高二数学任意角和弧度制知识点总结

合集下载

任意角与弧度制知识点汇总

任意角与弧度制知识点汇总

任意角与弧度制知识梳理:一、任意角和弧度制1、角(de)概念(de)推广定义:一条射线OA由原来(de)位置,绕着它(de)端点O按一定(de)方向旋转到另一位置OB,就形成了角α,记作:角α或α∠可以简记成α.2、角(de)分类:由于用“旋转”定义角之后,角(de)范围大大地扩大了.可以将角分为正角、零角和负角.正角:按照逆时针方向转定(de)角.零角:没有发生任何旋转(de)角.负角:按照顺时针方向旋转(de)角.3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角(de)顶点合于坐标原点,角(de)始边合于x轴(de)正半轴.角(de)终边落在第几象限,我们就说这个角是第几象限(de)角角(de)终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角.例1、(1)A={小于90°(de)角},B={第一象限(de)角},则A∩B=(填序号).①{小于90°(de)角} ②{0°~90°(de)角}③ {第一象限(de)角} ④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°(de)角},那么A、B 、C 关系是( )A .B=A∩CB .B∪C=C C .A ⊂CD .A=B=C4、常用(de)角(de)集合表示方法 1、终边相同(de)角:(1)终边相同(de)角都可以表示成一个0 到360 (de)角与)(Z k k ∈个周角(de)和.(2)所有与 终边相同(de)角连同 在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角 终边相同(de)角,都可以表示成角 与整数个周角(de)和 注意:1、Z ∈k2、α是任意角3、终边相同(de)角不一定相等,但相等(de)角(de)终边一定相同.终边相同(de)角有无数个,它们相差360°(de)整数倍.4、一般(de),终边相同(de)角(de)表达形式不唯一. 例1、(1)若θ角(de)终边与58π角(de)终边相同,则在[]π2,0上终边与4θ(de)角终边相同(de)角为 .(2)若βα和是终边相同(de)角.那么βα-在例2、求所有与所给角终边相同(de)角(de)集合,并求出其中(de)最小正角,最大负角:(1) 210-; (2)731484'- .例3、求θ,使θ与 900-角(de)终边相同,且[] 1260180,-∈θ.2、终边在坐标轴上(de)点:终边在x 轴上(de)角(de)集合: {}Z k k ∈⨯=,180| ββ 终边在y 轴上(de)角(de)集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上(de)角(de)集合:{}Z k k ∈⨯=,90| ββ 3、终边共线且反向(de)角:终边在y =x 轴上(de)角(de)集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上(de)角(de)集合:{}Z k k ∈-⨯=,45180| ββ 4、终边互相对称(de)角:若角α与角β(de)终边关于x 轴对称,则角α与角β(de)关系:βα-=k 360若角α与角β(de)终边关于y 轴对称,则角α与角β(de)关系:βα-+= 180360k若角α与角β(de)终边在一条直线上,则角α与角β(de)关系:βα+=k 180角α与角β(de)终边互相垂直,则角α与角β(de)关系: 90360±+=βαk 例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β(de)中变得位置关系是( ).A.重合B.关于原点对称C.关于x 轴对称D.有关于y 轴对称二、弧度与弧度制 1、弧度与弧度制:弧度制—另一种度量角(de)单位制, 它(de)单位是rad 读作弧度定义:长度等于 (de)弧所对(de)圆心角称为1弧度(de)角.如图: AOB=1rad , AOC=2rad , 周角=2 rad 注意:1、正角(de)弧度数是正数,负角(de)弧度数是负数,零角(de)弧度数是02、角 (de)弧度数(de)绝对值 rl=α(l 为弧长,r 为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同. 4、在同一个式子中角度、弧度不可以混用. 2、角度制与弧度制(de)换算弧度定义:对应弧长等于半径所对应(de)圆心角大小叫一弧度 角度与弧度(de)互换关系:∵ 360 = rad 180 = rad∴ 1 =rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad注意:正角(de)弧度数为正数,负角(de)弧度数为负数,零角(de)弧度数为零.例1、 把'3067 化成弧度例 例2、 把rad π53化成度 例3、将下列各角从弧度化成角度 (1)36πrad (2) rad (3) rad π533、弧长公式和扇形面积公式or C 2rad1rad r l=2o A A Br l α= ; 22121r lR S α==练习题一、选择题1、下列角中终边与330°相同(de)角是( )A .30°B .-30°C .630°D .-630°2、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )(de)形式是 ( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°3、终边在第二象限(de)角(de)集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 4、下列命题是真命题(de)是( )Α.三角形(de)内角必是一、二象限内(de)角 B .