二叉树查找
搜索树的基本操作方法

搜索树的基本操作方法
搜索树是一种有序的二叉树数据结构,常用于存储和搜索数据。
基本的操作方法包括插入、删除和查找。
1. 插入操作(insert):向搜索树中插入新节点。
从根节点开始遍历搜索树,如果待插入节点值小于当前节点值,则继续向左子树搜索;如果待插入节点值大于当前节点值,则继续向右子树搜索;直到找到一个空位置,将待插入节点插入到该位置。
2. 删除操作(delete):删除指定节点。
先在搜索树中找到待删除节点,根据不同情况进行处理:
a) 如果待删除节点没有子节点,直接删除它。
b) 如果待删除节点只有一个子节点,将子节点替代待删除节点的位置。
c) 如果待删除节点有两个子节点,则寻找待删除节点的前驱节点或后继节点来替代该节点。
前驱节点是指比待删除节点值小的最大节点,后继节点是指比待删除节点值大的最小节点。
可以选择使用前驱节点或后继节点来替代待删除节点。
3. 查找操作(search):在搜索树中查找指定值的节点。
从根节点开始遍历搜索树,如果要查找的值等于当前节点值,则返回该节点;如果要查找的值小于当前节点值,则继续向左子树搜索;如果要查找的值大于当前节点值,则继续向右子树搜索。
如果找到了匹配节点,则返回节点;如果搜索到空节点(未找到匹配节点),则返回空值。
以上是搜索树的基本操作方法,对于不同的搜索树实现,可能会有一些其他特定的操作方法。
二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
AVL树自平衡的二叉搜索树

AVL树自平衡的二叉搜索树AVL树是一种自平衡的二叉搜索树,它是根据其发明者 G.M. Adelson-Velsky 和 Evgenii Landis 的姓氏首字母而得名。
AVL树解决了传统二叉搜索树由于插入或删除操作导致树结构不平衡而引发的性能问题。
1. 什么是二叉搜索树?二叉搜索树,又称二叉排序树或二叉查找树,是一种特殊的二叉树结构。
在二叉搜索树中,每个节点都包含一个键值,并且节点的左子树中的键值小于节点的键值,右子树中的键值大于节点的键值。
2. 为什么需要自平衡?传统的二叉搜索树在执行插入或删除操作时,可能会导致树结构不平衡,使得树的高度远大于理想情况下的最小高度。
当树的高度增加后,查找、插入、删除等操作的时间复杂度也会增加,进而影响整体性能。
3. AVL树的自平衡特性AVL树通过保持树的平衡性来提高性能。
对于每一个节点,AVL 树通过计算其左右子树的高度差(平衡因子)来判断是否需要进行旋转操作来保持树的平衡。
当平衡因子超过一定阈值时,进行相应的旋转操作来维持平衡。
4. AVL树的旋转操作AVL树的旋转操作包括左旋和右旋。
左旋操作将当前节点的右子树变为新的根节点,而右旋操作则恰恰相反。
通过旋转操作,AVL树可以在保持二叉搜索树性质的同时,实现树的自平衡。
5. AVL树的插入操作在进行插入操作时,AVL树首先按照二叉搜索树的规则找到插入位置,并插入新的节点。
然后,从插入节点开始沿着路径向上逐层检查平衡因子,若遇到不平衡的节点,执行相应的旋转操作来恢复树的平衡。
6. AVL树的删除操作在进行删除操作时,AVL树首先按照二叉搜索树的规则找到待删除的节点,并执行删除操作。
然后,从删除节点的父节点开始沿着路径向上逐层检查平衡因子,若遇到不平衡的节点,执行相应的旋转操作来恢复树的平衡。
7. AVL树的平衡性保证AVL树的自平衡操作保证了树的高度始终保持在理想情况下的最小高度的常数倍。
通过对平衡因子的检查并执行旋转操作,AVL树能够有效地保持树的平衡性,使得查找、插入、删除等操作能够在较快的时间内完成。
动态规划-最优二叉搜索树

