流体力学 第二章 流体静力学

合集下载

流体力学第二章 流体静力学

流体力学第二章 流体静力学
第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。

工程流体力学第2章流体静力学

工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。


4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。

工程流体力学 第二章 流体静力学201012

工程流体力学 第二章 流体静力学201012
Y = ω 2 r sin α = ω 2 y Z = −g
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2

dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1

dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r

zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2

流体力学第二章流体静力学

流体力学第二章流体静力学
第二章 流体静力学
❖ 流体静力学研究流体的平衡规律,由平衡条 件求静压强分布规律,并求静水总压力。
❖静止是一个相对概念,指流体相对于地球无 运动的绝对平衡和流体相对于地球运动但质点 之间、质点与容器之间无运动的相对平衡。
❖流体质点之间没有相对运动,意味着粘性将 不起作用,所以流体静力学的讨论不须区分流 体是实际流体或理想流体。
pA mhm a
p1左 pA a p1右 mh
2.5.3水银压差计
即使在连通的 静止流体区域中 任何一点的压强 都不知道,也可 利用流体的平衡 规律,知道其中 任何二点的压 差,这就是比压 计的测量原理。
p1左 pA ( z A hm ) p1右 pB mhm zB
面,自由表面上压强为大气压,则液面
以下 h 处的相对压强为 γh ,所以在
液体指定以后,高度也可度量压强,称 为 液 柱 高 , 例 如 : ××m(H2O) , ××mm(Hg) 等。特别地,将水柱高称 为水头。
p=0 h
ph
98 kN/m2=一个工程大气压=10 m(H2O)=736 mm(Hg)
任意形状平面上的静水总压力大 小,等于受压面面积与其形心点 压强的乘积。
2.静水总压力的方向垂直并指 向受压面
3.总压力P的作用点
根据合力矩定理,对x轴
PyD ydP
yy sin dA sin y2dA
p
1 2
p x
dx
dydz
p
1 2
p x
dx
dydz
X
dxdydz
0
化简得:
X 1 p 0
x
Y,z方向可得:
Y Z
1
1
p y p
0

流体力学(流体静力学)

流体力学(流体静力学)

f (x)
f (x0 )
f (x0 )(!
)
(
x
x0
)
2
f
(n) (x0 n!
)
(x
x0
)n
按泰勒级数展开,把M、N点旳静压强写成
p 1
1 p
pM
p [(x dx) x] x 2
p 2
dx x
p 1
1 p
pN
p
[(x x
dx) x] 2
p
2
dx x
其中 p 为压力在x方向旳变化率。因为微元体旳面积取得足够小,
p1 p2
证明:从静止状态旳流体中引入直角坐标系中二维流体微元来
阐明。
设 y 方向宽度为1。ds 即表达任意方向微元表面。
分析 z 方向旳力平衡
表面力:
p1dscosθ=p1dx和p2dx两个力 二维流体微元旳体积:
z
dV 1 dxdz 2
质量力:
p1ds
ds dz x
θ dx
p3dz
y
Fz
1 2
dp =ρ1dU dp =ρ2dU 因为ρ1≠ρ2 且都不等于零,所以只有当dp和dU均为零时方程 式才干成立。所以其分界面必为等压面或等势面。
§2-4 流体静力学基本方程
重力作用下压力分布 相对平衡液体旳压力分布
§2—4 流体静力学基本方程
一、重力作用下压强分布
如图所示为一开口容器,其中盛有密度为ρ旳静止旳均匀液体 ,液体所受旳质量力只有重力,又ρ=常数,重度γ=ρg也为常数。 单位质量力在各坐标轴上旳分量为
(1)
Z 1 p 0
z
上式称为流体平衡微分方程式,它是 Euler在1755年首先提出 旳,故又称欧拉平衡方程式。它表达流体在质量力和表面力作用下 旳平衡条件。

