第二章流体静力学详解

合集下载

第二章流体静力学

第二章流体静力学
如果叠加的点涡是逆时针方向的,则驻点位置与上面讨论 的情况正好相差 1800 ,即:
1、当 4r0
象限内。在保持
v时 ,驻点A、B左右对称,并落在第一、二
不v变 的情况下,随环量的增加,A、B驻点
向上偏移并逐渐靠近。
2、当 4 r0v 时,两个驻点合为一点,位于圆柱面的最
上端。
3、当 4 r0v 时,圆柱面上已不存在驻点。这表明驻点
v0r 0 cos
90
d 0
式中 为圆的半径r与水
平方向的夹角。
同样可以证明,均匀流中
沿任何其他封闭曲线的速
度环量也等于零。
25
二、汤姆逊(Thomson)定理 流体线:在运动流体中,始终由同样的流体质点所组成 的线叫做流体线。流体线随着流体质点的运动,可在流 动空间位移,变化其大小和形状,但始终由原来的那些 流体质点所组成。
一般情况下,涡线与流线不重 合,而与流线相交。与流线方程类 似,可以得到涡线的微分方程为:
x
dx
x, y
,
z
,
t
y
dy
x, y
,
z
,
t
z
dz
x, y
,
z
,
t
式中,t为参变量。
涡线具有瞬时的特性,不同瞬时,
它有不同的形状,在定常流动中,它的 形状保持不变。
15
2 、涡管、涡束 给定瞬时,在涡量场中任取一封闭曲线(不是涡线),
在速度环量总和的计算中,内周线各微元线段的切向速度线 积分均要计算两次,而两次所取的方向相反,所以这些线段 上的切向速度线积分互相抵消,剩下的只有沿外封闭周线K 各微元线段的切向速度线积分的总和,它正好是沿外封闭周 线的速度环量,故各微元矩形的涡通量的总和就是通过封闭 周线K所包围的单连通区域的涡通量。

工程流体力学第2章流体静力学

工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。


4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。

第二章流体静力学第一节流体静压强及其特性

第二章流体静力学第一节流体静压强及其特性
3)自由表面下深度h相等的各点压强均相等——只有重力 作用下的同一连续连通的静止流体的等压面是水平面。
液体静力学基本方程式的另一种形式
设 水 箱 水 面 的 压 强 为 po , 水 中 1 、 2 点到任选基准面o—o的高度为Zl及Z2, 压度ZZ12差强 ppγ后为γ12 得pZZ010:及ppγγ0p0 2,Z将1 式pγ1 中Z2的 p深γ2 度Z0 改 pγ为0 高
(1) (2) (3)
微小四面体在上述表面力和质量力的作用下处于平衡状态,外
力的轴向平衡关系式为:
,即各向分力投影之和为零:
Px Pn cos n· x Fx 0 Py Pn cos n· y Fy 0 Pz Pn cos n· z Fz 0
(1) (2) (3)
正 压:相对压强为正值(压力表读数)。 负 压:相对压强为负值。 真空度:负压的绝对值(真空表读数,用Pv表示)。
p A
Pa A点绝对压强
0
A点相对压强
B点真空度 B
大气压强 点相对压强的计算
pA p0 h pe pA p0 h
相对压强的实际意义
水平面上的容重是否变化呢? 在静止非均质流体内部,取相距为△h的两个水平面,在它们之间 任选两个铅直微小住体,分别计算它们的压强差为:
两柱体的压强差相等,因而γa必等于γb,否则,流体就不会静止, 要流动。当两等压面无限接近,即△h→0时, γa和 γb就变成同一 等压面上两点的容重,此两点容重相等,说明水平面不仅是等压面, 而且是等容重面。 容重与密度成正比,所以,等容重面也是等密度面。
1.假定容器的活塞打开,容器内外气体 压强一致,po=pa,相对压强为零。
2.假定容器的压强po>pa ,这个超过大气压强的部分, 对器壁产生的力学效应,使器壁向外扩张。如果打开活塞, 气流向外流出,流出速度与相对压强的大小有关。