动态规划-最优⼆叉搜索树摘要: 本章介绍了⼆叉查找树的概念及操作。
主要内容包括⼆叉查找树的性质,如何在⼆叉查找树中查找最⼤值、最⼩值和给定的值,如何找出某⼀个元素的前驱和后继,如何在⼆叉查找树中进⾏插⼊和删除操作。
在⼆叉查找树上执⾏这些基本操作的时间与树的⾼度成正⽐,⼀棵随机构造的⼆叉查找树的期望⾼度为O(lgn),从⽽基本动态集合的操作平均时间为θ(lgn)。
1、⼆叉查找树 ⼆叉查找树是按照⼆叉树结构来组织的,因此可以⽤⼆叉链表结构表⽰。
⼆叉查找树中的关键字的存储⽅式满⾜的特征是:设x为⼆叉查找树中的⼀个结点。
如果y是x的左⼦树中的⼀个结点,则key[y]≤key[x]。
如果y是x的右⼦树中的⼀个结点,则key[x]≤key[y]。
根据⼆叉查找树的特征可知,采⽤中根遍历⼀棵⼆叉查找树,可以得到树中关键字有⼩到⼤的序列。
介绍了⼆叉树概念及其遍历。
⼀棵⼆叉树查找及其中根遍历结果如下图所⽰:书中给出了⼀个定理:如果x是⼀棵包含n个结点的⼦树的根,则其中根遍历运⾏时间为θ(n)。
问题:⼆叉查找树性质与最⼩堆之间有什么区别?能否利⽤最⼩堆的性质在O(n)时间内,按序输出含有n个结点的树中的所有关键字?2、查询⼆叉查找树 ⼆叉查找树中最常见的操作是查找树中的某个关键字,除了基本的查询,还⽀持最⼤值、最⼩值、前驱和后继查询操作,书中就每种查询进⾏了详细的讲解。
(1)查找SEARCH 在⼆叉查找树中查找⼀个给定的关键字k的过程与⼆分查找很类似,根据⼆叉查找树在的关键字存放的特征,很容易得出查找过程:⾸先是关键字k与树根的关键字进⾏⽐较,如果k⼤⽐根的关键字⼤,则在根的右⼦树中查找,否则在根的左⼦树中查找,重复此过程,直到找到与遇到空结点为⽌。
例如下图所⽰的查找关键字13的过程:(查找过程每次在左右⼦树中做出选择,减少⼀半的⼯作量)书中给出了查找过程的递归和⾮递归形式的伪代码:1 TREE_SEARCH(x,k)2 if x=NULL or k=key[x]3 then return x4 if(k<key[x])5 then return TREE_SEARCH(left[x],k)6 else7 then return TREE_SEARCH(right[x],k)1 ITERATIVE_TREE_SEARCH(x,k)2 while x!=NULL and k!=key[x]3 do if k<key[x]4 then x=left[x]5 else6 then x=right[x]7 return x(2)查找最⼤关键字和最⼩关键字 根据⼆叉查找树的特征,很容易查找出最⼤和最⼩关键字。
二叉排序树

二叉排序树1.二叉排序树定义二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;若右子树不空,则右子树上所有结点的值均大于根结点的值。
(2)左右子树也都是二叉排序树,如图6-2所示。
2.二叉排序树的查找过程由其定义可见,二叉排序树的查找过程为:(1)若查找树为空,查找失败。
(2)查找树非空,将给定值key与查找树的根结点关键码比较。
(3)若相等,查找成功,结束查找过程,否则:①当给值key小于根结点关键码,查找将在以左孩子为根的子树上继续进行,转(1)。
②当给值key大于根结点关键码,查找将在以右孩子为根的子树上继续进行,转(1)。
3.二叉排序树插入操作和构造一棵二叉排序树向二叉排序树中插入一个结点的过程:设待插入结点的关键码为key,为将其插入,先要在二叉排序树中进行查找,若查找成功,按二叉排序树定义,该插入结点已存在,不用插入;查找不成功时,则插入之。
因此,新插入结点一定是作为叶子结点添加上去的。
构造一棵二叉排序树则是逐个插入结点的过程。
对于关键码序列为:{63,90,70,55,67,42,98,83,10,45,58},则构造一棵二叉排序树的过程如图6-3所示。
4.二叉排序树删除操作从二叉排序树中删除一个结点之后,要求其仍能保持二叉排序树的特性。
设待删结点为*p(p为指向待删结点的指针),其双亲结点为*f,删除可以分三种情况,如图6-4所示。
(1)*p结点为叶结点,由于删去叶结点后不影响整棵树的特性,所以,只需将被删结点的双亲结点相应指针域改为空指针,如图6-4(a)所示。
(2)*p结点只有右子树或只有左子树,此时,只需将或替换*f结点的*p子树即可,如图6-4(b)、(c)所示。
(3)*p结点既有左子树又有右子树,可按中序遍历保持有序地进行调整,如图6-4(d)、(e)所示。
设删除*p结点前,中序遍历序列为:① P为F的左子女时有:…,Pi子树,P,Pj,S子树,Pk,Sk子树,…,P2,S2子树,P1,S1子树,F,…。
二叉树前驱后继的查找