第一象限(de)角必是锐角 C .不相等(de)角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα 5、已知A={第一象限角},B={锐角},C={小于90°(de)角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限(de)角是( )A.①B.①②C.①②③D.①②③④7、若α是第一象限(de)角,则-2是( ) A.第一象限(de)角B.第一或第四象限(de)角C.第二或第三象限(de)角D.第二或第四象限(de)角8、下列结论中正确(de)是( )A.小于90°(de)角是锐角B.第二象限(de)角是钝角C.相等(de)角终边一定相同D.终边相同(de)角一定相等9、集合A={α|α=k ·90°,k ∈N +}中各角(de)终边都在( )轴(de)正半轴上轴(de)正半轴上轴或y 轴上轴(de)正半轴或y 轴(de)正半轴上10、α是一个任意角,则α与-α(de)终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11、集合X={x |x=(2n+1)·180°,n ∈Z},与集合Y={y |y=(4k ±1)·180°,k ∈Z}之间(de)关系是( )C.X=Y≠Y12、设α、β满足-180°<α<β<180°,则α-β(de)范围是( )°<α-β<0° °<α-β<180° °<α-β<0°°<α-β<360°13、下列命题中(de)真命题是( )A .三角形(de)内角是第一象限角或第二象限角B .第一象限(de)角是锐角C .第二象限(de)角比第一象限(de)角大D .角α是第四象限角(de)充要条件是2k π-2π<α<2k π(k ∈Z ) 14、设k ∈Z ,下列终边相同(de)角是( )A .(2k +1)·180°与(4k ±1)·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°15、已知弧度数为2(de)圆心角所对(de)弦长也是2,则这个圆心角所对(de)弧长是 ( ) A .2B .1sin 2C .1sin 2D .2sin16、设α角(de)终边上一点P(de)坐标是)5sin ,5(cos ππ,则α等于( )A .5πB .5cot πC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ17、若90°<-α<180°,则180°-α与α(de)终边( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对18、设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于( )A .{-105ππ3,}B .{-510ππ4,7} C .{-5-105ππππ4,107,3,}D .{07,031-1ππ }19、“21sin =A ”“A=30o”(de)( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20、中心角为60°(de)扇形,它(de)弧长为2π,则它(de)内切圆半径为 ( ) A .2B .3C . 1D .23 21、设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k6π,k ∈Z }那么下列结论中正确(de)是 ( )A .M =NB .M NC .N MD .M N 且N M二、填空题22、若角α是第三象限角,则2α角(de)终边在 . 23、与-1050°终边相同(de)最小正角是 .24、已知α是第二象限角,且,4|2|≤+α则α(de)范围是 .任意角(de)三角函数练习题一、选择题1. 设α角属于第二象限,且2cos2cosαα-=,则2α角属于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ. 其中符号为负(de)有( )A. ①B. ②C. ③D. ④3. 02120sin 等于( )A.23±B. 23C. 23-D. 214. 已知4sin 5α=,并且α是第二象限(de)角,那么tan α(de)值等于( )A. 43- B. 34- C. 43D. 345.若θ∈(5π4 ,3π2),则1-2sin θcos θ 等于θ-sin θθ+cos θθ-cos θD.-cos θ-sin θ6.若tan θ=13,则cos 2θ+sin θcos θ(de)值是A.-65B.-45C. 45D.65二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2. 设MP 和OM 分别是角1817π(de)正弦线和余弦线,则给出(de)以下不等式:①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确(de)是_____________________________. 3.若角α(de)终边在直线y =-x 上,则ααααcos cos 1sin 1sin 22-+-= .4.使tan x -xsin 1有意义(de)x (de)集合为 .5.已知α是第二象限(de)角,且cos α2 =-45 ,则α2 是第 象限(de)角.三、解答题 1. 已知1tan tan αα,是关于x (de)方程2230x kx k -+-=(de)两个实根,且παπ273<<,求ααsin cos +(de)值.2. 设cos θ=m -nm +n(m >n >0),求θ(de)其他三角函数值.3.证明(1)1+2sin θcos θcos 2θ-sin 2θ =1+tan θ1-tan θ(2)tan 2θ-sin 2θ=tan 2θsin 2θ4. 已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +(de)值.。

