利用几类经典的递推关系式求通项公式

合集下载

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二. 四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三. 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四. 求数列通项的基本方法是:累加法和累乘法。

五. 数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1. ---------------------------------------------- 适用于:。

心=“"+/(,?)这是广义的等差数列累加法是最基本的二个方法之一。

2. 若%+]-%= /(〃)(〃 > 2),«2 - a\ =/(1)则I*)两边分别相加得。

心一明 =文/0?)A.1例1已知数列{%}满足。

心=% + 2n + 1, %=1,求数列{%}的通项公式。

解:由S =缶+2// + 1得《土一%= 2〃 +1则% =(% 一%)+(%.| - %.2)+ •・• +(% - 务)+(% - 角)+ % =[2(〃一1) + 1] + [2(〃一2)+ 1] +…+ (2x2 + 1) +(2x1+ 1) + 1 =2[(〃一1) + (〃一2)+ …+ 2 +1] + (〃一1) +1(fi-l)n ,八, =2 +(〃一1) + 1=(〃一1)(〃+ 1) + 1=,?-所以数列{劣}的通项公式为% =〃七例2已知数列{%}满足%|=%+2x3"+l,《=3,求数列{丹}的通项公式。

解法一:由““I =ci n +2x3" +1 得为+[ -%=2x3" +1 则% =(% 一《I)+ (%| —《一2)+ • • • + (% - 缶)+(缶一妃 + % =(2X3”T +1)+(2X3"-2 +1)+ ...+(2x3?+ l) + (2x3】+1) + 3= 2(3/,-1+3n-2+.-- + 32+31) + (n-l) + 33(1—3”T)=2•- ]-、一 + (〃_1) + 3=3”一3+ 〃一1 + 3=3”+〃一1所以a n = 3" +〃一1.解法二:“,*=3%+2x3”+1两边除以3”“,得参=3 + : +名,an =(% _ 4-1)+(勺― , 3-2 %-3a3〃 3" )+(22^_4)+ ・.. +(查一 *%】a . 3〃-2 明 3〃-3 32 313/2 1、,2 1、,2 1、 2 13(—+ ) + ( — + r) + (— H + ■ . ■ + (— + -^r) + —3 3” 3 3〃-】 3 3心 3 32 32(n-1) ,11 1 11、「3 3" 3〃 3”-' 3〃-2 323“ 因此色=翌1 +剥一3")+1=空+- 1-33 2 2x3〃3〃32 1 1贝 ij a n = —x 〃x3" + —x3"——・3 2 2评注:已知4 =",匕由一。

由递推公式求通项公式五类型

由递推公式求通项公式五类型

由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种办法(办法全,例子全,归纳细)总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法.不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21n n n a na S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S n S S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n n a a n n∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出n a .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c d a 首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即:q q a q p q a n n n n 111+⋅=++,令nn n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列设)(11nn n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-; 解题根本步调: 1.肯定()f n =kn+b2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得 2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即 13511-⋅=--+n nn a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}na 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b 所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如c n b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a ) 根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---. 21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式.解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同)则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案: nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型例12 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式. 解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式.五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a 例14. 设正项数列{}n a 知足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n ,∴1212--=n n a演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nn a --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.双方取经常运用对数得1lg 5lg lg3lg2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg 3lg 3lg 2,4164x y ==+ 由1lg 3lg 3lg 2lg 3lg 3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg 3lg 3lg 2lg 04164n a n +++≠,所以数列lg 3lg 3lg 2{lg }4164n a n +++是认为lg 3lg 3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =,则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++. 八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p+=+--,个中2c k a d =+. 例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得 721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a ,公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求. 例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.十一.特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}na 的通项. 解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n n n n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.。