线索二叉树的运算1.查找某结点*p在指定次序下的前趋和后继结点(1)在中序线索二叉树中,查找结点*p的中序后继结点在中序线索二叉树中,查找结点*p的中序后继结点分两种情形:①若*p的右子树空(即p->rtag为Thread),则p->rchild为右线索,直接指向*p的中序后继。
【例】下图的中序线索二叉树中,结点D的中序后继是A。
②若*p的右子树非空(即p->rtag为Link),则*p的中序后继必是其右子树中第一个中序遍历到的结点。
也就是从*p的右孩子开始,沿该孩子的左链往下查找,直至找到一个没有左孩子的结点为止,该结点是*p的右子树中"最左下"的结点,即*P的中序后继结点。
【例】上图的中序线索二叉树中:A的中序后继是F,它有右孩子;F的中序后继是H,它无右孩子;B的中序后继是D,它是B的右孩子。
在中序线索二叉树中求中序后继结点的过程可【参见动画演示】,具体算法如下:BinThrNode *InorderSuccessor(BinThrNode *p){//在中序线索树中找结点*p的中序后继,设p非空BinThrNode *q;if (p->rtag==Thread) //*p的右子树为空Return p->rchild;//返回右线索所指的中序后继else{q=p->rchild;//从*p的右孩子开始查找while (q->ltag==Link)q=q->lchild;//左子树非空时,沿左链往下查找return q;//当q的左子树为空时,它就是最左下结点} //end if}该算法的时间复杂度不超过树的高度h,即O(h)。
(2)在中序线索二叉树中查找结点*p的中序前趋结点中序是一种对称序,故在中序线索二叉树中查找结点*p的中序前趋结点与找中序后继结点的方法完全对称。
具体情形如下:①若*p的左子树为空,则p->1child为左线索,直接指向*p的中序前趋结点;【例】上图所示的中序线索二叉树中,F结点的中序前趋结点是A②若*p的左子树非空,则从*p的左孩子出发,沿右指针链往下查找,直到找到一个没有右孩子的结点为止。
二叉树用途

二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。
二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。
2. 可以拥有零个、一个或两个子节点。
3. 二叉树的子树也是二叉树。
4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。
二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。
1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。
二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。
通过二分查找算法,在二叉搜索树中可以快速定位目标值。
2. 堆:二叉堆是一种用于实现优先队列的数据结构。
它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。
二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。
3. 表达式树:二叉树可以用于存储和计算数学表达式。
表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。
通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。
4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。
每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。
通过遍历二叉树,可以实现文件的查找、创建、删除等操作。
5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。
在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。
通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。
6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。
二叉排序树查找的递归算法

二叉排序树查找的递归算法介绍二叉排序树(Binary Search Tree),也称二叉查找树、有序二叉树或排序二叉树,是一种常用的数据结构。
它具有以下特点:•每个节点都包含一个键值和对应的数据。
•左子树中的所有节点的键值都小于根节点的键值。
•右子树中的所有节点的键值都大于根节点的键值。
•左右子树也分别是二叉排序树。
二叉排序树支持高效的查找、插入和删除操作,其中查找操作是利用递归实现的。
本文将详细介绍二叉排序树查找的递归算法。
二叉排序树的定义二叉排序树的定义如下:class TreeNode:def __init__(self, key, data):self.key = keyself.data = dataself.left = Noneself.right = Noneclass BinarySearchTree:def __init__(self):self.root = None在二叉排序树中,每个节点都是一个TreeNode对象,包含键值key和对应的数据data。
left和right分别指向左子树和右子树的根节点。
树的根节点由BinarySearchTree对象的root属性表示。
二叉排序树查找的递归算法二叉排序树的查找操作是利用递归实现的,其具体算法如下:1.如果待查找的键值等于当前节点的键值,返回当前节点的数据。
2.如果待查找的键值小于当前节点的键值,递归在左子树中查找。
3.如果待查找的键值大于当前节点的键值,递归在右子树中查找。
4.如果在左子树或右子树中找不到对应的键值,则返回空。
下面是二叉排序树查找的递归算法的代码实现:def search_recursive(node, key):if node is None or node.key == key:return node.dataelif key < node.key:return search_recursive(node.left, key)else:return search_recursive(node.right, key)在上述代码中,node表示当前节点,key表示待查找的键值。
数据结构 -第12周查找第3讲-二叉排序树.pdf

