二叉排序树(二叉搜索树或二叉查找树) 或者是一棵空树;或者是具有如下特性的二叉树
(1) 若它的左子树不空,则左子树上所有结点的 值均小于根结点的值;
(2) 若它的右子树不空,则右子树上所有结点 的值均大于等于根结点的值; (3) 它的左、右子树也都分别是二叉排序树。
例如:
H(key)
通常设定一个一维数组空间存储记录集合,则 H(key)指示数组中的下标。
称这个一维数组为哈希(Hash)表或散列表。 称映射函数 H 为哈希函数。 H(key)为哈希地址
例:假定一个线性表为: A = (18,75,60,43,54,90,46) 假定选取的哈希函数为
hash3(key) = key % 13
H(key) = key + (-1948) 此法仅适合于: 地址集合的大小 = = 关键字集合的大小
二、数字分析法
假设关键字集合中的每个关键字都是由 s 位数 字组成 (u1, u2, …, us),分析关键字集中的全体, 并从中提取分布均匀的若干位或它们的组合作为 地址。 例如:有若干记录,关键字为 8 位十进制数, 假设哈希表的表长为100, 对关键字进行分析, 取随机性较好的两位十进制数作为哈希地址。

二叉排序树

二叉排序树

二叉排序树1.二叉排序树定义二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;若右子树不空,则右子树上所有结点的值均大于根结点的值。

(2)左右子树也都是二叉排序树,如图6-2所示。

2.二叉排序树的查找过程由其定义可见,二叉排序树的查找过程为:(1)若查找树为空,查找失败。

(2)查找树非空,将给定值key与查找树的根结点关键码比较。

(3)若相等,查找成功,结束查找过程,否则:①当给值key小于根结点关键码,查找将在以左孩子为根的子树上继续进行,转(1)。

②当给值key大于根结点关键码,查找将在以右孩子为根的子树上继续进行,转(1)。

3.二叉排序树插入操作和构造一棵二叉排序树向二叉排序树中插入一个结点的过程:设待插入结点的关键码为key,为将其插入,先要在二叉排序树中进行查找,若查找成功,按二叉排序树定义,该插入结点已存在,不用插入;查找不成功时,则插入之。

因此,新插入结点一定是作为叶子结点添加上去的。

构造一棵二叉排序树则是逐个插入结点的过程。

对于关键码序列为:{63,90,70,55,67,42,98,83,10,45,58},则构造一棵二叉排序树的过程如图6-3所示。

4.二叉排序树删除操作从二叉排序树中删除一个结点之后,要求其仍能保持二叉排序树的特性。

设待删结点为*p(p为指向待删结点的指针),其双亲结点为*f,删除可以分三种情况,如图6-4所示。

(1)*p结点为叶结点,由于删去叶结点后不影响整棵树的特性,所以,只需将被删结点的双亲结点相应指针域改为空指针,如图6-4(a)所示。

(2)*p结点只有右子树或只有左子树,此时,只需将或替换*f结点的*p子树即可,如图6-4(b)、(c)所示。

(3)*p结点既有左子树又有右子树,可按中序遍历保持有序地进行调整,如图6-4(d)、(e)所示。

设删除*p结点前,中序遍历序列为:① P为F的左子女时有:…,Pi子树,P,Pj,S子树,Pk,Sk子树,…,P2,S2子树,P1,S1子树,F,…。

二叉排序树

二叉排序树

就维护表的有序性而言,二叉排序树无须移 动结点,只需修改指针即可完成插入和删 除操作,且其平均的执行时间均为O(lgn), 因此更有效。二分查找所涉及的有序表是 一个向量,若有插入和删除结点的操作, 则维护表的有序性所花的代价是O(n)。当 有序表是静态查找表时,宜用向量作为其 存储结构,而采用二分查找实现其查找操 作;若有序表里动态查找表,则应选择二 叉排序树作为其存储结构。
if(q->lchild) //*q的左子树非空,找*q的左子 树的最右节点r. {for(q=q->lchild;q->rchild;q=q->rchild); q->rchild=p->rchild; } if(parent->lchild==p)parent->lchild=p>lchild; else parent->rchild=p->lchild; free(p); /释放*p占用的空间 } //DelBSTNode
下图(a)所示的树,是按如下插入次序构成的: 45,24,55,12,37,53,60,28,40,70 下图(b)所示的树,是按如下插入次序构成的: 12,24,28,37,40,45,53,55,60,70
在二叉排序树上进行查找时的平均查找长度和二叉树的形态 有关: ①在最坏情况下,二叉排序树是通过把一个有序表的n 个结点依次插入而生成的,此时所得的二叉排序树蜕化为 棵深度为n的单支树,它的平均查找长度和单链表上的顺 序查找相同,亦是(n+1)/2。 ②在最好情况下,二叉排序树在生成的过程中,树的形 态比较匀称,最终得到的是一棵形态与二分查找的判定树 相似的二叉排序树,此时它的平均查找长度大约是lgn。 ③插入、删除和查找算法的时间复杂度均为O(lgn)。 (3)二叉排序树和二分查找的比较 就平均时间性能而言,二叉排序树上的查找和二分查找 差不多。