利用递推关系式求通项公式

利用递推关系式求通项公式

解析:令 an+2+α·an+1=β(an+1+α·an),

β-α=3, α·β=-2

α=-1, β=2,

α=-2, β=1
(选其中一种即
可).
∴an+2-an+1=2(an+1-an). ∴数列{an+1-an}是等比数列,∴an+1-an=2n-1. ∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+ a1=2n-2+2n-3+2n-4+…+2+1+1=2n-1.
利用几类经典的递推 关系式求通项公式
数列通项的常用方法
(1)利用观察法求数列的通项.
(2)利用公式法求数列的通项:①等差、等比数列{an}的通项
公式;②an=SS1n-Sn-1
n=1, n≥2.
(3)应用迭加(迭乘、迭代)法求数列的通项:①an+1=an+f(n);
②an+1=anf(n).
(4)构造等差、等比数列求通项:
①an+1=pan+q;②an+1=pan+qn;③an+1=pan+f(n);
④an+2=p·an+1+q·an.
形如 an+1=kaan+n 1(k≠0),a1 已知型,求数列的通项公式
【例】 在数列{an}中,a1=1,an+1=12aan+n 1(n∈N*),求 an. 解:∵an+1=12aan+n 1取倒数得: an1+1=12aan+n 1=a1n+12,即an1+1-a1n=12. ∴{a1n}是以 1 为首项,12为公差的等差数列. ∴a1n=1+12(n-1)=n+2 1,∴an=n+2 1.
考点1 递推关系形如“an+1=pan+q ”的数列求通项 例1:已知数列{an}中,a1=1,an+1=2an+3,求数列{an} 的通项公式.