第二章流体静力学

第二章流体静力学

dy → 0, p y = pS 当四面体向A点收缩时,
同理 px = pz = pS
§2.2静力学基本方程(Euler静平衡方程):
取一个矩形微元六面体,其六个面分别与 坐标轴平行,设微元中心处的压强为 p。 由于 这是个微小体积,因此认为六个面上的压强各 自均匀分布,常用面上中心来做代表。

而面上中心处的压强又可以围绕六面体 中心做Taylor展开。展开式忽略二阶以上 的高阶量,有
1 ⎞ ⎛ p A = p⎜ x + dx ⎟ 2 ⎠ ⎝
p A = p + 0.5(∂p ∂x )dx
p B = p − 0.5(∂p ∂x )dx

这样,垂直于x轴的两个面上的表面力分 别为
[ p + 0.5(∂p ∂x )dx ]dydz [ p − 0.5(∂p ∂x )dx ]dydz
§2.3重力作用下静止流体内部的压强分布 [均匀液体的压强分布] 根据Euler静平衡方程 可以得到:
p = p0 + γh
第一部分是自由面上的压强,第二部分称 为剩余压强。
p = p0 + γh = γ ( p0 γ + h )
这种做法,称为虚水面方法。
[连通器] ( 1 )同种液体,表面自由压强相等。则两液面 等高,任一等高度的面上均为等压面。 ( 2 )同种液体,但表面自由压强不等。则自由 压强大者,液面低。 (3)不同液体(不相混)。密度大者液面低。
F = ∫ ρf dV
V
2、表面力——一个流体体积的表面上,受 到其他部分的流体或与之相接的固体的 作用力。这种力,只是作用在体积的表 面上而没有作用到体积内部的流体质点 上。 通常可以把表面力分解为法向的和 切向的分量,分别称为法向力和切向力。 单位面积上则称为法向应力和切应力。

第二章 流体静力学

第二章 流体静力学

所以表面abcd的总压力为:( p
p dx )dxdy x 2
同理面aˊbˊcˊd ˊ的总压
p dx 力为: (p )dydz x 2
z
微团在X轴方向的表面
力和为:
(p p dx p dx )dydz ( p )dydz x 2 x 2
p
p dx x 2
位质量流体受到的质量力在水平面x轴和y轴的投影为零, 铅直方向z轴的投影为重力加速度g,根据
则有
dp g dz
dp ( f x dx f y dy f z dz)



积分得
p zc g
液体静止的基本方程
式中:g在本书中取值9.807m/s2;
z为测压处相对于边界条件(基准面)的高差。 c为常数,大小由边界条件确定。




若一个函数W(x,y,z)使质量力的投影等于这个函数的偏
导数,即
W fx x

fy
W y
fz

W z
则称函数W(x,y,z)为质量力势函数。 一个存在质量力势函数的力场,称为有势力场,相应的
质量力称为有势质量力,简称有势力。
等压面性质: • 等压面就是等势面; • 等压面与质量力垂直; •两种互不掺混液体的分界面也是等压面。
等压面:在静止流体内,由静压力相等的各点组成的面
自由面:静止液体和气体接触的面
水平面既是等压面也是自由面
液体静压强分布规律只适用静止、同种、连续液体
同一容器或同一连通器盛有多种不同密度的液体时,关键是找到等 压面
§2-4

液体的相对静止
辩证唯物主义:
①运动是普遍的、永恒的和无条件的,因而是绝

流体力学第二章流体静力学

流体力学第二章流体静力学
第二章 流体静力学
❖ 流体静力学研究流体的平衡规律,由平衡条 件求静压强分布规律,并求静水总压力。
❖静止是一个相对概念,指流体相对于地球无 运动的绝对平衡和流体相对于地球运动但质点 之间、质点与容器之间无运动的相对平衡。
❖流体质点之间没有相对运动,意味着粘性将 不起作用,所以流体静力学的讨论不须区分流 体是实际流体或理想流体。
pA mhm a
p1左 pA a p1右 mh
2.5.3水银压差计
即使在连通的 静止流体区域中 任何一点的压强 都不知道,也可 利用流体的平衡 规律,知道其中 任何二点的压 差,这就是比压 计的测量原理。
p1左 pA ( z A hm ) p1右 pB mhm zB
面,自由表面上压强为大气压,则液面
以下 h 处的相对压强为 γh ,所以在
液体指定以后,高度也可度量压强,称 为 液 柱 高 , 例 如 : ××m(H2O) , ××mm(Hg) 等。特别地,将水柱高称 为水头。
p=0 h
ph
98 kN/m2=一个工程大气压=10 m(H2O)=736 mm(Hg)
任意形状平面上的静水总压力大 小,等于受压面面积与其形心点 压强的乘积。
2.静水总压力的方向垂直并指 向受压面
3.总压力P的作用点
根据合力矩定理,对x轴
PyD ydP
yy sin dA sin y2dA
p
1 2
p x
dx
dydz
p
1 2
p x
dx
dydz
X
dxdydz
0
化简得:
X 1 p 0
x
Y,z方向可得:
Y Z
1
1
p y p
0