任意角和弧度制知识点

任意角和弧度制知识点

任意角和弧度制知识点
一、任意角
1. 角的概念
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

按旋转方向,角分为正角、负角和零角。

2. 象限角
使角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合。

终边在第几象限,就说这个角是第几象限角。

终边在坐标轴上的角不属于任何象限,称为轴线角。

3. 终边相同的角
所有与角α终边相同的角(连同角α在内),可构成一个集合:{β | β = α+ k×360°,k∈Z}
二、弧度制
1. 弧度的定义
长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

2. 弧度与角度的换算
180° = π弧度
1° = π / 180 弧度
1 弧度 = (180 / π)°
3. 扇形的弧长和面积公式
弧长公式:l = |α|×r (α是圆心角的弧度数,r 是半径)
面积公式:S = 1/2 × l × r = 1/2 × |α|×r²
掌握以上任意角和弧度制的知识点,有助于更好地理解和解决相关的数学问题。

高考数学复习:任意角和弧度制及任意角的三角函数

高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

2022年新课标数学必修知识点总结

2022年新课标数学必修知识点总结

第一章 《三角函数》一,任意角与弧度制1,角的定义:一条射线绕着顶点旋转到另一个位置所成的图形。

逆时针方向旋转为正角,顺时针方向旋转为负角,不作任何旋转形成零角。

2,角的象限:角的顶点与原点重合,角的始边与x 轴的非负半轴重合,则角的终边落在哪一个象限,这个角就称为哪一象限的角。

第一象限的角2,2,2k k k Z παππ⎛⎫∈+∈ ⎪⎝⎭,第二象限的角2,2,2k k k Z παπππ⎛⎫∈++∈ ⎪⎝⎭,第三象限的角32,2,2k k k Z παπππ⎛⎫∈++∈ ⎪⎝⎭,第四象限的角32,22,2k k k Z παπππ⎛⎫∈++∈ ⎪⎝⎭,3,所有与角α终边相同的角的集合:{}|2,S k k Z ββαπ==+∈4,弧度制:如果半径为r 的圆的圆心角所对的弧长为l ,那么角α的弧度数的绝对值是lrα=弧度与角度的互化:180********radradrad πππ⎛⎫=== ⎪⎝⎭5,弧长公式:l r α= 扇形的面积公式:21122S rl r α=扇形= 其中,,r l α分别为扇形的圆心角弧度、半径、弧长强化训练:1, 已知角α是第二象限角,试确定角2α,2α的终边所在的位置2, (1)若角α与角β的终边关于x 轴对称,则α与β的关系是_____________________(2)若角α与角β的终边关于原点对称,则α与β的关系是_____________________3, 如图所示,试分别表示终边落在阴影区域的角4, 若角α是第四象限角,则πα-是第_______象限角5, 在扇形中,已知半径为8,弧长为12,则圆心角是_________弧度,扇形面积是__________6, 已知一扇形的周长为40cm ,当它的半径和圆心角各取多少时,才能使扇形的面积最大?最大面积为多少? 二,任意角的三角函数1,三角函数的第一定义:设α是一个任意角,它的终边与单位圆交于点4,同角三角函数关系 平方关系:22sin cos 1αα+= 商数关系:sin tan (,)cos 2k k Z απααπα=≠+∈ 5,sin a 与cos α,sin a 与cos α的大小关系角α的终边在阴影部分内,则sin cos αα>角α的终边在阴影部分外,则sin cos αα<角α的终边在阴影部分内,则sin cos αα>角α的终边在阴影部分外,则sin cos αα<强化训练1, 已知角α的终边上有一点()3,4P a a ,分别求sin ,cos ,tan ααα的值2, 已知cos 0,tan 0αα><,试判断角α所在的象限3, 在()0,2π内,使sin cos αα>成立的α的取值范围是_____________4, 12sin 5cos5_____________-= 5, 已知1sin 3α=,且角α为钝角,求cos ,tan αα的值 6, 已知tan 2θ=,求sin ,cos θθ的值7, 已知tan 2α=,求下列各式的值1)sin 2cos 3cos 4sin αααα+- 2)22sin 3cos sin 2cos αααα--8,已知7sin cos ,054πααα⎛⎫+=<< ⎪⎝⎭,求 1)sin cos αα 2)sin cos αα- 3)tan α三,三角函数的诱导公式()()()sin 2sin ,cos 2cos ,tan 2tan k k k απααπααπα+=+=+=公式一: ()()()sin sin ,cos cos ,tan tan πααπααπαα===公式二:+-+-+ ()()()sin sin ,cos cos ,tan tan αααααα-=--=-=-公式三: ()()()sin sin ,cos cos ,tan tan πααπααπαα-=-=--=-公式四:sin cos ,cos sin 22ππαααα⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭公式五:sin cos ,cos sin 22ππαααα⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭公式六:++-诱导公式的规律: 奇变偶不变,符号看象限。