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

由递推公式求通项的9种方法经典总结word精品

由递推公式求通项的9种方法经典总结word精品

精析由递推公式求通项的 9种方法1. a n +1= a n + f(n)型把原递推公式转化为a n +1 — a n = f(n),再利用累加法(逐差相 加法)求解,即 a “= a i + (a ? — a° + (巫一 a ?) + …+ (a n _a “-1) = a i + f(1)+ f(2)+ f(3) + •••+ f(n — 1).1 1 、[例1] 已知数列{ a n }满足a i = 2, a n +i = a n +孑右,求a n .1 1 11[解] 由条件,知 a n +1— an = n 2+ n = n n + 1 = n—n+ 1,贝V (a2一 a1)+ 但3— a 2)+ 但4 一a3) + •••+(an— an-1)=1— 2 +£一1+ 1一4 FT所以an— ai = 1-J1 1 13 1因为 a 1 = 1,所以 a n = 2+ 1 — n = 3— 12 . a n +1 = f(n)a n 型把原递推公式转化为a a ±J = f(n),再利用累乘法(逐商相乘法)a n求解,即由 a 2= f(1), a ^ = f(2),…,a 1a 2f(1)f(2)…f(n — 1).故 a n = — a2Lj …a^ a 1= -一一- X-一22X 3 = 3■•即 a n =右. a n —1 a n — 2 a 1 n n — 1 2 3 3 n 3n_a^ = f(n — 1),累乘可得 a° =a n — 1 a1[例2]已知数列{a n }满足a i = £nan +1= n + 1 a n , 求a n .[解]由 an +1=an,得 a ^1n n 1,3. a n +1= pa n + q(其中 p , q 均为常数,pq(p — 1)工0)型对于此类问题,通常采用换元法进行转化, 假设将递推公式 改写为a n +1 + t = p(a n + t),比较系数可知t = =b n + 1换元即可转化为等比数列来解决.[例 3]已知数列{a n }中,a i = 1, a n +1= 2a n + 3,求 a n .[解]设递推公式 a n +i = 2a n + 3 可以转化为 a n +i — t = 2(a n — t ),即 a n +1 = 2a “— t ,贝V t =—3.故递推公式为 a n +1 + 3= 2(a n + 3).b n + 1 a n + 1 + 3-令 bn =an+ 3,则 b 1 =a1+ 3= 4,且= =2. b n a n + 3所以{b n }是以b 1= 4为首项,2为公比的等比数列. 所以 b n = 4 X 2n —1= 2n +1,即卩 a n = 2n +1 — 3.4. a n +1= pa n + q n (其中 p, q 均为常数,pq (p — 1)工0)型(1) 一般地,要先在递推公式两边同除以q n+s 得a n +1=q$+q q q£引入辅助数列{b n }其中b n = ~n ,,得b n +1 = p b n + 再用待定q i q 丿 q q 系数法解决;(2) 也可以在原递推公式两边同除以p n +1,得p n +1=0?+p [p j n,引入辅助数列{0}其中b n = p J,得b n + 1一 g = £加 再利用叠 加法(逐差相加法)求解.[例 4] 已知数列{ a n }中,a 1 = 5,a n +1 = fa n + £厂,求 a n .[解]法一:在 a n + 1=如+ £厂两边乘以 2^1,得 2^1 a n + 1= 3(2n a n ) + 1. 2令 b n = 2n a n ,贝V b n + 1 = ~b n + 1,3p -1,可令 “1+1根据待定系数法,得b n+ 13所以数列{b n—3}是以b1 —3= 2X5—3=—£为首项,6 3以3为公比的等比数列.3所以b n— 3 = — 4 n—S 即b n= 3—2 2 n.令 b n = a n + n +1.(*)3n +1a n +1= 3n a n + 扌卄1. 令 b n = 3n a n ,则 b n + 1 = b n +所以 g — g —1= g —1— bn -2 = g ;1,b 2 - b 1 = g 2 将以上各式叠加, 得 b n - b 1=l|〉1+ g).5 53又 b1=3a1= 3x 6= 2 =1+3, 所以 3 b n = 1 + 扌 +|2+•••+ |n -1+2n即 b n = 2 3 n +1 — 2. 故 a n =爭=3j -23 n .5. a n +1= pa n + an + b(p z 1, p H 0, a ^0)型这种类型一般利用待定系数法构造等比数列,即令 x(n + 1) + y = p(a n + xn + y),与已知递推式比较,解出 an + l +x , y,从而转化为{a n + xn + y }是公比为p 的等比数列.[例 5]设数列{a n }满足 a 1 = 4, a n = 3a n - 1+ 2n — 1(n》2),求 an .[解]设递推公式可以转化为 a n + An+B =3[an -1+A(n — 1)+ B ],化简后与原递推式比较,得a=2,2B — 3A =— 1,法二:在a n +1 = |a n + 1 n +1两边乘以3n +1,得解得贝U b n = 3b n —i ,又 b i = 6,故 b n = 6 3n 1=2 3n , 代入(*)式,得 a n = 2 3“一 n — 1.6. a “+1 = pa n (p>0, a n >0)型这种类型一般是等式两边取对数后转化为 数列,再利用待定系数法求解.[例6]已知数列{a n }中,a i = 1, a n +1 =1 a ;(a>0),求数列{a n }的通项公式.a 1 2[解]对a n + 1=匚a n 的两边取对数,a 1得 lg a n +1 = 2lg a n + Ig 一.a1令 b n = l g a n ,贝U b n +1 = 2b n + lga1 f 1、 1由此得 b n + 1+ lg = 2 b n + lg 一,记 C n = g + lg ,贝V C n +1 = 2®,a I a 丿 a 所以数列{C n }是以C 1 =b 1 + lg 2= lg 1为首项,2为公比的等比数列.a a 所以 C n = 2n T lg 1.y a所以 b n = C n — lg 1 = 2n —1 lga — lg 1a a a=lg [a 0n —1 1= lga 1—2n,即 lg a n = lga 1—2n,所以 a “= a 1—2n.7. a n +1= Ba. + " B ,C 为常数)型对于此类递推数列,可通过两边同时取倒数的方法得出关系 式又 1—1=3, a 1 3a n + 1= pa n + q 型[例7] 已知数列{ a n }的首项a 1 5, a n +1 = 2a + 1, n = h 2,3,…,求{a n }的通项公式._ 3a n an +1 = 2a n + 1,丄=2+丄 a n +1 3 3a n1 a n +111a n1,21 2 —1 =二• n _ 1 = Tna n 33 3,n38. a n 1 a n - f (n)型类讨论即可解析:;a n 1• a n=2n.即数列Bn [是奇数项和偶数项都是公差为2的等差数列,9. On 耳二 f(n)型将原递推关系改写成a n .2 a n 1 = f (n • 1),两式作商可得a n 2 - f (n' ° 然后分奇数、偶数讨论即可例9.已知数列&匚中,印=3,a n彳,a n= 2n ,求"、a n:3 2—, n 为奇数1n , n >1, n* + -22, n 为偶数.32 1是以3为首项,3为公比的等比数列,3 3 •-an=3T2 -由原递推关系改写成 O n .2 - a n 二f (n • 1) - f (n),然后再按奇偶分例8•已知数列玄讪,a i二 1, a nd- a n二 2n.求 a na n 2 a n 1 = 2n 2 ,=2a nn, n 为奇数 n -1, n 为偶数'a nf(n)解析:a n。

七种常见递推数列通项的方法--全方位无死角!!!