以二叉树或树作为表的组织形式,称为树表,它是一类动态查找表,不仅适合于数据查找,也适合于表插入和删除操作。
常见的树表:二叉排序树平衡二叉树B-树B+树9.3.1 二叉排序树二叉排序树(简称BST)又称二叉查找(搜索)树,其定义为:二叉排序树或者是空树,或者是满足如下性质(BST性质)的二叉树:❶若它的左子树非空,则左子树上所有节点值(指关键字值)均小于根节点值;❷若它的右子树非空,则右子树上所有节点值均大于根节点值;❸左、右子树本身又各是一棵二叉排序树。
注意:二叉排序树中没有相同关键字的节点。
二叉树结构满足BST性质:节点值约束二叉排序树503080209010854035252388例如:是二叉排序树。
66不试一试二叉排序树的中序遍历序列有什么特点?二叉排序树的节点类型如下:typedef struct node{KeyType key;//关键字项InfoType data;//其他数据域struct node*lchild,*rchild;//左右孩子指针}BSTNode;二叉排序树可看做是一个有序表,所以在二叉排序树上进行查找,和二分查找类似,也是一个逐步缩小查找范围的过程。
1、二叉排序树上的查找Nk< bt->keybtk> bt->key 每一层只和一个节点进行关键字比较!∧∧p查找到p所指节点若k<p->data,并且p->lchild=NULL,查找失败。
若k>p->data,并且p->rchild=NULL,查找失败。
查找失败的情况加上外部节点一个外部节点对应某内部节点的一个NULL指针递归查找算法SearchBST()如下(在二叉排序树bt上查找关键字为k的记录,成功时返回该节点指针,否则返回NULL):BSTNode*SearchBST(BSTNode*bt,KeyType k){if(bt==NULL||bt->key==k)//递归出口return bt;if(k<bt->key)return SearchBST(bt->lchild,k);//在左子树中递归查找elsereturn SearchBST(bt->rchild,k);//在右子树中递归查找}在二叉排序树中插入一个关键字为k的新节点,要保证插入后仍满足BST性质。
二叉查找树 例题

二叉查找树例题
二叉查找树(Binary Search Tree)是一种特殊的二叉树,每个节点的键值都大于左子树任意节点的键值,小于右子树任意节点的键值。
这种结构使得在二叉查找树中查找、插入和删除元素的操作都变得相对简单。
以下是一个简单的二叉查找树的例题:
题目:给定一个未排序的整数数组,检查是否存在重复元素。
解题思路:
这道题可以使用二叉查找树解决。
我们可以遍历数组中的每个元素,并将它们插入到二叉查找树中。
如果存在重复元素,则插入操作会失败,我们就可以提前返回结果。
如果不存在重复元素,则插入所有元素后,我们遍历二叉查找树即可验证结果。
具体实现如下:
1. 定义一个二叉查找树节点类,包含键值和左右子节点。
2. 定义一个二叉查找树类,包含根节点和插入、查找、遍历等方法。
3. 遍历给定的未排序整数数组,将每个元素插入到二叉查找树中。
如果插入失败(即该元素已存在于二叉查找树中),则说明存在重复元素,返回true。
4. 如果插入所有元素后都没有返回true,则遍历二叉查找树中的所有节点,检查它们的键值是否在给定的未排序整数数组中出现过。
如果出现过,则说明存在重复元素,返回true;否则返回false。
时间复杂度:O(nlogn),其中n 是给定数组的长度。
空间复杂度:O(n),其中n 是给定数组的长度。
二叉式检索表