KdTree算法详解

KdTree算法详解

KdTree算法详解kd树(k-dimensional树的简称),是⼀种分割k维数据空间的数据结构,主要应⽤于多维空间关键数据的近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nearest Neighbor)。

⼀、Kd-tree其实KDTree就是⼆叉查找树(Binary Search Tree,BST)的变种。

⼆叉查找树的性质如下:1)若它的左⼦树不为空,则左⼦树上所有结点的值均⼩于它的根结点的值;2)若它的右⼦树不为空,则右⼦树上所有结点的值均⼤于它的根结点的值;3)它的左、右⼦树也分别为⼆叉排序树;例如:如果我们要处理的对象集合是⼀个K维空间中的数据集,我们⾸先需要确定是:怎样将⼀个K维数据划分到左⼦树或右⼦树?在构造1维BST树类似,只不过对于Kd树,在当前节点的⽐较并不是通过对K维数据进⾏整体的⽐较,⽽是选择某⼀个维度d,然后⽐较两个K维数据在该维度 d上的⼤⼩关系,即每次选择⼀个维度d来对K维数据进⾏划分,相当于⽤⼀个垂直于该维度d的超平⾯将K维数据空间⼀分为⼆,平⾯⼀边的所有K维数据在d维度上的值⼩于平⾯另⼀边的所有K维数据对应维度上的值。

也就是说,我们每选择⼀个维度进⾏如上的划分,就会将K维数据空间划分为两个部分,如果我们继续分别对这两个⼦K维空间进⾏如上的划分,⼜会得到新的⼦空间,对新的⼦空间⼜继续划分,重复以上过程直到每个⼦空间都不能再划分为⽌。

以上就是构造 Kd-Tree的过程,上述过程中涉及到两个重要的问题:1. 每次对⼦空间的划分时,怎样确定在哪个维度上进⾏划分;2. 在某个维度上进⾏划分时,怎样确保建⽴的树尽量地平衡,树越平衡代表着分割得越平均,搜索的时间也就是越少。

1、在哪个维度上进⾏划分?⼀种选取轴点的策略是median of the most spread dimension pivoting strategy,统计样本在每个维度上的数据⽅差,挑选出对应⽅差最⼤值的那个维度。

几种查找算法的比较

几种查找算法的比较

w i ( r n.e!= ) hl c r t y n{ eue k
++r :
in cret e) f <urn. y{ ( k
es( cr n= urn.gt le u e tcr tih; e r
的结点放在前边 , 以提高查找效率 , 代码描述如下 :
pbi casC aho{ u l ls h za c p bi t h n uit , t ) u l i u X ( i  ̄a{ cn s n nn
p o rm ’ o e ae i jv ec mpid T i o lxt nds a ec mpe i olo o e smed t r o ae rga Sc d sb sd Ol a aa o l . het r e mec mp e i a p c o lxt t o kfrt a aaaec mp rd. y y h
【 ywod ]erhn ; grh Tmecm lxt;p c o l i Ke r sSac igAl i m;i o pe i S aecm3 二 叉 排 序 树 查 找
数 据 地 修改 、 除 、 入 等 操 作 都 是 基 于 查 找 算 法 的 , 删 插 因此 比较 查 实 际 上 就 是 将 数 据元 素组 织 成 二 叉 树 形 式 , 达 到 与 二 分 法 相 同 以 找 算 法 的 优 劣 , 择 正 确 的查 找 算 法 能 够 极 大 地 提 高 用 户 对 数 据 的查 的查 找 效 率 , 又 具 有链 表 的插 入 、 除 操 作 的 灵 活 性 。 二叉 排 序 树 选 而 删 用 找 ; 而 提高 了计 算 机 软 件 的工 作 效 率 。 查 找 是 在 大 量 的 信 息 中寻 找 实现 的算法的平均时间复杂度是 Onon 。最佳状态的时间复杂度为 从 (ls) 个 特定 的信 息 元 素 , 计 算 机 应 用 中 , 找 是 常 用 的 基 本 运 算 , 找 1 即第 一 次就 找 到 数据 , 坏 状 态 的 时 间 复 杂 度 为 non即 未 能 找 到 在 查 查 , 最 lg,