七种常见递推数列通项的方法--全方位无死角!!!

七种常见递推数列通项的方法--全方位无死角递推数列是数学中的一个重要概念,它描述了一个数列中每一项与前面相邻的一或多项之间的关系。

递推数列也常常出现在实际问题中,解决递推数列的关键就是找到数列中的通项公式。

本文将介绍七种常见递推数列通项的方法,帮助读者全面深入地理解和掌握这一概念。

第一种方法:递推关系法递推关系法是最常见的求递推数列通项的方法。

它通过观察数列中每一项与前面相邻的一或多项之间的关系,找到数列的递推关系式。

通过递推关系式,我们可以通过已知的一或多项来计算下一项的值,从而求得数列的通项公式。

例如,斐波那契数列就是一个常见的递推数列。

该数列的递推关系为:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项的值,F(n-1)和F(n-2)分别表示第n-1项和第n-2项的值。

通过递推关系式,我们可以从已知的F(0)和F(1)计算出后续的项的值,从而得到斐波那契数列的通项公式。

第二种方法:差分法差分法是一种利用数列的差分性质求递推数列通项的方法。

差分法可以通过计算数列中相邻项之间的差值,并找到相邻项差值之间的递推关系,从而求出数列的通项公式。

例如,等差数列就是一种可以使用差分法求解的递推数列。

对于等差数列,其通项公式为:a(n)=a(1)+(n-1)d,其中a(n)表示第n项的值,a(1)表示第一项的值,d表示等差数列的公差。

通过对等差数列进行差分,我们可以发现相邻项之间的差值是一个常数d,从而得到等差数列的通项公式。

第三种方法:代数法代数法是一种利用代数的方法求递推数列通项的方法。

代数法可以通过将数列中的项表示成代数形式,构建代数方程,并通过解方程得到数列的通项公式。

例如,等比数列就是一种可以使用代数法求解的递推数列。

对于等比数列,其通项公式为:a(n)=a(1)*r^(n-1),其中a(n)表示第n项的值,a(1)表示第一项的值,r表示等比数列的公比。

通过将等比数列的项表示成代数形式,我们可以得到一个代数方程,并通过解方程得到等比数列的通项公式。

利用几类经典的递推关系式求通项公式

利用几类经典的递推关系式求通项公式

利用几类经典的递推关系式求通项公式经典的递推关系式是一种常见的数学问题,其中通项公式是递推关系式的一般解。

在数学中,几类经典的递推关系式包括等差数列、等比数列以及斐波那契数列。

一、等差数列等差数列是一种常见的数列,每一项与前一项之差保持不变。

等差数列的递推关系式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。

利用等差数列的递推关系式可以求得通项公式:an = a1 + (n-1)d二、等比数列等比数列是一种常见的数列,每一项与前一项之比保持不变。

等比数列的递推关系式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。

利用等比数列的递推关系式可以求得通项公式:an = a1 * r^(n-1)三、斐波那契数列斐波那契数列是一种著名的数列,每一项是前两项之和。

斐波那契数列的递推关系式如下:fn = fn-1 + fn-2其中,fn表示第n项,f1和f2分别表示斐波那契数列的前两项。

利用斐波那契数列的递推关系式可以求得通项公式:fn = [(1+sqrt(5))^n - (1-sqrt(5))^n] / (2^n * sqrt(5))其中,sqrt(5)表示5的平方根。