二叉搜索树介绍二叉搜索树(Binary Search Tree,BST)是一种基于二叉树的数据结构,它具有以下特性: 1. 左子树上的所有节点的值都小于根节点的值; 2. 右子树上的所有节点的值都大于根节点的值; 3. 左右子树也分别为二叉搜索树。
二叉搜索树在计算机科学中有着广泛的应用,例如在查找、插入和删除操作的时候具有较高的效率。
二叉搜索树的实现二叉搜索树可以使用链式或数组的方式实现。
这里我们以链式方式为例,讨论二叉搜索树的基本操作:插入、查找和删除。
插入节点插入节点是将一个新节点添加到二叉搜索树中的过程。
具体实现方法如下: 1. 若二叉搜索树为空,则直接将新节点作为根节点; 2. 若新节点的值小于当前节点的值,则将新节点与当前节点的左子树进行比较,重复步骤1; 3. 若新节点的值大于当前节点的值,则将新节点与当前节点的右子树进行比较,重复步骤1。
查找节点查找节点是在二叉搜索树中寻找特定节点的过程。
具体实现方法如下: 1. 若当前节点为空,则目标节点不存在; 2. 若目标值等于当前节点的值,则找到目标节点;3. 若目标值小于当前节点的值,则继续在当前节点的左子树中查找,重复步骤1;4. 若目标值大于当前节点的值,则继续在当前节点的右子树中查找,重复步骤1。
删除节点删除节点是从二叉搜索树中移除指定节点的过程。
具体实现方法如下: 1. 若当前节点为空,则目标节点不存在; 2. 若目标值小于当前节点的值,则继续在当前节点的左子树中删除,重复步骤1; 3. 若目标值大于当前节点的值,则继续在当前节点的右子树中删除,重复步骤1; 4. 若目标值等于当前节点的值: - 若当前节点无左右子节点,则直接删除当前节点; - 若当前节点只有一个子节点,则用子节点替换当前节点; - 若当前节点有两个子节点,则找到当前节点的右子树中的最小值节点,将其值赋给当前节点,并在右子树中删除这个最小值节点。
二叉搜索树的优缺点二叉搜索树具有以下优点: - 查找、插入、删除节点的平均时间复杂度都是O(log n),其中 n 是二叉搜索树中的节点数; - 适用于动态数据集,可以随时插入和删除节点。
二叉树基本运算算法的实现

二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。
下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。
遍历可以使用递归算法或栈实现。
2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。
递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。
循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。
3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。
插入操作可以使用递归算法或循环算法实现。
4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。
删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。
删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。
删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。
上述算法的实现需要根据具体的编程语言进行调整和实现。
二叉树各种计算公式总结

二叉树各种计算公式总结二叉树是一种常见的数据结构,它由一个根节点和最多两个子节点组成。
许多计算问题可以通过对二叉树进行各种操作和遍历来解决。
在本文中,将总结二叉树的各种计算公式。
1.二叉树节点个数:二叉树节点个数的计算公式是N=N1+N2+1,其中N表示二叉树的节点个数,N1表示左子树的节点个数,N2表示右子树的节点个数。
2. 二叉树的高度:二叉树的高度是指从根节点到最远叶子节点的最长路径上的节点数量。
计算二叉树的高度的公式是H = max(H1, H2) + 1,其中H表示二叉树的高度,H1表示左子树的高度,H2表示右子树的高度。
3.二叉树的深度:二叉树的深度是指从根节点到当前节点的路径的长度。
计算二叉树的深度的公式是D=D1+1,其中D表示二叉树的深度,D1表示父节点的深度。
4.二叉查找树:二叉查找树是一种有序二叉树,它要求对于树中的每个节点,左子树的值都小于节点的值,右子树的值都大于节点的值。
在二叉查找树中进行的公式是:-如果目标值等于当前节点的值,则返回当前节点;-如果目标值小于当前节点的值,则在左子树中继续;-如果目标值大于当前节点的值,则在右子树中继续。
5.二叉树的遍历:二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。
常见的二叉树遍历方式有三种:- 前序遍历:先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
可以表示为:root -> 左子树 -> 右子树。
- 中序遍历:先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
可以表示为:左子树 -> root -> 右子树。
- 后序遍历:先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
可以表示为:左子树 -> 右子树 -> root。
6.二叉树的最大路径和:二叉树的最大路径和是指二叉树中两个节点之间路径上的节点值的最大和。
可以通过递归地计算每个子树的最大路径和,然后选择最大的子树路径和来得出最终结果。
二叉树的各种算法