流体力学--第二章流体静力学

流体力学--第二章流体静力学
1 Px p x dydz 2
1 Py p y dxdz 2
1 P p dA Pz pz dydx 2 Y 设 X 、 、Z 分别为沿三个坐标轴方向上的单位
质量力,则沿三个方向上的质量力分别为:
1 1 1 Fx X dxdydz Fy Y dxdydz Fz Z dxdydz 6 6 6
Fx 0, p x
其中
1 dA cos(n, x) dydz 2 1 dA cos(n, y ) dzdx 2 1 dA cos(n, z ) dydx 2
px p y pz p
结论
由于斜平面ABC的方位是任意的,上式即证明 了在同一点处各个方向上的静压强值是相等 的。
pn
静压强
p
α
pt
图2-2
切向压强
假 设: 在静止流体中,流体静压强方向不与作用面 相垂直,与作用面的切线方向成α角 则存在
切向压强pt
法向压强pn
流体流动
与假设静止流体相矛盾
A
B
C
D
E
F
(2)静压强的各向等值性:静止流体内任意一点处 沿各个方向上的静压强大小相等,即
px p y pz p


dA
dAz
dAx
b
z
dA
微小面积上的微压力
dP ghdA
水平总压力
分解
dPx dp cos ghdA cos
dPz dp sin ghdA sin
Px dPx ghdA cos g hdAx ghC Ax
2 2
y
o
A g
x

流体力学-第二章

流体力学-第二章

二、解析法 求解作用在任意平面上的液体总压力
二、解析法 求解作用在任意平面上的液体总压力 作用在dA面积上的液体总压力为 作用在 面积上的液体总压力为 作用在整个受压平面面积为A上的液体总压力为 作用在整个受压平面面积为 上的液体总压力为
作用在任意形状平面上的液体总压力大小, 作用在任意形状平面上的液体总压力大小,等于该平面的淹没 面积与其形心处静压强的乘积, 面积与其形心处静压强的乘积,而形心处的静压强就是整个受 压平面上的平均压强。 压平面上的平均压强。 总压力的方向垂直于平面,并指向平面。 总压力的方向垂直于平面,并指向平面。
ω
旋转
等压面方程
自由表面方程
第五节 一、图解法
作用在平面上的液体总压力来自液体总压力的方向垂直于矩形平面,并指向平面, 液体总压力的方向垂直于矩形平面,并指向平面,液体总压力的 作用线通过静压强分布图体积的重心。 作用线通过静压强分布图体积的重心。液体总压力作用线与矩形 平面相交的作用点D称为压力中心 称为压力中心。 平面相交的作用点 称为压力中心。
三、流体静力学基本方程的物理意义和几何意义 1. 流体静力学基本方程的物理意义
Z:单位重量流体从某一基准面算起所 : 具有的位能,因为是对单位重量而言, 具有的位能,因为是对单位重量而言, 所以称单位位能。 所以称单位位能。
:单位重量流体所具有的压能,称 单位重量流体所具有的压能, 单位压能。 单位压能。
等压面方程
三、等压面 帕斯卡定 律 等压面方程 当流体质点沿等压面移动距离ds时 质量力所作的微功为零。 当流体质点沿等压面移动距离ds时,质量力所作的微功为零。 ds 因为质量力和位移ds都不为零,所以等压面和质量力正交。 ds都不为零 因为质量力和位移ds都不为零,所以等压面和质量力正交。 这是等压面的一个重要特性。 这是等压面的一个重要特性。

流体力学第二章流体静力学

流体力学第二章流体静力学

2.2.2 流体平衡微分方程的积分
各式分别乘以dx、dy、dz然后相加
dp ( Xdx Ydy Zdz ) 流体平衡微分方程的综合式
静压强的分布规律完全由单位质量力决定
p gz c
由边界条件确定积分常数c,可得:
p c z g g p z C g
一封闭水箱,自由表上 面气体绝对压强
2 p 0为78kN/m , 求 液 面 下 淹 没 深 度 h为 1.5m
处 点 C的 绝 对 静 水 压 强 , 相对 静 水 压 强 和 真 空 度 。
解:p
abs
p 0 γ w h 78 9.8 1.5
92.7kN/m
2
pr pa b s pa t
静止流体中等压面是水平面。但静止流体中的水平面不一定 都是等压面,静止流体中水平面是等压面必须同时满足静止、同 种流体且相互连通的条件,三个条件缺一不可。
2.3.3 流体静力学基本方程的意义