第二章 流体静力学

第二章  流体静力学
工程实际:堤坝、闸门、桥墩 研究目标:合力的大小、方向、作用点 计算方法:解析法和图解法
h
h
一、解析法
如图所示,静止液体中有一倾斜放置的平面MN,试求作用 在该平面上的总压力。
1)粗线MN代表其侧视图,正面投影为绕其对称轴转90 度 2)平面MN的延伸面与自由液面的交角为;
3)坐标系:ox轴为平面MN的延伸面与自由液面的交线;
二、欧拉平衡微分方程的全微分形式
p X
x ×dx
p Y
y
×dy
p Z
z
×dz
p dx p dy p dz ( Xdx Ydy Zdz)
x y z
p p(x, y, z) dp p dx p dy p dz x y z
通常作用在流体上的单位 质量力是已知的,利用上 式便可求得流体静压强的 分布规律。
yD
sin Iox
P
sin Iox hc A
sin Iox yc sin A
I ox yc A
引入平行移轴公式 Iox Ic Ayc2
yD
I ox yc A
Ic yc2 A yc A
yc
Ic yc A
由此可知,压力中心D必位于受压面形心c之下。
说明:
工程中常见的受压平面多具有轴对称性(对称轴与
当流体存在真空时,工程习惯上用真空度(负压)表示。
真空
pv pabs pa
道 路
三者关系
当p>pa 时,绝对压强=表压强+当地大气压 当p<pa 时,绝对压强=当地大气压-真空度
p 表压强
p>pa 真空度
当地大气压 pa
绝对压强
p<pa
绝对真空 p=0

第二章 流体静力学

第二章 流体静力学
pv pa p
——相对压力或表压 ——绝对压力
二、静压强计量单位
1、应力单位。在法定单位制中是Pa=N/m2或bar=105Pa, 在工程制中是kgf/cm2,应力单位多用于理论计算。 2、液柱高单位。液柱高单位有mH2O、mmHg等等。 3、大气压单位。标准大气压(atm)是根据北纬45度海平面 上150C时测定的数值。 1atm=760mmHg=1.033 kgf/cm2=1.01325bar=1.01325105Pa 另外工程制单位中规定:
重力作用下静水压强的分布规律又可写为:

位置水头z :任一点在基准面0-0以上的位置高 度,表示单位重量流体从某一基准面算起所具 有的位置势能,简称位能。
测压管高度 p/ g:表示单位重量流体从压强为 大气压算起所具有的压强势能,简称压能(压 强水头)。
测压管水头( z+p/ g):单位重量流体的总势 能。
质量力: fx 0
fy 0
v 静压强分布规律为:
p p0 gh
等压面:一簇水平面
fz g
2. 等加速直线运动流体的平衡
质量力:fx a
fy 0
fz g ,代入流体微分平衡方程式
adx gdz 1 dp
积分得 p ax gz C
h为液体中任一点距液面的垂直液体深度, 又称淹深。
—— 不可压缩性流体的静压强基本 公式或静液压强基本公式。
结论:
(1)在重力作用下,液体内的静压强只是坐标轴z的函数,压强随深 度h的增大而增大。
(2)静压强由两部分组成,即液面压强p0和液体自重gh引起的压强。 液面压强是外力施加于液体而引起的,可通过固体、气体或不同质的 液体对液面施加外力而产生压强。