二叉排序树查找的递归算法

二叉排序树查找的递归算法

二叉排序树查找的递归算法介绍二叉排序树(Binary Search Tree),也称二叉查找树、有序二叉树或排序二叉树,是一种常用的数据结构。

它具有以下特点:•每个节点都包含一个键值和对应的数据。

•左子树中的所有节点的键值都小于根节点的键值。

•右子树中的所有节点的键值都大于根节点的键值。

•左右子树也分别是二叉排序树。

二叉排序树支持高效的查找、插入和删除操作,其中查找操作是利用递归实现的。

本文将详细介绍二叉排序树查找的递归算法。

二叉排序树的定义二叉排序树的定义如下:class TreeNode:def __init__(self, key, data):self.key = keyself.data = dataself.left = Noneself.right = Noneclass BinarySearchTree:def __init__(self):self.root = None在二叉排序树中,每个节点都是一个TreeNode对象,包含键值key和对应的数据data。

left和right分别指向左子树和右子树的根节点。

树的根节点由BinarySearchTree对象的root属性表示。

二叉排序树查找的递归算法二叉排序树的查找操作是利用递归实现的,其具体算法如下:1.如果待查找的键值等于当前节点的键值,返回当前节点的数据。

2.如果待查找的键值小于当前节点的键值,递归在左子树中查找。

3.如果待查找的键值大于当前节点的键值,递归在右子树中查找。

4.如果在左子树或右子树中找不到对应的键值,则返回空。

下面是二叉排序树查找的递归算法的代码实现:def search_recursive(node, key):if node is None or node.key == key:return node.dataelif key < node.key:return search_recursive(node.left, key)else:return search_recursive(node.right, key)在上述代码中,node表示当前节点,key表示待查找的键值。

数据结构:第9章 查找2-二叉树和平衡二叉树

数据结构:第9章 查找2-二叉树和平衡二叉树
NODE *t; char x; {if(t==NULL)
return(NULL); else
{if(t->data==x) return(t);
if(x<(t->data) return(search(t->lchild,x));
else return(search(t->lchild,x)); } }
——这种既查找又插入的过程称为动态查找。 二叉排序树既有类似于折半查找的特性,又采用了链表存储, 它是动态查找表的一种适宜表示。
注:若数据元素的输入顺序不同,则得到的二叉排序树形态 也不同!
讨论1:二叉排序树的插入和查找操作 例:输入待查找的关键字序列=(45,24,53,45,12,24,90)
二叉排序树的建立 对于已给定一待排序的数据序列,通常采用逐步插入结点的方 法来构造二叉排序树,即只要反复调用二叉排序树的插入算法 即可,算法描述为: BiTree *Creat (int n) //建立含有n个结点的二叉排序树 { BiTree *BST= NULL;
for ( int i=1; i<=n; i++) { scanf(“%d”,&x); //输入关键字序列
– 法2:令*s代替*p
将S的左子树成为S的双亲Q的右子树,用S取代p 。 若C无右子树,用C取代p。
例:请从下面的二叉排序树中删除结点P。
F P
法1:
F
P
C
PR
C
PR
CL Q
CL QL
Q SL
S PR
QL S
SL
法2:
F
PS
C
PR
CL Q
QL SL S SL

数据结构 -第12周查找第3讲-二叉排序树.pdf

数据结构 -第12周查找第3讲-二叉排序树.pdf

以二叉树或树作为表的组织形式,称为树表,它是一类动态查找表,不仅适合于数据查找,也适合于表插入和删除操作。

常见的树表:二叉排序树平衡二叉树B-树B+树9.3.1 二叉排序树二叉排序树(简称BST)又称二叉查找(搜索)树,其定义为:二叉排序树或者是空树,或者是满足如下性质(BST性质)的二叉树:❶若它的左子树非空,则左子树上所有节点值(指关键字值)均小于根节点值;❷若它的右子树非空,则右子树上所有节点值均大于根节点值;❸左、右子树本身又各是一棵二叉排序树。