三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。

α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。

终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。

终边落在坐标轴角的集合为__________________。

象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。

第三象限的角的集合为_________________;第四象限的角的集合为____________。

例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。

(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。

三角函数知识点归纳

三角函数知识点归纳
单调增区间可由2k - ≤x+≤2k + ,k∈z解得;
单调减区间可由2k + ≤x+≤2k + ,k∈z解得。
在求 的单调区间时,要特别注意A和 的符号,通过诱导公式先将 化正。
如函数 的递减区间是______
(答:
解析:y= ,所以求y的递减区间即是求 的递增区间,由 得
,所以y的递减区间是
四、函数 的图像和三角函数模型的简单应用
终边在 轴上的角的集合为
终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
(2)终边与角α相同的角可写成α+k·360°(k∈Z).终边与角 相同的角的集合为
(3)弧度制
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②弧度与角度的换算:360°=2π弧度;180°=π弧度.
③半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是
公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tanα.
公式三:sin(π-α)=sinα,cos(π-α)=-cos_α, .
公式四:sin(-α)=-sin_α,cos(-α)=cos_α, .
公式五:sin =cos_α,cos =sinα.
公式六:sin =cos_α,cos =-sin_α.
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的异角,可根据角与角之间的和差,倍半,互补,互余的关系,寻找条件与结论中角的关系,运用角的变换,使问题获解,对角的变形如:
① 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍;
② ;问: ; ;
③ ;④ ;⑤ ;等等.
如[1] . (答案: )
④若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .

(完整版)任意角和弧度制知识点和练习

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。

高中 任意角的三角函数 知识点+例题 全面

高中 任意角的三角函数 知识点+例题 全面

辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。

第1讲 任意角和弧度制、三角函数的概念

第1讲 任意角和弧度制、三角函数的概念

第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

高考数学一轮复习任意角和弧度制、三角函数的概念

高考数学一轮复习任意角和弧度制、三角函数的概念

3.(忽视对参数的讨论)已知角α的终边过点P(-8m,6m)(m≠0),则sin α= ________.
解析:由题意得 x=-8m,y=6m,所以 r=10|m|. 当 m> 0 时,sin α=160mm=53; 当 m< 0 时,sin α=-61m0m=-53. 答案:35或-35
Ⅲ.微点知能的优化拓展 1.掌握 5 个常用结论 (1)若 α∈0,π2,则 tan α> α> sin α. (2)α,β终边相同⇔β=α+2kπ,k∈Z. (3)α,β终边关于x轴对称⇔β=-α+2kπ,k∈Z. (4)α,β终边关于y轴对称⇔β=π-α+2kπ,k∈Z. (5)α,β终边关于原点对称⇔β=π+α+2kπ,k∈Z.
数时,α2为第二象限角;当 k 为奇数时,α2为第四象限角,而 2α 的终 边落在第一、二象限或 y 轴的非负半轴上. 答案:二、四 第一、二象限或 y 轴的非负半轴上
[一“点”就过] 1.利用终边相同的角的集合求适合某些条件的角 先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参 数k赋值来求得所需的角.
限角,故 C 正确;-315°=-360°+45°,所以-315°是第一象
限角,故 D 正确,故选 B 、C 、D . 答案:B C D
3.集合α|kπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是( )
解析:当 k=2n(n∈Z )时,2nπ+π4≤α≤2nπ+π2,此时 α 表示的范围 与π4≤α≤π2表示的范围一样;当 k=2n+1(n∈Z )时,2nπ+π+π4 ≤α≤2nπ+π+π2,此时 α 表示的范围与π+π4≤α≤π+π2表示的范 围一样,故选 C . 答案:C
4.设集合 M=x|x=k2·180°+45°,k∈Z,N=x|x=k4·180°+45°,k∈Z,