第二章-流体静力学

第二章-流体静力学

第⼆章-流体静⼒学⼀、学习导引1、流体静⽌的⼀般⽅程(1)流体静⽌微分⽅程x p f x ??=ρ1,y p f y ??=ρ1,zpf z ??=ρ1 (2)压强微分)(dz f dy f dx f dp z y x ++=ρ(3)等压⾯微分⽅程0=++dz f dy f dx f z y x2、液体的压强分布重⼒场中,液体的位置⽔头与压强⽔头之和等于常数,即C pz =+γ如果液⾯的压强为0p ,则液⾯下深度为h 处的压强为h p p γ+=03、固体壁⾯受到的静⽌液体的总压⼒物体受到的⼤⽓压的合⼒为0。

计算静⽌液体对物⾯的总压⼒时,只需考虑⼤⽓压强的作⽤。

(1)平⾯壁总压⼒:A h P c γ= 压⼒中⼼Ay J y y c cc D += 式中,坐标y 从液⾯起算;下标D 表⽰合⼒作⽤点;C 表⽰形⼼。

(2)曲⾯壁总压⼒:222z y x F F F F ++=分⼒:x xc x A h F γ=,y yc y A h F γ=,V F z γ=4、难点分析(1)连通器内不同液体的压强传递流体静⼒学基本⽅程式的两种表达形式为C pz =+γ和h p p γ+=0。

需要注意的是这两个公式只适⽤于同⼀液体,如果连通器⾥⾯由若⼲种液体,则要注意不同液体之间的压强传递关系。

(2)平⾯壁的压⼒中⼼压⼒中⼼的坐标可按式Ay J y y c cc D +=计算,⾯积惯性矩c J 可查表,计算⼀般较为复杂。

求压⼒中⼼的⽬的是求合⼒矩,如果⽤积分法,计算往往还简便些。

(3)复杂曲⾯的压⼒体压⼒体是这样⼀部分空间体积:即以受压曲⾯为底,过受压曲⾯的周界,向相对压强为零的⾯或其延伸⾯引铅垂投影线,并以这种投影线在相对压强为零的⾯或其延伸⾯上的投影⾯为顶所围成的空间体积。

压⼒体内不⼀定有液体。

正确绘制压⼒体,可以很⽅便地算出铅垂⽅向的总压⼒。

(4)旋转容器内液体的相对静⽌液体随容器作等⾓速度旋转时,压强分布及⾃由⾯的⽅程式为c z gr p +-=)2(22ωγc gr z +=2220ω恰当地选取坐标原点,可以使上述表达式简化。

流体力学讲义 第二章 流体静力学

流体力学讲义 第二章 流体静力学

第二章流体静力学作用在流体上的力有面积力与质量力。

静止流体中,面积力只有压应力——压强。

流体静力学主要研究流体在静止状态下的力学规律:它以压强为中心,主要阐述流体静压强的特性,静压强的分布规律,欧拉平衡微分方程,等压面概念,作用在平面上或曲面上静水总压力的计算方法,以及应用流体静力学原理来解决潜体与浮体的稳定性问题等。