注意:二叉排序树中没有相同关键字的节点。

二叉树结构满足BST性质:节点值约束二叉排序树503080209010854035252388例如:是二叉排序树。

66不试一试二叉排序树的中序遍历序列有什么特点?二叉排序树的节点类型如下:typedef struct node{KeyType key;//关键字项InfoType data;//其他数据域struct node*lchild,*rchild;//左右孩子指针}BSTNode;二叉排序树可看做是一个有序表,所以在二叉排序树上进行查找,和二分查找类似,也是一个逐步缩小查找范围的过程。

1、二叉排序树上的查找Nk< bt->keybtk> bt->key 每一层只和一个节点进行关键字比较!∧∧p查找到p所指节点若k<p->data,并且p->lchild=NULL,查找失败。

若k>p->data,并且p->rchild=NULL,查找失败。

查找失败的情况加上外部节点一个外部节点对应某内部节点的一个NULL指针递归查找算法SearchBST()如下(在二叉排序树bt上查找关键字为k的记录,成功时返回该节点指针,否则返回NULL):BSTNode*SearchBST(BSTNode*bt,KeyType k){if(bt==NULL||bt->key==k)//递归出口return bt;if(k<bt->key)return SearchBST(bt->lchild,k);//在左子树中递归查找elsereturn SearchBST(bt->rchild,k);//在右子树中递归查找}在二叉排序树中插入一个关键字为k的新节点,要保证插入后仍满足BST性质。

数据结构第六章二叉树的应用教案

数据结构第六章二叉树的应用教案

6.3 哈夫曼树
• • 最优树的定义 如何构造最优树
6.3.1 基本术语
路径和路径长度
若在一棵树中存在着一个结点序列 k1,k2,…,kj,使得ki是ki+1的 双亲(1≤i<j),则称此结点序列是 从k1到kj的路径从k1到kj所经过的 分支数称为这两点之间的路径长度
结点的权和带权路径长度
权 给结点赋上一个有某种意义 的实数,我们称为权。 带权路径长度 从根结点到该结点之间路径 长度与该结点上权的乘积。
23 设 key = 48
T
20 10 T 23 T 25
T T
30
T
40 35 T
bool Find(BTreeNode* T, ElemType& item) if(T==NULL) return false; //查找失败 else { if(item==T->data) { item=T->data; return true; } else if(item<T->data) //向左子树继续查找 return Find(T->left, item); else return Find(T->right, item); } //向右子树继续查找
ri r2i ri r2i 1
(小顶堆)

ri r2i ri r2i 1
(大顶堆)
12, 36, 27, 65, 40, 34, 98, 81, 73, 55, 49
是小顶堆
12, 36, 27, 65, 40, 14, 98, 81, 73, 55, 49
不是堆
子树上查找;
3)大于根结点的关键字,则继续在右
子树上查找。

二叉树

二叉树

平衡树——特点:所有结点左右子树深度差≤1排序树——特点:所有结点―左小右大字典树——由字符串构成的二叉排序树判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重)带权树——特点:路径带权值(例如长度)最优树——是带权路径长度最短的树,又称Huffman树,用途之一是通信中的压缩编码。

1.1 二叉排序树:或是一棵空树;或者是具有如下性质的非空二叉树:(1)若左子树不为空,左子树的所有结点的值均小于根的值;(2)若右子树不为空,右子树的所有结点均大于根的值;(3)它的左右子树也分别为二叉排序树。

例:二叉排序树如图9.7:二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。

中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。

每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。

搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.2.2 二叉排序树b中查找在二叉排序树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。

[cpp]view plaincopyprint?1.Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){2. //在根指针T所指二叉排序樹中递归地查找其关键字等于key的数据元素,若查找成功,3. //则指针p指向该数据元素节点,并返回TRUE,否则指针P指向查找路径上访问的4. //最好一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL5. if(!T){ p=f; return FALSE;} //查找不成功6. else if EQ(key, T->data.key) {P=T; return TRUE;} //查找成功7. else if LT(key,T->data.key)8. return SearchBST(T->lchild, key, T, p); //在左子树继续查找9. else return SearchBST(T->rchild, key, T, p); //在右子树继续查找10.}2.3 在二叉排序树插入结点的算法向一个二叉排序树b中插入一个结点s的算法,过程为:1. 若b是空树,则将s所指结点作为根结点插入,否则:2. 若s->data等于b的根结点的数据域之值,则返回,否则:3. 若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:4. 把s所指结点插入到右子树中。

头歌二叉排序表的基本操作

头歌二叉排序表的基本操作

头歌二叉排序表的基本操作一、概述二叉排序树,也称为二叉搜索树(Binary Search Tree, BST),是一种特殊的二叉树,其中每个节点都满足以下性质:对于任意节点,其左子树中所有节点的值都小于该节点的值,而其右子树中所有节点的值都大于该节点的值。