二叉树的各种算法1.二叉树的前序遍历算法:前序遍历是指先访问根节点,再访问左子树,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-访问根节点,并输出或进行其他操作。
-递归地前序遍历左子树。
-递归地前序遍历右子树。
2.二叉树的中序遍历算法:中序遍历是指先访问左子树,再访问根节点,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地中序遍历左子树。
-访问根节点,并输出或进行其他操作。
-递归地中序遍历右子树。
3.二叉树的后序遍历算法:后序遍历是指先访问左子树,再访问右子树,最后访问根节点的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地后序遍历左子树。
-递归地后序遍历右子树。
-访问根节点,并输出或进行其他操作。
4.二叉树的层序遍历算法:层序遍历是按照从上到下、从左到右的顺序逐层遍历二叉树的节点。
具体算法如下:-如果二叉树为空,则直接返回。
-创建一个队列,将根节点入队。
-循环执行以下步骤,直到队列为空:-出队并访问当前节点,并输出或进行其他操作。
-若当前节点的左子节点不为空,则将左子节点入队。
-若当前节点的右子节点不为空,则将右子节点入队。
5.二叉树的深度算法:二叉树的深度是指从根节点到叶节点的最长路径的节点数。
具体算法如下:-如果二叉树为空,则深度为0。
-否则,递归地计算左子树的深度和右子树的深度,然后取较大的值加上根节点的深度作为二叉树的深度。
6.二叉树的查找算法:二叉树的查找可以使用前序、中序或后序遍历来完成。
具体算法如下:-如果二叉树为空,则返回空。
-如果当前节点的值等于目标值,则返回当前节点。
-否则,先在左子树中递归查找,如果找到则返回找到的节点。
-如果左子树中未找到,则在右子树中递归查找,如果找到则返回找到的节点。
-如果左右子树中都未找到,则返回空。
7.二叉树的插入算法:二叉树的插入可以使用递归或循环来实现。
具体算法如下:-如果二叉树为空,则创建一个新节点作为根节点,并返回根节点。
数据结构_第9章_查找2-二叉树和平衡二叉树

F
PS
C
PR
CL Q
QL SL S SL
10
3
18
2
6 12
6 删除10
3
18
2
4 12
4
15
15
三、二叉排序树的查找分析
1) 二叉排序树上查找某关键字等于给定值的结点过程,其实 就是走了一条从根到该结点的路径。 比较的关键字次数=此结点的层次数; 最多的比较次数=树的深度(或高度),即 log2 n+1
-0 1 24
0 37
0 37
-0 1
需要RL平衡旋转 (绕C先顺后逆)
24
0
-012
13
3573
0
01
37
90
0 53 0 53
0 90
作业
已知如下所示长度为12的表:
(Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec)
(1) 试按表中元素的顺序依次插入一棵初始为空的二叉 排序树,画出插入完成之后的二叉排序树,并求其在 等概率的情况下查找成功的平均查找长度。
2) 一棵二叉排序树的平均查找长度为:
n i1
ASL 1
ni Ci
m
其中:
ni 是每层结点个数; Ci 是结点所在层次数; m 为树深。
最坏情况:即插入的n个元素从一开始就有序, ——变成单支树的形态!
此时树的深度为n ; ASL= (n+1)/2 此时查找效率与顺序查找情况相同。
最好情况:即:与折半查找中的判ห้องสมุดไป่ตู้树相同(形态比较均衡) 树的深度为:log 2n +1 ; ASL=log 2(n+1) –1 ;与折半查找相同。
树、二叉树、查找算法总结