第一节作用于流体上的力一、分类1.按物理性质的不同分类:重力、摩擦力、惯性力、弹性力、表面张力等。

2.按作用方式分:质量力和面积力。

二、质量力1.质量力(mass force):是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

对于均质流体(各点密度相同的流体),质量力与流体体积成正比,其质量力又称为体积力。

单位牛顿(N)。

2.单位质量力:单位质量流体所受到的质量力。

(2-1) 单位质量力的单位:m/s2 ,与加速度单位一致。

最常见的质量力有:重力、惯性力。

问题1:比较重力场(质量力只有重力)中,水和水银所受的单位质量力f水和f水银的大小?A. f水<f水银;B. f水=f水银;C. f水>f水银;D、不一定。

问题2:试问自由落体和加速度a向x方向运动状态下的液体所受的单位质量力大小(fX. fY. fZ)分别为多少?自由落体:X=Y=0,Z=0。

加速运动:X=-a,Y=0,Z=-g。

三、面积力1.面积力(surface force):又称表面力,是毗邻流体或其它物体作用在隔离体表面上的直接施加的接触力。

它的大小与作用面面积成正比。

表面力按作用方向可分为:压力:垂直于作用面。

切力:平行于作用面。

2.应力:单位面积上的表面力,单位:或图2-1压强(2-2)切应力(2-3) 考考你1.静止的流体受到哪几种力的作用?重力与压应力,无法承受剪切力。

2.理想流体受到哪几种力的作用?重力与压应力,因为无粘性,故无剪切力。

第二节流体静压强特性一、静止流体中任一点应力的特性1.静止流体表面应力只能是压应力或压强,且静水压强方向与作用面的内法线方向重合。

流体力学--第二章流体静力学

流体力学--第二章流体静力学
1 Px p x dydz 2
1 Py p y dxdz 2
1 P p dA Pz pz dydx 2 Y 设 X 、 、Z 分别为沿三个坐标轴方向上的单位
质量力,则沿三个方向上的质量力分别为:
1 1 1 Fx X dxdydz Fy Y dxdydz Fz Z dxdydz 6 6 6
Fx 0, p x
其中
1 dA cos(n, x) dydz 2 1 dA cos(n, y ) dzdx 2 1 dA cos(n, z ) dydx 2
px p y pz p
结论
由于斜平面ABC的方位是任意的,上式即证明 了在同一点处各个方向上的静压强值是相等 的。
pn
静压强
p
α
pt
图2-2
切向压强
假 设: 在静止流体中,流体静压强方向不与作用面 相垂直,与作用面的切线方向成α角 则存在
切向压强pt
法向压强pn
流体流动
与假设静止流体相矛盾
A
B
C
D
E
F
(2)静压强的各向等值性:静止流体内任意一点处 沿各个方向上的静压强大小相等,即
px p y pz p


dA
dAz
dAx
b
z
dA
微小面积上的微压力
dP ghdA
水平总压力
分解
dPx dp cos ghdA cos
dPz dp sin ghdA sin
Px dPx ghdA cos g hdAx ghC Ax
2 2
y
o
A g
x

第二章 流体静力学

第二章 流体静力学
2、作用于六面体的质量力 x轴向
X dxdydz
x轴向的平衡 1 p 1 p (p dx)dydz ( p dx)dydz X dxdydz 0 2 x 2 x
X
p 0 x
同理
p Y 0 y p Z 0 z
流体平衡微分方程式 (欧拉平衡方程)
第二节 流体静压强的分布规律
三、气体压强计算
前述规律,虽然是在液体的基础上提出来的,但对于不可 压缩气体仍然适用。 由于气体密度很小的特点,在高差不是很大的情况下,气 柱产生的压强很小,因而可以忽略ρg h的影响,即 p= p0 上式表明空间各点气体压强相等,例如液体容器、测压管、 锅炉等上部的气体空间,就认为各点的压强是相等的。
第一节 流体静压强及其特性
二、流体静压强的特性
(1)静压强的垂向性。 流体静压强总是沿着作用面 的内法线方向。 (2)静压强的各向等值性。 在静止或相对静止的流体中,任一点的流体静压强的大小与 作用面的方向无关,只与该点的位置有关,即同一点上各个 方向的流体静压强大小相等。
第一节 流体静压强及其特性
第七节 液体平衡微分方程
p 0 x p Y 0 y p Z 0 z
X
指出流体处于平衡状态时,作用于 流体上的质量力与压强递增率之间 的关系。它表示单位体积质量力在 某一轴的分力,与压强沿该轴的递 增率相平衡。
1 p x 1 p Y y 1 p Z z X
水头。 p Z :测压管水面相对于基准面的高度,测压管水头。 g
所谓测压管是一端和大气相通,另一端和液体中某一点相 接的管子。 两水头相加等于常数,表示在同一容器的静止液体中所有 各点的测压管水面必然在同一水平面上。
第二节 流体静压强的分布规律

第二章 流体静力学

第二章  流体静力学

分别沿 x、y、z 三个方向建立力的平衡关系:
px
B dy o dz pn
n pz
x方向合外力=质量×质量力(x方向)
C
· P
dx A
x
1 1 p x dydz pn ds cos( n, x) dxdydz f x 2 6
z
py
3
第二章 流体静力学
方程左端等于:
1 1 p x dydz pn dydz 2 2
24
第二章 流体静力学
§2-5 压强测量
一、压强的计量: • 以真空为压强参考值计量的压强称为绝对压强,以 p 来 表示 • 以大气压 pa 为参考压强,高出大气压部分的压强称为相 对压强 pe= p-pa
• 以大气压 pa 为参考压强,不足大气压部分的压强称为真 空压强(真空度) pv= pa-p
解:容器内水面上任一 点和玻璃管底部压力差 为ρgh,有
p0 gh pa
pa用1个工程大气压强计。所 以p0 为
p0 pa gh 981000 1000 9.811.5 83385 N / m2
13
第二章 流体静力学
等压面方程还可写为:
1 f ds dp 0