这种特性使得二叉排序树成为一种非常有效的数据结构,用于在各种算法中实现快速查找、插入和删除操作。

二、基本操作1. 插入操作插入操作是二叉排序树中最常用的操作之一。

其基本步骤如下:(1)创建一个新节点,并将要插入的值赋给该节点。

(2)如果二叉排序树为空,则将新节点作为根节点。

(3)否则,从根节点开始比较新节点的值与当前节点的值。

如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中;否则,将新节点插入到当前节点的右子树中。

(4)重复步骤3,直到找到一个空位置来插入新节点。

2. 删除操作删除操作是二叉排序树中比较复杂的操作之一。

其基本步骤如下:(1)找到要删除的节点。

如果找不到要删除的节点,则无法进行删除操作。

(2)如果找到要删除的节点,则将其从树中删除。

如果该节点只有一个子节点,则直接删除该节点;如果该节点有两个子节点,则可以选择将其中的一个子节点“提升”到该节点的位置,然后删除该子节点。

在提升子节点时,需要考虑子节点的值与要删除的节点的值之间的关系,以确保二叉排序树的性质不变。

(3)如果被提升的子节点仍然包含要删除的节点,则需要重复步骤2,直到找到要删除的节点并将其删除。

3. 查找操作查找操作用于在二叉排序树中查找指定的值。

其基本步骤如下:(1)从根节点开始,比较当前节点的值与要查找的值。

如果它们相等,则查找成功,返回当前节点的位置。

(2)如果当前节点的值大于要查找的值,则进入当前节点的左子树中进行查找;否则进入当前节点的右子树中进行查找。

(3)重复步骤2,直到找到要查找的值或者搜索路径上的所有节点都已访问过。

如果最终没有找到要查找的值,则返回空指针。

实验报告 实验三 二叉排序树的建立和查找

实验报告 实验三 二叉排序树的建立和查找

实验三二叉排序树的建立和查找一、实验目的1.掌握二叉排序树的建立算法2.掌握二叉排序树查找算法。

二、实验环境操作系统和C语言系统三、预习要求复习二叉排序树的生成及查找算法,编写完整的程序。

四、实验内容实现二叉排序树上的查找算法。

具体实现要求:用二叉链表做存储结构,输入键值序列,建立一棵二叉排序树并在二叉排序树上实现查找算法。

五、参考算法#include <stdio.h>#include <stdlib.h>typedef int InfoType;typedef int KeyType; /*假定关键字类型为整数*/typedef struct node /*结点类型*/{KeyType key; /*关键字项*/InfoType otherinfo; /*其它数据域,InfoType视应用情况而定,下面不处理它*/struct node *lchild,*rchild; /*左右孩子指针*/}BSTNode;typedef BSTNode *BSTree; /*BSTree是二叉排序树的类型*/BSTNode *SearchBST(BSTree T,KeyType key){ /*在二叉排序树T上查找关键字为key的结点,成功时返回该结点位置,否则返回NULL*/if(T==NULL||key==T->key) /*递归的终结条件*/return T; /*若T为空,查找失败;否则成功,返回找到的结点位置*/if(key<T->key)return SearchBST(T->lchild,key);elsereturn SearchBST(T->rchild,key); /*继续在右子树中查找*/}void InsertBST(BSTree *T,int key){ /*插入一个值为key的节点到二叉排序树中*/BSTNode *p,*q;if((*T)==NULL){ /*树为空树*/(*T)=(BSTree)malloc(sizeof(BSTNode));(*T)->key=key;(*T)->lchild=(*T)->rchild=NULL;}else{p=(*T);while(p){q=p;if(p->key>key)p=q->lchild;else if(p->key<key)p=q->rchild;else{printf("\n 该二叉排序树中含有关键字为%d的节点!\n",key);return;}}p=(BSTree)malloc(sizeof(BSTNode));p->key=key;p->lchild=p->rchild=NULL;if(q->key>key)q->lchild=p;elseq->rchild=p;}}BSTree CreateBST(void){ /*输入一个结点序列,建立一棵二叉排序树,将根结点指针返回*/BSTree T=NULL; /*初始时T为空树*/KeyType key;scanf("%d",&key); /*读入一个关键字*/while(key){ /*假设key=0是输入结束标志*/ InsertBST(&T,key); /*将key插入二叉排序树T*/scanf("%d",&key); /*读入下一关键字*/}return T; /*返回建立的二叉排序树的根指针*/ }void ListBinTree(BSTree T) /*用广义表示二叉树*/{if(T!=NULL){printf("%d",T->key);if(T->lchild!=NULL||T->rchild!=NULL){printf("(");ListBinTree(T->lchild);if(T->rchild!=NULL)printf(",");ListBinTree(T->rchild);printf(")");}}}void main(){BSTNode *SearchBST(BSTree T,KeyType key);void InsertBST(BSTree *Tptr,KeyType key);BSTree CreateBST();void ListBinTree(BSTree T);BSTree T;BSTNode *p;int key;printf("请输入关键字(输入0为结束标志):\n");T=CreateBST();ListBinTree(T);printf("\n");printf("请输入欲查找关键字:");scanf("%d",&key);p=SearchBST(T,key);if(p==NULL)printf("没有找到%d!\n",key);elseprintf("找到%d!\n",key);ListBinTree(p);printf("\n");}实验中出现的问题及对问题的解决方案输入数据时,总是不能得到结果,原因是在建立二叉树函数定义中,是对指针的值进行了修改。