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总

一、任意角的概念与弧度制
二、任意角的三角函数
三、三角函数的图象与性质
四、三角恒等变换
还可以再加上解三角形的知识,正弦定理,余弦公式,三角形面积公式,以及基本不等式。

三角函数这部分可以从两大方面来掌握,一个是恒等变换,另一个是图象和性质。

从解题所用到的知识点来串讲的话,重要有以下几点:
1、三角函数定义式;
2、同角关系;
3、诱导公式;
4、和差公式;
5、二倍角公式;
6、辅助角公式;
7、万能公式;
8、三角函数的图象与性质;
9、特殊角度的三角函数值;
10、正弦定理;
11、余弦公式;
12、三角形面积公式;
13、基本不等式。

如果学生能把这些基础知识点熟练写出来,三角函数和解三角形就不怕了。

接下来再掌握一些常考题型的解题方法和解题技巧、解题思想,这个大专题很轻松就能熟练掌握了。

三角函数的知识点比较多,公式也多,不去梳理和总结的话,就容易乱糟糟一团。

建立自己的知识体系很重要。

这一直都是我强调的学习方法。

(完整版)三角函数最全知识点总结

(完整版)三角函数最全知识点总结

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表: (2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。

三角函数知识点总结

三角函数知识点总结

第七章三角函数章末总结要点归纳知识点一、任意角和弧度制1.任意角(1)角的分类:按照逆时针方向旋转形成的角叫做正角;按照顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们称它形成了一个零角.(2)终边相同的角的集合:所有与角α终边相同的角,连同角α在内,可以构成一个集合S ={β|β=k ·360°+α,k ∈Z},即任何一个与角α终边相同的角,都可以表示为角α与整数个周角的和.第一象限角的集合:{α|k ·360°<α<k ·360°+90°,k ∈Z};第二象限角的集合:{α|k ·360°+90°<α<k ·360°+180°,k ∈Z};第三象限角的集合:{α|k ·360°+180°<α<k ·360°+270°,k ∈Z};第四象限角的集合:{α|k ·360°+270°<α<k ·360°+360°,k ∈Z};终边落在x 轴上的角的集合:{α|α=k ·180°,k ∈Z};终边落在y 轴上的角的集合:{α|α=k ·180°+90°,k ∈Z};终边落在坐标轴上的角的集合:{α|α=k ·90°,k ∈Z}.2.弧度制(1)角度与弧度的互化公式:角度化成弧度:360°=2πrad,180°=πrad,1°=π180rad≈0.01745rad ;弧度化成角度:2πrad =360°,πrad =180°,1rad (2)扇形的弧长与面积公式:扇形的弧长公式:l =|α|r ;扇形的面积公式:S =12lr =12|α|r 2.知识点二、任意角的三角函数1.定义:设α的终边上任意一点P 的坐标是(x ,y ),它到坐标原点的距离是r (r =x 2+y 2>0),则sin α=y r ,cos α=x r ,tan α=yx .2.三角函数在各象限的符号(如图)3.角α的正弦线、余弦线、正线线设角α的终边与以原点为圆心的单位圆交于点P(如图),则图中的有向线段MP,OM,AT的数量分别等于角α的正弦、余弦、正切的值,这些有向线段叫做角α的正弦线、余弦线、正切线.知识点三、同角三角函数的基本关系式及诱导公式1.同角三角函数的基本关系式(1)平方关系:sin2x+cos2x=1.(2)商数关系:sin xcos x=tan x.2.诱导公式(1)诱导公式(1):sin(α+k·2π)=sinα,cos(α+k·2π)=cosα,tan(α+k·2π)=tanα.(2)诱导公式(2):sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.(3)诱导公式(3):sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.(4)诱导公式(4):sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.(5)诱导公式(5):sin π2-αcosα,cosπ2-αsinα.(6)诱导公式(6):sin π2+αcosα,cosπ2+αsinα.(7)诱导公式(7):sin 32π+α=-cosα;cos32π+α=sinα.(8)诱导公式(8):sin 32π-α=-cosα;cos32π-α=-sinα.2kπ+α,k∈Z,-α,π±α的三角函数值等于α的同名三角函数值前面加上一个把α看成锐角时原函数值的符号.π2±α的正弦(余弦)函数值等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.也可以用口诀记忆:“奇变偶不变,符号看象限”.知识点四、正弦函数、余弦函数、正切函数的图象和性质知识点五、y =A sin(ωx +φ)的图象(1)y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时,A 是振幅,T =2πω是周期,f =1T =ω2π是频率,φ是初相,ωx +φ是相位.(2)用“五点法”作图,就是通过变量代换,设z =ωx +φ,令z 分别取0、π2π、3π22π来求相应的x ,通过列表,计算五点的坐标,描点得到图象.(3)图象变换如下:y =sin x ω−−−−−−−−−−−−→各点的横坐标变成原来的倍,纵坐标不变1y =sin ωx ϕϕϕ(0)(0)向左或向右平移个单位长度><ω−−−−−−−−−−−→y =sin(ωx +φ)――――――――――――――――――――→各点的纵坐标变成原来的A 倍,横坐标不变y =A sin(ωx +φ).或者y =sin x ―――――――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ)ω−−−−−−−−−−−−→各点的横坐标变成原来的倍,纵坐标不变1y =sin(ωx +φ)―――――――――――――――――――――→各点的纵坐标变为原来的A 倍,横坐标不变y =A sin(ωx +φ).知识点六、周期的求法1.y =A sin(ωx +φ)的周期T =2π|ω|.2.y =A cos(ωx +φ)的周期T =2π|ω|.3.y =A tan(ωx +φ)的周期T =π|ω|.知识点七、三角函数的单调性函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体,利用正弦函数y =sin x 的单调区间求解.如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间;由2k π+π2≤ωx +φ≤2k π+32π(k ∈Z)解出x 的范围,所得区间为减区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间.。