其中:
f f xi f y j f z k
为质量力向量。
ds dxi dyj dzk 为等压面上的任一线矢
上式表明:等压面处处与质量力相正交。
14
第二章 流体静力学
g z2 z2 p2 p1 exp RT0
如果温度随高度呈线性变化,令
T T0 z
α为常数,式2-3积分为
T0 z p p0 T 0

第二章流体静力学流体力学

第二章流体静力学流体力学

Pn Pn
cos(n, cos(n,
x) y)
Fx Fy
0 0
(2—2)
Pz
Pn
cos(n,
z)
Fz
0
x方向受力分析:表面力:
Px
px
1 dydz 2
Pn
cos(n, x)
pn
1 dydz 2
(2—3)
n为斜面ABC的法线方向质量力: Fx X dxdydz / 6 (2-4)
对压强的负值时,如(图2—10)。
真空值 p pa pabs ( pabs pa )
h 真空高度 v
pv
pa pabs
( pabs pa ) (2—20)
(2—18)
pabs hv pa
图2—10真空高度
hv
pa
pabs
g
pv
g
(2—19)
(二)压强的单位及其换算
1.国际单位制:国际单位制中压强的单位主要有pa(或 atm)、Pa(或N/m2)、Kpa(或kN/m2)、Mpa等。

, , p p p
x y z
)等于该方向上单位体积内的质量力的分
量 ( X 、Y 、Z )。
二、平衡微分方程的全微分式
为对式(2—9)进行积分,将各分式分别乘以 dx、dy 、dz
然后相加,得(2-10)
p dx p dy p dz (Xdx Ydy Zdz)
x y z
压强p p(x, y, z)是坐标的连续函数,由全微分定理,
体的交界面等。
第三节 重力场中流体静压强的分布规律
一、液体静力学的基本方程 1.基本方程的两种表达式 在同一种均质的静止液体中,
任意点的静压强,与其淹没深度 成正比,与液体的重度成正比, 且任一点的静压强的变化,将等 值地传递到液体的其它各点

第二章-流体静力学

第二章-流体静力学
p1 p 2 ' g L 2 L1 cos
例2-3 用复式压差计测量两条气体管道的压差。两个U形管的工作液体为水银,密度
为 2 ,其连接管充以酒精,密度为 1 为 z 1 、z 2 、z 3 、z 4 。求压差 p A p B 。如果水银面的高度读数
解 界面1的压强 界面2的压强 界面3的压强
上式反映了液体的压强与高度的函数关系。由此式可以看出以下几点:
[1] 当z为常数时,压强也是一个常值,因此,等压面是一个水平面。这个结论对
任何一种不可压缩流体都适用。但是,对于不同的流体,由于它们的密度不同, 因此上式的常数c不相同。
[2] 在同一种液体中,压强p随高度z的增加而变小。
[3] 设液面上的压强为
由于 h D 2 4 h d 2 4 故
p a p g 1 d D h
2


取水银的密度 13600 kg m 3
代入数据,得真空压强为 26939 Pa
2-5 静止大气压的压强分布 国际标准大气
大气层中的压强与密度、温度的变化有关,而且受到季节、时间、气候诸 因素的影响。世界各地的大气压强分布不同的。为了便于科技资源的交流, 根据各国气象的统计数据,国际上约定一种大气压强、密度和温度随海拔 高度变化的规律,这就是国际标准大气。 国际标准大气取海平面为基准面,在基准面上的大气参数为
3
10 Pa 0 . 986 10 Pa
5 5
3 当绝对压强 p 117 . 7 10 Pa
时,表压 p g 19 . 1kPa
当绝对压强 p 68 . 5 10
Hale Waihona Puke 3Pa时,真空压强 p v 30 . 1kPa 或柱高 3.069mmH2O