数据结构_第9章_查找2-二叉树和平衡二叉树

数据结构_第9章_查找2-二叉树和平衡二叉树

F
PS
C
PR
CL Q
QL SL S SL
10
3
18
2
6 12
6 删除10
3
18
2
4 12
4
15
15
三、二叉排序树的查找分析
1) 二叉排序树上查找某关键字等于给定值的结点过程,其实 就是走了一条从根到该结点的路径。 比较的关键字次数=此结点的层次数; 最多的比较次数=树的深度(或高度),即 log2 n+1
-0 1 24
0 37
0 37
-0 1
需要RL平衡旋转 (绕C先顺后逆)
24
0
-012
13
3573
0
01
37
90
0 53 0 53
0 90
作业
已知如下所示长度为12的表:
(Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec)
(1) 试按表中元素的顺序依次插入一棵初始为空的二叉 排序树,画出插入完成之后的二叉排序树,并求其在 等概率的情况下查找成功的平均查找长度。
2) 一棵二叉排序树的平均查找长度为:
n i1
ASL 1
ni Ci
m
其中:
ni 是每层结点个数; Ci 是结点所在层次数; m 为树深。
最坏情况:即插入的n个元素从一开始就有序, ——变成单支树的形态!
此时树的深度为n ; ASL= (n+1)/2 此时查找效率与顺序查找情况相同。
最好情况:即:与折半查找中的判ห้องสมุดไป่ตู้树相同(形态比较均衡) 树的深度为:log 2n +1 ; ASL=log 2(n+1) –1 ;与折半查找相同。

2020年计算机408数据结构算法题

2020年计算机408数据结构算法题

2020年计算机408数据结构算法题一、引言数据结构与算法是计算机科学和计算机工程领域中的核心内容,也是计算机科班学生必修的一门重要课程。

每年的计算机408考试中,数据结构与算法题型都是考生们备考的重点和难点之一。

了解并掌握2020年计算机408数据结构算法题的内容和出题特点,对于考生们备考复习具有重要的指导意义。

二、2020年计算机408数据结构算法题概述2020年计算机408数据结构算法题涵盖了以下主要内容:1. 线性表2. 树和二叉树3. 图4. 排序算法5. 查找算法接下来将分别对以上内容进行详细介绍和分析,并针对每个部分的题型特点进行总结和归纳。

三、线性表线性表是数据结构中最基本的一种结构,包括顺序表和链表两种类型。

在2020年计算机408数据结构算法题中,与线性表相关的题型主要包括如下内容:1. 顺序表的基本操作2. 链表的插入和删除3. 线性表的应用实例以上内容中,顺序表的基本操作涉及数组的使用和基本的插入、删除等操作,而链表的插入和删除则需要考生掌握指针的运用和链表结构的特点。

在解答线性表的应用实例时,考生需要具备一定的抽象思维能力,能够将具体问题抽象为线性表的操作流程,并给出相应的算法实现。

四、树和二叉树树和二叉树是数据结构中的重要内容,在2020年计算机408数据结构算法题中所涉及的内容主要包括:1. 二叉树的遍历2. 二叉树的建立和操作3. 树的遍历和操作4. 树和二叉树的应用实例在解答二叉树的遍历题目时,考生需要熟练掌握前序、中序和后序三种遍历方式的递归和非递归实现方法,并能够灵活应用。