在静水压强分布公式 z p C 中,各项都为长度量纲。

位置水头(水头) : Z 位置势能(位能): Z
法向应力沿内法线方向,即受压的方向
(流体不能受拉),即:流体静压强的方 向总是垂直指向受压面。

静压强的大小与作用面的方向无关
在静止流体中取出以M 为顶点的四面体流体微元,它受到的
质量力和表面力必是平衡的,以 y 方向为例,写出平衡方程。
p y d Ay pn d An cos(n, y) Y d V 0
时,注意到质量力比起表面 力为高阶无穷小,即得 pn=py,同理有 pn=px,pn=pz
o
z
py
dz
px pn

流体力学第02章流体静力学

流体力学第02章流体静力学

于质量力只有重力的同一种连续介质。对不连续液体或
一个水平面穿过了两种不同介质,位于同一水平面上的
各点压强并不相等。
二 气体压强的分布(不讲) (不讲就不考)
三 压强的度量--绝对压强与相对压强
1、 绝对压强
设想没有大气存在的绝对真空状态作为零点计量的压 强,称为绝对压强。总是正的。
2、 相对压强
解:相对静水压强:
p pabs pa p0 gh pa
代入已知值后可算得
h ( p p0 pa ) (9.8 85 98) / 9.8 2.33m
g
例: 如图,一封闭水箱,其自由面上气体压强为
25kN/m2,试问水箱中 A、B两点的静水压强何处为大?
已知h1为5m,h2为2m。 解:A、B两点的绝对静水
因水箱和测压管内是互相连通的同种液体故和水箱自由表面同高程的测压管内n点应与自由表面位于同一等压面上其压强应等于自由表面上的大气压强即ghgh11测压管测压管若欲测容器中若欲测容器中aa点的液体压强点的液体压强可在容器上设置一开口细管可在容器上设置一开口细管
第二章 流体静力学
流体静力学的任务:是研究液体平衡的规律及其
p
g
p0
g
得出静止液体中任意点的静水压强计算公式:
p p0 gh
式中
h z0 z :表示该点在自由面以下的淹没
深度。
p0 :自由面上的气体压强。
静止液体内任意点的静水压强有两部分组
成:一部分是自由面上的气体压强P0,另一部分 相当于单位面积上高度为h的水柱重量。
(a)
(b)
(c)
淹没深度相同的各点静水压强相等,只适用
pA gLsin
当被测点压强很大时:所需测压管很长,这时可以改 用U形水银测压计。

第二章流体静力学流体力学

第二章流体静力学流体力学

Pn Pn
cos(n, cos(n,
x) y)
Fx Fy
0 0
(2—2)
Pz
Pn
cos(n,
z)
Fz
0
x方向受力分析:表面力:
Px
px
1 dydz 2
Pn
cos(n, x)
pn
1 dydz 2
(2—3)
n为斜面ABC的法线方向质量力: Fx X dxdydz / 6 (2-4)
对压强的负值时,如(图2—10)。
真空值 p pa pabs ( pabs pa )
h 真空高度 v
pv
pa pabs
( pabs pa ) (2—20)
(2—18)
pabs hv pa
图2—10真空高度
hv
pa
pabs
g
pv
g
(2—19)
(二)压强的单位及其换算
1.国际单位制:国际单位制中压强的单位主要有pa(或 atm)、Pa(或N/m2)、Kpa(或kN/m2)、Mpa等。