专题11 任意角与弧度制、三角函数的概念、诱导公式(重难点突破) 解析版

专题11 任意角与弧度制、三角函数的概念、诱导公式(重难点突破) 解析版
(2)下列与 的终边相同的角的表达式中正确的是()
A.2kπ+45°(k∈Z)B.k·360°+ π(k∈Z)
C.k·360°-315°(k∈Z)D.kπ+ (k∈Z)
【答案】C
【解析】与 的终边相同的角可以写成2kπ+ (k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.
故答案为:C
(3).(2020·海南临高二中高二期末)(多选题)下列结论正确的是()
选项D:角 为锐角时, ,所以D不正确,故选:BC
【变式训练1-1】.(1)终边在直线 上的角的集合是( )
A. B.
C. D.
【答案】A
【解析】与 终边在一条直线上的角的集合为 ,
∴与 终边在同一直线上的角的集合是 .故选A.
(2). 的角属于第ຫໍສະໝຸດ ________象限.【答案】二
【解析】 在第二象限,所以 的角属于第二象限
1.同角三角函数的基本关系
(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tanα= .
2.同角三角函数基本关系式的应用技巧
技巧
解读
适合题型
切弦互化
主要利用公式tanθ= 化成正弦、余弦,或者利用公式 =tanθ化成正切
表达式中含有sinθ,cosθ与tanθ
“1”的变换
1=sin2θ+cos2θ=cos2θ(1+tan2θ)=(sinθ±cosθ)2∓2sinθcosθ=tan
A. 是第三象限角
B.若圆心角为 的扇形的弧长为 ,则该扇形面积为
C.若角 的终边过点 ,则
D.若角 为锐角,则角 为钝角
【答案】BC
【解析】选项A: 终边与 相同,为第二象限角,所以A不正确;

高二数学知识点总结归纳

高二数学知识点总结归纳

高二数学知识点总结归纳高二数学知识点总结1.任意角(1)角的分类:①按旋转方向不同分为正角、负角、零角。

②按终边位置不同分为象限角和轴线角。

(2)终边相同的角:终边与角相同的角可写成+k360(kZ)。

(3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。

②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。

③用弧度做单位来度量角的制度叫做弧度制。

比值与所取的r的大小无关,仅与角的大小有关。

④弧度与角度的换算:360弧度;180弧度。

⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.2.任意角的三角函数(1)任意角的三角函数定义:设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。