对于二叉树的建立和操作题目,需要考生具备一定的递归思维能力和对指针操作的熟练运用。

树和二叉树的应用实例则需要考生在理解问题的基础上,通过树和二叉树的操作来解决具体问题,涉及到对树结构的应用和实际意义的理解。

五、图图是数据结构中的另外一种重要结构,而在2020年计算机408数据结构算法题中涵盖的图的内容主要包括:1. 图的存储结构2. 图的遍历和搜索算法3. 最短路径算法4. 拓扑排序和关键路径算法5. 最小生成树算法在解答图的存储结构题目时,考生需要了解邻接矩阵和邻接表两种存储结构的特点和区别,并能够根据具体问题选择合适的存储结构。

最佳二叉排序树的动态检索算法之新解

最佳二叉排序树的动态检索算法之新解

刘禾喜I 刘玉华2 ( 1 .哈师大计算机科学与信息工程学院黑龙江哈尔滨 150025;2.吉林榆树市第二实验中学东校区 吉林省 榆树 130400)
【摘要 】给出一 种最佳二 叉排序树的 动态检索 算法。其 性能优q: - 二X排序 树和平衡- - - X树.克 服了用折 半检索方 法构造最佳 - - - X捧序 树的缺点 ,且不会因 插入结点 发生蜕变而影响检索的性能。
[ 关键词】埘形月荣最佳一叉排序树动态检索算法 中图分 类号:01 3 文献标 识码: A 文章编号:16 71- - 75 97( 200 8) 1 1200 82- - 01
一、 引育 . 由于树形目录的存储结构比线性表作为表的组织形式灵活,所以在数据 处理中经常要使用树形目录进行检索。构造树形目录的,J法有:二叉排序 树 ,平 衡二 叉树 和 最佳 ■义 排序 树 。在 所有 结 点的 检索 概率 相 等的 情况 下, 最佳 二义排 序树 的平均 比较次 数是 最少的 。 最佳二叉排序树通常采用折半榆索方法进行构造,但当检索某个关键字 不在最佳■义排序树中时,需将该关键字插入其中,经过插入之后,最佳二 叉排序树町能会发生蜕变而不具有最佳■叉排序树的性能。为了保证插入结 点之后仍为最传_ 义排序树,町使用折半检索方法重新进行构造,但其效率 其低。因此,本文提{ l j 了一种最佳■叉排序树的动态检索算法。当检索的关 键宁不在该最佳_叉排序树中时,插入其适当位置,若插入关键宁之后,该 二叉排序树仍为最佳_ 二叉排序树,则插入完成,否则在发生蜕变的最佳二叉 排宁树的基础I :找到一棵离插入结点最近的、发生蜕变的最小二叉树进行动 态调 整牛成 新的最 佳二叉 排序树 。 二、 算 法原理 为了便于理解算法,在此简述一下最佳二叉排序树的定义和性质。所谓 最佳■义排序树是指平均比较次数最少的二叉排序树:最佳二义排序树的所 有予树均为最佳二叉排序树;最佳二义排序树除最低层的结点可以不满之 外, 其余各 层的 结点均 足满的 。 ( 一) 定义。二叉排序树中任一结点的左子树上的结点的个数与右子树 上结点个数之差,称为结i 从因子,用n d表示,即:nd =右子树上结0 的个数 一左 子树上结 点的个数 。 下而 给{l j 判断最 佳■叉 排序树 因插入 结点之 后发 生蜕变 的定理 。 ( 二) 定理。若一棵最佳_二叉排序树插入结点之后,蜕变成非最佳二叉 排序树时,应满足下述两个条件:①从根结点争插入结点的路径上。定存在 某个结点的nd的绝对值大于等于2 ;②插入结点的父结点一定为叶子结点。 证先证明条件①,设插入结P之前,最佳二叉排序树为n层,即第n层是 不满的,但由于插入结点之后破坏了最传一叉排序树的性质。所以插入的结 点一定足在第n +l 层,在最佳二叉排序树f }J的第n—l 层至少有一个结点的分 支为1或0,插入的结点的父结点是在第n层上,显然从根结点至插入结点的路 径上 必有 nd的绝 对值 大于等 于2的 结点 。 条件②用反证法来证明:若插入结点的父结点不是叶子结点,则插入的 结点的父结点的分支应为l 。那么插入的结点不是在父结点的左字树I :就是 在右 了 树上。 在插 入结 点之 前未 发, 卜蜕 变。 所以 插入 此结 点之 后一 也不 会发 生蜕 变。 因此 小会破 坏最 佳一 叉排序 树的 性质 。 当最佳一叉排序树 为n层目第n层是满的时。插入的 结点一定是在第 n+l 层。插入结点之前从根到第n层上的每个结点的nd均为0。插入结点之 后。从根到插入结点的路径卜不会出现n d的绝对值大于等于2 的结点.显 然。 不会闪 插入结 点而导 致蜕变 。 下而举例略加说明。图l 是‘棵最佳二叉排序树,插入结点8 0之后的结 果如图2所示。从图2中可以看出,插入结点8 0之后,结点50 的n d=2,满足 定理的第一个条件。但结点8 0的父结点己有左了树为65 的结点,它不是插在 叶 结点 E, 故不 满 足条 件② 。 冈而 插入 结 点8 0之 后仍 为晟 佳 二二 叉捧 序 树, 未 发生蜕变不需调整。在图2中插入结点90 之后的结果如图3 所示,结点5 0的 nd =3,满足条件①,结点90是插在叶结点80的右子树之上满足条件②。故不 满足最佳二叉排序树的性质,需加调整,不满足条件①的除结点50之外。还 有结点10 0.从前向给出的例1町以看出,现在就需要查找到离插入结点最近