, , p p p
x y z
)等于该方向上单位体积内的质量力的分
量 ( X 、Y 、Z )。
二、平衡微分方程的全微分式
为对式(2—9)进行积分,将各分式分别乘以 dx、dy 、dz
然后相加,得(2-10)
p dx p dy p dz (Xdx Ydy Zdz)
x y z
压强p p(x, y, z)是坐标的连续函数,由全微分定理,
体的交界面等。
第三节 重力场中流体静压强的分布规律
一、液体静力学的基本方程 1.基本方程的两种表达式 在同一种均质的静止液体中,
任意点的静压强,与其淹没深度 成正比,与液体的重度成正比, 且任一点的静压强的变化,将等 值地传递到液体的其它各点

工程流体力学-第二章

工程流体力学-第二章
周围流体分子或固体分子对分离体表面 的分子作用力的宏观表现。
三、静压力
工程流体力学---第二章 流体静力学
在静止的流体中,不存在切应力。因此,流体中的表面力就是
沿受力面法线方向的正压力或法向力。
F p lim
A0 A
法向力 微元面积
静压力定义
上式中p就是垂直作用于流体单位面积上的力,即物理学中 的压强,称为流体的静压力,简称压力,用p表示,单位为牛 顿(N)。作用于整个面上的力称为总压力。
工程流体力学---第二章 流体静力学 四、流体静压力的两个重要特性
1. 流体静压强垂直于其作用面,其方向指向该作用面的内法线 方向。 (利用静止流体性质进行证明)
☆流体静止时只有法向力,没有切向力,静压力只能沿法线方向; ☆流体不能承受拉力,只能承受压力。
静压力惟一可能的方向就是内法线方向。
工程流体力学---第二章 流体静力学
微元体内流体所受质量力: dxdydz
说明:
微元体内流体所受质量力在x方向的分力: Xdxdydz (1)在流体力学
2. 静止流体中任意一点处流体静压强的大小与作用面的方位无
关,即同一点各方向的流体静压强均相等。
z
Pn
Px dz
Py
Px Py Pz Pn P
O
dx
dy
y
x
Pz
表明:静止流体中任意一点上的流体静压力,无论来自何方均相
等,或者说与作用方向无关。流体静压强不是矢量,而是标量,
仅是坐标的连续函数。即:p= p(x,y,z),由此得静压强的全微分
☆流体静力时,流体质点之间没有相对运动,因此粘滞性在静止 流体中显现不出来。 ☆本章所得到的流体平衡规律对理想流体和实际流体均适用。

《工程流体力学》第二章 流体静力学

《工程流体力学》第二章  流体静力学

20 0 2340 615
各项物理意义:
容器:封闭
液体重度:g
自由液面压强:po 小孔: 器壁上距底部z处
小孔处压强:p = po+ gh
在o处与一根抽成真空的小管相通,液体进入小管,并迅
速上升到A点: p = gh’
h ——O、B两处单位重量流体位能差 h’ ——O、A两处单位重量流体位能差
代表一种能量,称为压力能
容器旋转:绕铅直轴,角速度w
容器旋转后,液体虽未流出,但压强发生了变化,
画出过边上小孔的等压线
虚线 —— 相对压强为 0
盖板各点承受的相对压强:
或真空度: 盖板上: 在轴心处,真空度 最大: 在边缘处,真空度 最小: 离心泵和风机就是利用这个原理,使 流体不断从叶轮中心吸入。
3. 流体静压强仅是空间位置和时间的标量函数,与所取 作用面的方向无关——各向同性 证:取一五面体
(1)表面力:作用静止(或相对静止)流体上无拉力和切力, 表面力只有压力,
在左面上:pydxdz 在底面上:pzdxdy 在斜面上:pndxds 在前面上:pxdydz/2 在后面上:pxdydz/2
液面上半径r处: 液体体积:
由此可测得w值。
速很高,液面上升过高, 溢出容器,容器为封闭的,只在中间留有一小口。
容器静止时:液面离盖板Dho 容器旋转时:液面中心下降到b
求:w
(1)求R’:
(2)静止时空出体积=旋转时下凹体积
画出等压线
讨论: 1、AA`处压强? 2、A`B处压强? 3、容器底部压强?
外力场作用在流体微团上的非接触力,与流体质量(或 体积)成正比, 如地球吸引力、惯性力、电磁力等。 流体力学中一般只考虑地球吸引力,惯性力。 单位质量力:单位质量流体受到的质量力。

流体力学第二章流体静力学.