树、⼆叉树、查找算法总结树的定义形式化定义树:T={D,R }。
D是包含n个结点的有限集合(n≥0)。
当n=0时为空树,否则关系R满⾜以下条件:l 有且仅有⼀个结点d0∈D,它对于关系R来说没有前驱结点,结点d0称作树的根结点。
l 除根结点外,每个结点有且仅有⼀个前驱结点。
l D中每个结点可以有零个或多个后继结点。
递归定义树是由n(n≥0)个结点组成的有限集合(记为T)。
其中:l 如果n=0,它是⼀棵空树,这是树的特例;l 如果n>0,这n个结点中存在⼀个唯⼀结点作为树的根结点(root),其余结点可分为m (m≥0)个互不相交的有限⼦集T1、T2、…、Tm,⽽每个⼦集本⾝⼜是⼀棵树,称为根结点root的⼦树。
ð 树中所有结点构成⼀种层次关系!树的基本术语度结点的度:⼀个结点的⼦树的个数树的度:各节点的度的最⼤值。
通常将度为m的树成为m次树或m叉树结点分⽀结点:度不为0的结点(也称⾮终端结点)度为1的结点成为单分⽀结点,度为2的结点称为双分⽀结点叶结点:度为0的结点路径与路径长度路径:两个结点di和dj的结点序列(di,di1,di2,…,dj)。
其中<dx,dy>是分⽀。
路径长度:等于路径所通过的结点数⽬减1(即路径上的分⽀数⽬)结点的层次和树⾼度层次:根结点层次为1,它的孩⼦结点层次为2。
以此类推。
树的⾼度(深度):结点中的最⼤层次;有序树和⽆序树有序树:若树中各结点的⼦树是按照⼀定的次序从左向右安排的,且相对次序是不能随意变换的⽆序树:和上⾯相反森林只要把树的根结点删去就成了森林。
反之,只要给n棵独⽴的树加上⼀个结点,并把这n棵树作为该结点的⼦树,则森林就变成了⼀颗树。
树的性质性质1:树中的结点数等于所有结点的度数之和加1。
证明:树的每个分⽀记为⼀个度,度数和=分⽀和,⽽再给根节点加个分⽀性质2:度为m的树中第i层上⾄多有mi-1个结点(i≥1)。
性质3 ⾼度为h的m次树⾄多有个结点。
最优二叉查找树

最优⼆叉查找树最优⼆叉树也就是哈夫曼树,最优⼆叉树和最优⼆叉查找树是不⼀样的。
我们说⼀下他们的定义最优⼆叉树:给你n个节点,每⼀个节点有⼀个权值wi。
我们设⼀棵树的权值是所有节点的权值乘于每⼀个节点的深度,但是我们可以构造出来许多⼆叉树,我们称构造出来的那个权值最⼩的⼆叉树就是我们找的最优⼆叉树求解最优⼆叉树:(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有⼀个结点);(2) 在森林中选出两个根结点的权值最⼩的树合并,作为⼀棵新树的左、右⼦树,且新树的根结点权值为其左、右⼦树根结点权值之和;(3)从森林中删除选取的两棵树,并将新树加⼊森林;(4)重复(2)、(3)步,直到森林中只剩⼀棵树为⽌,该树即为所求得的哈夫曼树。
最优⼆叉查找树:给定n个节点的值key,假设x是⼆叉搜索树中的⼀个结点。
如果L是x的左⼦树的⼀个结点,那么L.key ≤ x.key。
如果R是x的右⼦树的⼀个结点,那么R.key ≥ x.key。
使⽤<key1,key2,key3....keyn>表⽰,且我们设定key1<key2<key3<keyn。
对于n个节点都有⼀个访问概率pi,使⽤<p1,p2,p3....pn>表⽰。
还有未找到访问点概率qi,我们使⽤<q0,q1,q2,q3....qn>表⽰。
例如访问到[-∞,key1)的概率是q0,访问到(key1,key2)的概率是q1,,,,访问到(keyn,∞)的概率是qn。
我们设定[-∞,key1)区间为d0,(key1,key2)区间为d1,,,,(keyn,∞)区间是dn。
所以是不会出现对于i,j(1<=i,j<=n)满⾜keyi==keyj的情况出现我们需要把2*n+1个节点放在⼀个⼆叉树上,其中n个节点是keyi,还有n+1个节点di。
最后形成的⼆叉树中叶节点肯定是di。
且∑n i=1pi+∑n i=0qi=1假定⼀次搜索的代价等于访问的结点数,也就是此次搜索找到的结点在⼆叉搜索树中的深度再加1。
二叉排序树的概念