四、其他递推关系式除了等差数列、等比数列和斐波那契数列,还有许多其他经典的递推关系式。

例如,阶乘数列是一种常见的递推关系式,每一项是前一项与当前项之积。

阶乘数列的递推关系式如下:an = an-1 * n其中,an表示第n项,n表示当前项。

利用阶乘数列的递推关系式可以求得通项公式:an = n!其中,n!表示n的阶乘。

总结起来,利用等差数列、等比数列、斐波那契数列以及其他经典递推关系式,可以推导出它们的通项公式。

这些递推关系式和通项公式在数学问题中具有广泛的应用,能够帮助我们快速计算数列中任意项的数值。

由递推关系求数列通项定律的几种方法

由递推关系求数列通项定律的几种方法

).
2 递推相减(或相除)
求数列an的通项公式.
1.已知数列an中,a1 1,an1 an ( 2 n N *),求数列an的通项公式
2.已知数列an中, a1
1, an1
an (n 1 2an
N
*),求an .
3.已知数列an中,a1 1,an1 2an 1,求:an
4.已知数列an 中, a1
+ an an1 n 1
得 n2 n 1
(n 2)
2
1 2 a1
an a1 1 2 3 (n 1)
an
n(n 1) 2
1 2
n2
n 2
1
(当n 1时也适合)
an
n(n 1) 2
1 2
n2
n 1 2
(n N*)
5 .形如an1 f(n) an 迭乘法
已知数列an 中,a1
解:a2 2
1,an1 an
n
n
1
,
求:an
a1 1
a3 3
×
an an1
a2 2 a4 4 a3 3
n
(n n 1
2)
an 2 3 4 n 1 n a1 1 2 3 n 2 n 1
an n (当n 1时也适合)
an n (n N*)
6 归纳法
已知数列an 中,a1
2,an1
2
1(n an
令2 3n1中n 1得2 3n1 2 a1
1
an
2
3n1
(n 1) (n 2)
2.数 列an 的 前 项 和 为Sn, 且Sn
1
2 3
an (n
N * ),求an .

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

高中数学-求数列通项公式的十种方法

高中数学-求数列通项公式的十种方法

求数列通项公式的十一种方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯- 评注:已知aa =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学xx、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其xx形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于: ----------这是xx 的等差数列 累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1 已知数列满足,求数列的通项公式。

解:由得则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列的通项公式为。

例2 已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++ 因此,则评注:已知,,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:%+ =% + f(n) -------- 这是广义的等差数列累加法是最基本的二个方法之一。

2.若an+ -a n = f (n) (n >2),a2 -4=f(1)则出一包="2)III IHa n 1 -a n = f (n)两边分别相加得a n1._.a1 == f (n)k 4例1已知数列{a n}满足an4 =a n +2n +1, & =1,求数列{a n}的通项公式。

解:由an_1 =an+2n+1 得an邛一an = 2n+1 则n n n na n =(a n -a n。

(a n」- a n- IM (a3 -a2)(a2 -a1)&= [2(n-1) 1] [2(n-2) 1] |H (2 2 1) (2 1 1) 1= 2[(n -1) (n -2) ||| 2 1] (n -1) 1= 2(n 21)n (n -1) 1=(n -1)(n 1) 12 二n所以数列{a n}的通项公式为a n =n2。

例2已知数列{a n}满足a n+ =a n +2父3n +1, a1 =3 ,求数列{a n}的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点2 递推关系形如“an+1=pan+f(n)”的数列求通项
例 2:已知数列{an}中,a1=12,an+1=12an+12n(n∈N*).求数列 {an}的通项公式.
解析:令 an+1+A(n+1)+B=p(an+An+B), 即 an+1=pan+pAn-A(n+1)+pB-B. 比较系数,得 A=-1,B=2. ∴an+1-(n+1)+2=12(an-n+2),且 a1-1+2=32≠0. ∴数列an-n+2是等比数列,其公比为12,首项为32. ∴an-n+2=32×(12)n-1,an=23n+n-2.
(1)证明:令an+1+A(n+1)+B=4(an+An+B), 即an+1=4an+3An+3B-A.比较系数,得A=-1,B=0. ∴an+1-(n+1)=4(an-n),且a1-1=1≠0. ∴数列{an-n}是等比数列,其公比为4,首项为1.
(2)解:由(1)得 an-n=1×4n-1,an=4n-1+n, ∴数列{an}的前 n 项和 Sn=4n-3 1+nn2+1. ∴Sn+1-4Sn=4n+31-1+n+12n+2-44n-3 1+nn2+1 =-12(3n2+n-4). 故 n=1 时,Sn+1-4Sn 最大,最大值为 0.
解析:∵an+1=2an+3,∴an+1+3=2(an+3). ∴{an+3}是以2为公比的等比数列,其首项为a1+3=4. ∴an+3=4×2n-1⇒an=2n+1-3.
【互动探究】 1.已知数列{an}中,a1=1,an+1=23an-2,则数列{an}的通
项公式为_7_×___23_n_-_1-__6__. 解析:an+1=23an-2⇒an+1+6=23(an+6),∴an=7×23n-1-6.
1.数列{an}中,a1=1,对所有的 n≥2 都有 a1·a2·a3·…·an=n2,
则 a3 等于( A )
9
3
25
25
A.4
B.2
C. 9
D.16
2.在数列{an}中,若 an+1=2aan+n 1,a1=1,则 a6=( D )A.13B.113
C.11
D.111
解析:由 an+1=2aan+n 1得,an1+1=2ana+n 1=a1n+2, 即a1n=1+2(n-1).即 an=2n1-1.a6=111.
【互动探究】 3.已知数列{an}满足a1=1,an+1-2an=2n,则an=_a_n_=__n_·2_n_-_1_.
考点4 递推关系形如“an+2=pan+1+qan”的数列求通项 例4:已知数列{an}中,a1=1,a2=2,an+2=3an+1-2an, 求数列{an}的通项公式. 解题思路:用待定系数法或特征根法求解.
解析:令 an+2+α·an+1=β(an+1+α·an),