流体力学第二章流体静力学.

第二章流体静力学流体静力学研究流体在静止状态下的力学规律。

由于静止状态下,流体只存在压应力,简称压强,因此,流体静力学这一章以压强为中心,阐述静压强的特性,静压强的分布规律,以及作用面上总压力的计算。

1静止流体中应力的特性2流体平衡微分方程3重力场中流体静压强的分布规律4流体的相对平衡5液体作用在平面上的总压力6液体作用在曲面上的总压特性一:应力的方向沿作用面的内法线方 向。

特性二:静压强的大小与作用面方位无关。

1 •欧拉方程2.全微分方程自然界常见的质量力是重力,因此,在 流体平衡一般规律的基础上,研究重力作用下流-丄空=()p dx丄丝=0 p Z -丄空二 P dz体静压强的分布规律,更有实用意义。

等压而:压强相等的空间点构成的而性质:Ho基本方程:1卩=Po + pghpg气体压强的分布1・对流层、50256zp = 101 .3 1 --- - KPaI 44300 丿2.同温层<11000 一p = 22 .6 exp ----------6334 丿压强的度量1・绝对压强和相对压强绝对压强以无气体分子存在的完全真空为基准起算的压强。

相对压强是以当地大气压为基准起算的压强。

P = Pabs一P2 •真空度当绝对压强小于当地大气压,相对压强便是负值,又称负压,这种状态用真空度来度量。

[例2・1]立置在水池中的密封罩(如图2・6)所示,求罩内A、B、C三点的压强。

1・测压管高度、测压管水头Z 称为位置高度或位置水头。

称为测压管高度或压强水头。

"嬴称为测压管水头。

2 •真空高度pg[例2・2]密闭容器(图2-9),侧壁上方装有U形管水银测压计,读值hP=20cm。

试求安装在水面下3.5m处的压力表读值。

[例2・3]用U形管水银压差计测量水管A、B 两点的压强差(图2-10) o已知两测点的高差△ z=0.4m,压差计的读值hP = 0.2 m o 试求A、B两点的压强差和测压管水头差。

流体力学第二章

流体力学第二章

对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。

工程流体力学 第二章流体静力学

工程流体力学 第二章流体静力学
工程流体力学
第二章 流体静力学
地球 惯性系 平衡或静止 非惯性系 相对平衡或相对静止
二、静压强的两个特性
1.静压强方向永远沿着作用面内法线方向(“内”—指向作用面;“法 线”—垂直作用面)。
❖ 证明:(反证法)如图,取静止流体中任意隔离体。设切割面上任一 点 m 处受力F为任意方向。则 F一定可分解为垂直于作用面的法向分 力 Fn 和平行于作用面的切向分力Fτ。
略去二阶以上高阶小量后,得:
p1
p
1 2
p x
dx
p2
p
1 2
p x
dx
3. 导出关系:
根据流体平衡的充要条件,静止流体所受的所有外力在各
个坐标轴方向上的投影之和为零,即 Fi 0 。以x方向为
例:
fx d x d y d z ( p 1 2 p x d x ) d y d z ( p 1 2 p x d x ) d y d z 0
若存在垂直于作用 面的法向作用力 Fn ,由流体不能 承受拉力的性质可 知:垂向作用力Fn 只能为压力。
F
Fn