二叉排序树的概念什么是二叉排序树二叉排序树(Binary Search Tree),也称为二叉查找树、二叉搜索树,是一种特殊的二叉树结构。
它具有以下特点:1.每个节点最多有两个子节点;2.左子节点的值小于等于当前节点的值,右子节点的值大于等于当前节点的值;3.每个子树也都是二叉排序树。
这个特点使得二叉排序树可以用于高效地查找、插入和删除节点,是一种常见且重要的数据结构。
二叉排序树的性质二叉排序树具有以下性质:1.左子树中所有节点的值均小于根节点的值;2.右子树中所有节点的值均大于根节点的值;3.左右子树也都是二叉排序树。
由这些性质可以得出,对于一个二叉排序树,进行中序遍历,会得到一个递增的有序序列。
二叉排序树的操作1. 插入节点要插入一个节点到二叉排序树中,需要遵循以下步骤:1.如果树为空,将根节点设置为要插入的节点;2.如果要插入的节点值小于当前节点的值,且当前节点的左子节点为空,则将要插入的节点作为当前节点的左子节点;3.如果要插入的节点值大于等于当前节点的值,且当前节点的右子节点为空,则将要插入的节点作为当前节点的右子节点;4.如果要插入的节点值小于当前节点的值,且当前节点的左子节点不为空,则将当前节点的左子节点作为新的当前节点,重复步骤2;5.如果要插入的节点值大于等于当前节点的值,且当前节点的右子节点不为空,则将当前节点的右子节点作为新的当前节点,重复步骤3。
2. 删除节点要删除二叉排序树中的一个节点,需要遵循以下步骤:1.首先找到要删除的节点,如果节点不存在,则无需删除;2.如果要删除的节点没有子节点,直接删除该节点;3.如果要删除的节点只有一个子节点,将子节点替代要删除的节点;4.如果要删除的节点有两个子节点,需要找到其后继节点或前驱节点来替代它。
通常选择后继节点,即右子树中的最小节点,将后继节点的值替代要删除的节点的值,然后删除后继节点。
3. 查找节点要在二叉排序树中查找一个节点,需要从根节点开始,根据节点的值与目标值的大小关系,递归地搜索左子树或右子树,直到找到目标节点或搜索到空位置为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树查找
//树表的查找
#include<iostream>
using namespace std;
typedef struct node{
int key;
struct node *lchild;
struct node *rchild;
}bstnode;//二叉树节点
//二叉树的生成
int insert(bstnode *&p,int k)
{
if(p==NULL)//原来的数时空树
{
p=new bstnode;
p->key=k;
p->lchild=NULL;
p->rchild=NULL;
return 1;
}
else if(k==p->key)
return 0;//树中存在相同的节点,返回0
else if(k<p->key)
return insert(p->lchild,k);
else
return insert(p->rchild,k);
}
//二叉树的创建
bstnode *creat(int *a,int n)
{
bstnode *p=NULL;//初始化空数
int i=0;
while(i<n)
{
insert(p,a[i]);
i++;
}
return p;
}
//二叉树的查找函数
bstnode * search_bst(bstnode *p,int k)
{
if(p==NULL||p->key==k)
return p;
if(k<p->key)
return search_bst(p->lchild,k);
else
return search_bst(p->rchild,k);
}
bool search(bstnode *p,int k)
{
bstnode *bt;
bt=search_bst(p,k);
if(bt==NULL)
return 0;
else
return 1;
}
//二叉树的删除操作
void delete1(bstnode*p,bstnode*&r)//当被删除的节点p有左右节点的时候的删除{
bstnode *q;
if(r->rchild!=NULL)
delete1(p,r->rchild);//递归找到最右下节点
else
{
p->key=r->key;//将r的关键字幅值
q=r;
r=r->lchild;//直接将其左子树的根节点放到被删除节点的位置上
delete q;
}
}
void delete_node(bstnode *&p)//删除节点
{
bstnode *q;
if(p->rchild==NULL)//没有右子树
{
q=p;
p=p->lchild;
delete q;
}
else if(p->lchild==NULL)
{
q=p;
p=p->rchild;
delete q;
}
else
delete1(p,p->lchild);
}
bool delete_bst(bstnode *&p,int k) {
if(p==NULL)
return 0;
else
{
if(k<p->key)
return delete_bst(p->lchild,k);
else if(k>p->key)
return delete_bst(p->rchild,k);
else//找到了要删除的节点
{
delete_node(p);
return 1;
}
}
}
int main()
{
int a[7]={11,7,16,3,9,26,18};
bstnode *p;
p=creat(a,7);
cout<<search(p,0)<<endl;
}
//二分法插入排序
void binary_sort(int *a,int n)
{
int i,j,low,high,mid;
int temp;
for(i=1;i<n;i++)
{
temp=a[i];
low=0;
high=i-1;
while(low<=high)
{
mid=(low+high)/2;
if(temp<a[mid])
high=mid-1;
else
low=mid+1;
}
for(j=i-1;j>=high;j--)
a[j+1]=a[j];
a[high+1]=temp;//插入}
}。