β-α=3, α·β=-2

α=-1, β=2,

α=-2, β=1
(选其中一种即
可).
∴an+2-an+1=2(an+1-an). ∴数列{an+1-an}是等比数列,∴an+1-an=2n-1. ∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+ a1=2n-2+2n-3+2n-4+…+2+1+1=2n-1.
递推关系形如“an+1=p·an+An+B”等价转化为 an+1+A(n+1)+B=12(an+An+B),利用待定系数法求出 A,B 后, 进而转化为等比数列.
【互动探究】
2.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*. (1)证明数列an-n是等比数列; (2)设数列{an}的前 n 项和 Sn,求 Sn+1-4Sn 的最大值.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1 =32n-1+32n-2+32n-3+…+322+32+1 =2×32n-2. ∴an=3n-2n. 方法二:∵an+1=2an+3n,∴a3n+n1=23·3an-n 1+1. 令3an-n 1=bn,则 bn+1=23bn+1, 转化为“an+1=pan+q”(解法略).
3.已知等差数列{an}和等比数列{bn}各项都是正数,且a1
=b1,a2n+1=b2n+1,那么一定有( B )
A.an+1≤bn+1
B.an+1≥bn+1
C.an+1<bn+1
D.an+1>bn+1
4.已知等差数列{an}的前三项分别为 a-1,2a+1,a+7,则 这个数列的通项公式为__a_n_=__4_n_-__3__.
【互动探究】
4 . 已 知 数 列 {an} 中 , a1 = 1 , a2 = 2,3an - an - 1 - 2an - 2 =
0(n≥3),求数列{an}的通项公式. 解:由已知,得 an=13an-1+23an-2, ∴an-an-1=-23(an-1-an-2)(n≥3). 又 a2-a1=1≠0,∴数列an+1-an是以 1 为首项,公比为-23的
考点3 递推关系形如“an+1=pan+qn”的数列求通项 例3:已知数列{an}中,a1=1,an+1=2an+3n,求数列 {an}的通项公式.
解题思路:适当变形转化为可求和的数列.
解析:方法一:∵an+1=2an+3n,∴a2n+n 1=2an-n 1+32n. 令2an-n 1=bn,则 bn+1-bn=32n.
求通项公式
数列通项的常用方法
(1)利用观察法求数列的通项.
(2)利用公式法求数列的通项:①等差、等比数列{an}的通项
公式;②an=SS1n-Sn-1
n=1, n≥2.
(3)应用迭加(迭乘、迭代)法求数列的通项:①an+1=an+f(n);
②an+1=anf(n).
(4)构造等差、等比数列求通项: ①an+1=pan+q;②an+1=pan+qn;③an+1=pan+f(n); ④an+2=p·an+1+q·an.
5.设等差数列{an}的前 n 项和为 Sn,若 a6=S3=12,则 an=
_2_n__.
考点1 递推关系形如“an+1=pan+q ”的数列求通项 例1:已知数列{an}中,a1=1,an+1=2an+3,求数列{an} 的通项公式.
解题思路:递推关系形如“an+1=pan+q”是一种常见题 型,适当变形转化为等比数列.
相关文档
最新文档