(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦。

3.三角函数线设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M。

由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT。

我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线。

高二年级数学知识点梳理一、随机事件(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结三角函数任意角的概念与弧度制角是指沿着x轴正向旋转所形成的图形。

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角。

同终边的角可以表示为α = β + k360°(k ∈ Z)。

第一象限角、第二象限角、第三象限角和第四象限角分别为α + k360°,90° - α + k180°,α + k180°,270° - α + k360°(k ∈ Z)。

区分第一象限角、锐角以及小于90°的角,第一象限角为α + k360°,锐角为α < 90°,小于90°的角为α < 90°。

若α为第二象限角,则π/2 + 2kπ ≤ α ≤ π + 2kπ,其中k为整数。

弧度制弧度制是指弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad。

角度与弧度的转化:1° = π/180 rad。

角度与弧度对应表:角度弧度30° π/645° π/460° π/390° π/2120° 2π/3135° 3π/4150° 5π/6180° π360° 2π弧长与面积计算公式弧长:l = α × R;面积:S = α × R²,注意:这里的α均为弧度制。

任意角的三角函数正弦:sinα = y/r,余弦:cosα = x/r,正切:tanα = y/x,其中(x,y)为角α终边上任意点坐标,r为半径。

三角函数值对应表:角度弧度sinα cosα tanα30° π/6 1/2 √3/2 √3/345° π/4 √2/2 √2/2 160° π/3 √3/2 1/2 √390° π/2 1 0 无定义弧度制下的三角函数值可通过计算得出。

三角函数变换知识点总结

三角函数变换知识点总结

一、任意角和弧度制及任意的三角函数。

1.任意角(1)角的分类任意角按旋转方向可以分为正角、负角、零角。

(2)象限角第一象限角的集合{x│k*360°<x<k*360°+90°,k∈Z}第二象限角的集合{x│k*360°+90°<x<k*360°+180°,k∈Z}第三象限角的集合{x│k*360°+180°<x<k*360°+270°,k∈Z}第四象限角的集合{x│k*360°+270°<x<k*360°+360°,k∈Z}终边在x轴上的角的集合{x│x=k*180°,k∈Z}终边在x轴上的角的集合{x│x=k*180°+90°,k∈Z}(3)角的度量A、角的度量制有:角度制、弧度制B、换算关系:1°=∏/180°rad,1rad=57.30°2、任意角的三角函数三角函数正弦余弦正切定设a是一个任意角,它的终边与单位圆交于p(x、y),那么义 y叫做a的正弦, x叫做a的余弦, y/x叫做a的正切记作sina 记作cosx 记作tana各 I + + +象II + - -限III - - +符IV - + -号【口诀:一全正,二正弦,三正切,四余弦都为正值】3.同角三角函数的基本关系(1)平方关系:(sina)^2+(cosa)^2=1(2)商数关系:sinx/cosx=tanx(x≠k∏+∏/2,k∈Z)二、三角函数的诱导公式1、下列各角的终边和角a的终边有何种关系角2k∏+a(k∈Z)∏+a -a与a角sin( 2k∏+a)=a sin(∏+a)= -sina sin(-a)= -sina 终边的cos( 2k∏+a)=a cos(∏+a)= -cosa cos(-a)=cosa关系tan( 2k∏+a)=a tan(∏+a)=tana tan(-a)= -tana角∏-a ∏/2 -a ∏/2 +a与a角sin( ∏-a)=sina sin(∏/2-a)= cosa sin(-∏/2 +a)= cosa 终边的cos( ∏-a)= -cosa cos(∏/2-a)= sina cos(-∏/2 +a)= -sina 关系tan( ∏-a)= -tana2、六组诱导公式组数一二三四五六角2k∏+a(k∈Z)∏+a -a ∏-a ∏/2-a ∏/2 +a正弦 sina -sina -sina sina cosa cosa余弦 cosa -cosa cosa -cosa sina -sina正切 tana tana -tana -tana …………口诀【函数名不变,符号看象限】【函数名改变,符号看象限】三、三角函数的图像与性质1、周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数(非零常数T叫做这个函数的周期)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。