树、二叉树、查找算法总结

树、二叉树、查找算法总结

树、⼆叉树、查找算法总结树的定义形式化定义树:T={D,R }。

D是包含n个结点的有限集合(n≥0)。

当n=0时为空树,否则关系R满⾜以下条件:l 有且仅有⼀个结点d0∈D,它对于关系R来说没有前驱结点,结点d0称作树的根结点。

l 除根结点外,每个结点有且仅有⼀个前驱结点。

l D中每个结点可以有零个或多个后继结点。

递归定义树是由n(n≥0)个结点组成的有限集合(记为T)。

其中:l 如果n=0,它是⼀棵空树,这是树的特例;l 如果n>0,这n个结点中存在⼀个唯⼀结点作为树的根结点(root),其余结点可分为m (m≥0)个互不相交的有限⼦集T1、T2、…、Tm,⽽每个⼦集本⾝⼜是⼀棵树,称为根结点root的⼦树。

ð 树中所有结点构成⼀种层次关系!树的基本术语度结点的度:⼀个结点的⼦树的个数树的度:各节点的度的最⼤值。

通常将度为m的树成为m次树或m叉树结点分⽀结点:度不为0的结点(也称⾮终端结点)度为1的结点成为单分⽀结点,度为2的结点称为双分⽀结点叶结点:度为0的结点路径与路径长度路径:两个结点di和dj的结点序列(di,di1,di2,…,dj)。

其中<dx,dy>是分⽀。

路径长度:等于路径所通过的结点数⽬减1(即路径上的分⽀数⽬)结点的层次和树⾼度层次:根结点层次为1,它的孩⼦结点层次为2。

以此类推。

树的⾼度(深度):结点中的最⼤层次;有序树和⽆序树有序树:若树中各结点的⼦树是按照⼀定的次序从左向右安排的,且相对次序是不能随意变换的⽆序树:和上⾯相反森林只要把树的根结点删去就成了森林。

反之,只要给n棵独⽴的树加上⼀个结点,并把这n棵树作为该结点的⼦树,则森林就变成了⼀颗树。

树的性质性质1:树中的结点数等于所有结点的度数之和加1。

证明:树的每个分⽀记为⼀个度,度数和=分⽀和,⽽再给根节点加个分⽀性质2:度为m的树中第i层上⾄多有mi-1个结点(i≥1)。

性质3 ⾼度为h的m次树⾄多有个结点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*否则指针p指向查找路径上访问的最后一个结点并返回false*/
Status SearchBST(BiTree T,int key,BiTree f,BiTree *p)
{
if(!T)//查找不成功
{
*p = f;
return false;
} else if(key == T->data)//查找成功
{
*p = T;
return true;
}else if(key < T->data)
return SearchBST(T->lchild,key,T,p);//在左子树继续查找
else
return SearchBST(找
}
二叉排序树(二叉查找树):是一颗空树或者具有下列性质的二叉树:
若它的左子树不空,则左子树上所有结点值均小于他的根结构的值;
若它的右子树不空,则右子树上所有结点值均大于它的根结构的值
它的左右子树也都是二叉排序树
二叉树的二叉链表结点结构定义:
/*二叉树的二叉链表节点结构定义*/
typedef struct BiTNode//节点结构
{
int data;//节点数据
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BTree;
二叉排序树的查找算法实现:
/*递归查找二叉排序树T中是否存在key*/
/*指针f指向T的双亲,其初始调用值为NULL*/
/*若查找成功,则指针p指向该数据元素节点,并返回true*/
相关文档
最新文档