《工程流体力学》第二章 流体静力学

《工程流体力学》第二章  流体静力学

20 0 2340 615
各项物理意义:
容器:封闭
液体重度:g
自由液面压强:po 小孔: 器壁上距底部z处
小孔处压强:p = po+ gh
在o处与一根抽成真空的小管相通,液体进入小管,并迅
速上升到A点: p = gh’
h ——O、B两处单位重量流体位能差 h’ ——O、A两处单位重量流体位能差
代表一种能量,称为压力能
容器旋转:绕铅直轴,角速度w
容器旋转后,液体虽未流出,但压强发生了变化,
画出过边上小孔的等压线
虚线 —— 相对压强为 0
盖板各点承受的相对压强:
或真空度: 盖板上: 在轴心处,真空度 最大: 在边缘处,真空度 最小: 离心泵和风机就是利用这个原理,使 流体不断从叶轮中心吸入。
3. 流体静压强仅是空间位置和时间的标量函数,与所取 作用面的方向无关——各向同性 证:取一五面体
(1)表面力:作用静止(或相对静止)流体上无拉力和切力, 表面力只有压力,
在左面上:pydxdz 在底面上:pzdxdy 在斜面上:pndxds 在前面上:pxdydz/2 在后面上:pxdydz/2
液面上半径r处: 液体体积:
由此可测得w值。
速很高,液面上升过高, 溢出容器,容器为封闭的,只在中间留有一小口。
容器静止时:液面离盖板Dho 容器旋转时:液面中心下降到b
求:w
(1)求R’:
(2)静止时空出体积=旋转时下凹体积
画出等压线
讨论: 1、AA`处压强? 2、A`B处压强? 3、容器底部压强?
外力场作用在流体微团上的非接触力,与流体质量(或 体积)成正比, 如地球吸引力、惯性力、电磁力等。 流体力学中一般只考虑地球吸引力,惯性力。 单位质量力:单位质量流体受到的质量力。