任意角的概念与弧度制

任意角的概念与弧度制

任意角的概念与弧度制1、角的概念的推广:角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差的整数倍.3、终边相同的角与象限角:与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制弧度制(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(2)弧度与角度互换公式:1rad=≈57.30°=57°18′,1°=≈0.01745(rad)(3)弧长公式:(是圆心角的弧度数),扇形面积公式:.要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.3、弧度制的概念及换算:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写.在半径为的圆中,弧长为的弧所对圆心角为,则所以,rad,(rad),1(rad).4、弧度制下弧长公式:;弧度制下扇形面积公式.类型一:象限角1.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,,那么两集合的关系是什么?解析:(1)所有与角有相同终边的角可表示为:,则令,得解得,从而或代回或.(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而:.总结升华:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.2.已知“是第三象限角,则是第几象限角?思路点拨:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为(n∈N*)的终边所在的区域.解法一:因为是第三象限角,所以,∴,∴当k=3m(m∈Z)时,为第一象限角;当k=3m+1(m∈Z)时,为第三象限角,当k=3m+2(m∈Z)时,为第四象限角,故为第一、三、四象限角.解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域.由图可知,是第一、三、四象限角.总结升华:(1)要分清弧度制与角度制象限角和终边在坐标轴上的角;(2)讨论角的终边所在象限,一定要注意分类讨论,做到不重不落,尤其对象限界角应引起注意.举一反三:【变式1】集合,,则( )A、B、C、D、【答案】C思路点拨:( 法一) 取特殊值-1,-3,-2,-1,0,1,2,3,4(法二)在平面直角坐标系中,数形结合(法三)集合M变形,集合N变形,是的奇数倍,是的整数倍,因此.【变式2】设为第三象限角,试判断的符号.解析:为第三象限角,当时,此时在第二象限.当时,此时在第四象限.综上可知:类型二:扇形的弧长、面积与圆心角问题3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?解:设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是依题意,得≈≈总结升华:弧长和扇形面积的核心公式是圆周长公式和圆面积公式,当用圆心角的弧度数代替时,即得到一般的弧长公式和扇形面积公式:举一反三:【变式1】一个扇形的周长为,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.思路点拨:运用扇形的面积公式和弧长公式建立函数关系,运用函数的性质来解决最值问题.解:设扇形的半径为,则弧长为,于是扇形的面积当时,(弧度),取到最大值,此时最大值为.故当扇形的圆心角等于2弧度时,这个扇形的面积最大,最大面积是.总结升华:求扇形最值的一般方法是根据扇形的面积公式,将其转化为关于半径(或圆心角)的函数表达式,进而求解.1、角度制与弧度制的互化:(1);(2).解:为第三象限;为轴上角为第二象限;为第三象限角小结:[1]用弧度表示角时,“弧度”两字不写,可写“”;[2]角度制化弧度时,分数形式,且“”不取近似值.2、用角度和弧度分别写出分别满足下列条件的角的集合:(1)第一象限角;(2)锐角;(3)小于的角;(4)终边与角的终边关于轴对称的角;(5)终边在直线上的角.解:(1)或;(2)或;(3)或;(4)分析:因为所求角的终边与角的终边关于轴对称,可以选择代表角,因此问题转化为写出与角的终边相同的角的集合即;(5)或.注意:角度制与弧度制不能混用!3、若是第二象限角,则是第几象限角?反之,是第二象限角,是第几象限角?解:若是第二象限角,则,两边同除以2,得当为奇数时,是第三象限角;当为偶数时,是第一象限角反之,若是第二象限角,则两边同乘以2,得所以是第一或第二象限角或终边在轴正半轴上的轴上角.注意:数形结合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学任意角和弧度制知识点总结
在中国古代把数学叫算术,又称算学,最后才改为数学。

小编准备了高二数学任意角和弧度制知识点,希望你喜欢。

1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
(2)终边相同的角:
终边与角相同的角可写成+k360(kZ).
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r 为半径.
③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r 的大小无关,仅与角的大小有关.
④弧度与角度的换算:360弧度;180弧度.
⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.
2.任意角的三角函数
(1)任意角的三角函数定义:
设是一个任意角,角的终边与单位圆交于点P(x,y),那么
角的正弦、余弦、正切分别是:sin =y,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

设角的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan =AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.
这个工作可让学生分组负责收集整理,登在小黑板上,每周一
换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?高二数学任意角和弧度制知识点就为大家介绍到这里,希望对你有所帮助。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?。

相关文档
最新文档