2 垂向作用Fn指向作用面。
m
图2-1 静止流体中的单元体
2.静止流体中任何一点上各个方向的静压强大小相等,与作用面方位无关。 即静压力各向等值。只是坐标点的连续可微函数。
一 般 流 体 力微 学元 证分 明析 思法 路
若存在平行于作用
面的切向作用力
Fτ :流体在切向
F
力作用下必然发生
流动,这与流体静 止的前提条件相悖。
Fn

m
1 静止流体不能承受剪切作用力Fτ
图2-1 静止流体中的单元体
二、静压强的两个特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 流体静力学
流体静力学研究流体在静止状态下的力学 规律.由于静止状态下,流体只存在压应 力,简称压强,因此,流体静力学这一章 以压强为中心,阐述静压强的特性,静压 强的分布规律,以及作用面上总压力的计 算.
1 静止流体中应力的特性 2 流体平衡微分方程
3 重力场中流体静压强的分布规律
4 流体的相对平衡 5 液体作用在平面上的总压力 6 液体作用在曲面上的总压
特性一:应力的方向沿作用面的内法线方 向. 特性二:静压强的大小与作用面方位无关.
p x = p y = p z = pn
1.欧拉方程
X 1 p =0 ρ x
1 p Y =0 ρ y
1 p Z =0 ρ z
2. 全微分方程
dp = ρ( Xdx+ Ydy+ Zdz)
自然界常见的质量力是重力,因此,在 流体平衡一般规律的基础上,研究重力作 用下流体静压强的分布规律,更有实用意 义. 等压面:压强相等的空间点构成的面 性质:
f dl = 0
基本方程: 基本方程 1 p = p 0 + ρgh 2
p z+ =c ρg
气体压强的分布 1.对流层
z p = 101.31 44300
50256
KPa
2. 同温层
11000 z p = 22.6 exp 6334
压强的度量 1.绝对压强和相对压强 绝对压强以无气体分子存在的完全真空为 基准起算的压强. 相对压强是以当地大气压为基准起算的压 强.
Ic y D = yc + yc A
§2.6 液体作用在曲面上的总压
实际的工程曲面,如圆形贮水池壁面, 圆管壁面,弧形闸门以及球形容器等,多 为二向曲线(柱面)或球面.本节着重讨 论液体作用在二向曲面上的总压力.
水平分力 铅垂分力 合力
Px = p c Ax
Pz = ρgV
P = Px2 + Py2
p ρg
p z+ ρg
称为测压管高度或压强水头.
称为测压管水头. 2.真空高度
pv hv = ρg
[例2-2] 密闭容器(图2-9),侧壁上方装 有U形管水银测压计,读值hP=20cm.试 求安装在水面下3.5m处的压力表读值.
[例2-3] 用U形管水银压差计测量水管A,B 两点的压强差(图2-10).已知两测点的 高差△z=0.4m,压差计的读值hP = 0.2 m. 试求A,B两点的压强差和测压管水头差.
p = p abs p a
2.真空度 当绝对压强小于当地大气压,相对压强便 是负值,又称负压,这种状态用真空度来 度量.
p v = p a p abs = p
[例2-1] 立置在水池中的密封罩(如图2-6) 所示,z 称为位置高度或位置水头.
工程上除要确定点压强之外,还需确定 流体作用在受压面上的总压力.对于气体, 因各点的压强相等,总压力的大小等于压 强与受压面面积的乘积.对于液体,因不 同高度压强不等,计算总压力必须考虑压 强的分布.计算液体总压力,实质是求受 压面上分布的合力.
1.总压力的大小和方向
P = pc A
2.总压力的作用点
典型二类问题 1.直线 2.旋转
[例2-4] 水车沿直线等加速度行驶,水箱长 =3m,高H=1.8m,盛水深h=1.2m(图2-11). 试求确保水不溢出,加速度的允许值.
例2-5 如图2-12图所示,一个开口的圆柱 形容器,高为H,底面半径为R,旋转前盛 满水.现以等角速度 ω 绕其铅直轴旋转. 1.证明液体随容器作等角速度旋转时,液体 的等压面是旋转抛物面; 2.当容器停止旋转时,剩余的水的深度仅 为 1 H (n ≥ 2 ) ,求 ω 的值. n
总压力作用线与水平面夹角
Pz θ = arctan Px
压力体
1.实压力体 2.虚压力体 3.混合压力体

相关文档
最新文档