流体力学第二章

流体力学第二章

对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力体
组成: (1)自由液面 (2)曲面 (3)沿曲面的边界引垂直液面的铅垂面 分类: (1)实压力体(+) (2)虚压力体(-) (3)压力体叠加
例题3
三、静水总压力的合力
合力 P Px2 Pz2
总压力方向(与水平方向)
tan Pz arc tan Pz
可正可负
真空值
pV
恒为正值
三 绝对压强、相对压强、真空值
国际单位制: 1Pa 1N / m 2。
工程单位制:大气压(at、atm)、液柱高度。
1 atm 1.013105 Pa 760 mm(Hg) 10.33 m(H2O)
标准大气压 1 at 9.8104 Pa 735mm(Hg) 10 m(H2O)
h1
h
h
一、图解法
h1
h
h
(h1 h2) 总压力的大小等于压强分布图面积乘以平面宽度。 作用点:总压力通过压强分布图的形心
h2
注意事项:
(1)压强分布图尽可能用相对压强表示
(2)方向与作用面垂直并指向作用面
(3)由基本方程可知,在同一种连续的静 止液体中,作用面上各点静压强沿铅垂 方向上的深度成正比例增加,为一条倾 斜的直线。
工程大气压
四 静水压强分布图
压强分布图 由静力学基本方程可知,静压强随深度按
直线规律分布。工程中常采用直观而简便的几 何方法作出图形来反映静压强的分布情况。
依据:静压强的特性和静力学基本方程
手段:用一定比例的线段长度表示压强大小,用 箭头表示静压强的方向。
五 测压管高度、测压管水头、 真空度
z p c
证明思路: (1)取研究对象(微元体),建立坐标系 (2)受力分析 (3)导出关系式 (4)得出结论
特性二的证明:
取微元体
特性二的证明:
受力分析 表面力 质量力
导出关系式 根据平衡条件,四面体处于静止状态下各
个方向的作用力之和均为零。 px py pz pn
特性二的证明:
结论 在连续介质中,一点的静压强p仅是空间坐
二、解析法
在静止流体中有一块任意形状的平面,它 与水平面的倾斜角为α, 面积为A.
二 解析法
建立坐标系 X、Y轴取在平面上,Z轴垂直平面。为 了看清平面上的形状,将平面绕oy轴旋 转90°转到纸面上。
二 解析法
二 解析法
(1)总压力大小
在平面上取一微元面积dω,距液面深度为h,水面以上 为大气压,则作用在微元面积的dA上总压力为
P ghc pc
说明: • 作用在任意形状平面上的总压力大小等于该平面的面积 与其形心处压强的乘积。 • 对于计入液面上压强为 p0 时,也同样正确,要考虑p0 作 用。
二 解析法
二 解析法
(2)总压力方向
根据静压强的特性,必然是垂直地指向这个作 用面
(3)总压力作用点(压力中心)
yD
IX
流体力学
主 讲:赵 超
第二章 水静力学
§2.1 静水压强及其特性 §2.2 重力作用下静水压强的分布规律 §2.3 测量压强的仪器 §2.4 作用在平面上的静水总压力 §2.5 作用在曲面上的静水总压力
水静力学是研究水静止时的平衡规 律,根据平衡条件,确定静水中压强分 布规律和静水对各种固体壁面的作用 力。
g
测压管水头
z p/g
真空度
hv
pv
§ 2.3 测量压强的仪器
水银测压计
Pa
找等压面
两种液体 的分界面
ρ1 M p
1 P>Pa
h1
h2 等压面
2
ρ
水银差压计
例题 1
例题 2
作业
2-9 2-11 2-12
课堂作业
2-1 2-4
§2.4 作用在平面上的静水总压力
平面总压力的计算问题,就是要确定总压 力的大小、方向、作用点。确定静止流体作用 在平面上的总压力的方法,有解析法和图解 法。这两种方法的原理和结果是一样的,都是 根据流体中静压强的分布规律来计算的。
§2.5 作用在曲面上的静水总压力
压力大小
dP ghd
一、静水总压力的水平分力
水平分力
dPx dP cos ghd cos ghdx
积分得
Px dPx g hdx ghcx pcx
x
x
二、静水总压力的垂直分力
垂直分力
dPz dP sin ghd sin ghdz
推论
静压强的大小与液体的体积无直接关系。
在静止液体中,相同淹没深度各点处压强相 等。也就是在同一个连续的重力作用下的静 止液体的水平面都是等压面。但必须注意, 这个结论只是对互相连通而又是同一种液体 才适用。
三 绝对压强、相对压强、真空值
绝对压强 pabs
不可为负
相对压强 (计示压强、表压强)
yC
yc
IC
yC
yC
压力中心D永远在平面形心c的下方
二 解析法
特例
90o
0O
yD
hD,hD
hC
IC hC A
yD yC
p0 pa (帕斯卡原理)(折算成水柱高度)
§2.5 作用在曲面上的静水总压力
弧形闸门
贮油罐
分析思路
流体作用在曲面各微元面积上的压力 不是平行的,不能直接相加,而是采取 力学中“先分解,后合成”的方法确定总压 力。
绝对静止:水对地球没有相对运动; 相对静止:容器及水整体对地球有相对运动,但是 水相对于容器或水各质点之间彼此没有相对运动的 情况。
适用条件:理想流体和实际流体
§2.1 静水压强及其特性
特性一:静水压强的方向垂直地指向被 作用面。
反证法
Ⅰp
N
AB

τ
N
p
Pn
§2.1 静水压强及其特性
特性二:作用于同一点上各方向的静水压强大 小相等。
标的函数,故
p p(x, y, z)
§2.2 重力作用下 静水压强的分布规律
一 水静力学的基本方程
p p0 gh
z1
ቤተ መጻሕፍቲ ባይዱ
p1
g
z2
p2
g
二 等压面
定义: 压强相等的空间点构成的面。
等压面有可能是水平面、倾斜面、曲面。
二 等压面
特性:
(1)等压面垂直于质量力的合力 (2)等压面不能相交 (3)绝对静止流体等压面为水平面 (4)两种互不相溶流体的分界面是等压面
积分得
Pz dPz g hdz gV
z
z
式中:V hdz为压力体体积 z
hdz
z
压力体
定义:
压力体相当于从曲面向上引至液 面(自由液面)的无数微小柱体的 体积总和,它是纯数学概念,与这 个体积内是否充满液体无关。
画法: (1)自由液面 (2)曲面 (3)根据静压强作用的方向找特殊点 (4)分段 (5)沿曲面的边界引垂直液面的铅垂面
相关文档
最新文档