初一下册二元一次方程练习题
二元一次方程组练习题84道含答案初一下
二元一次方程组练习题100道(卷一)之马矢奏春创作(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x , 可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程, 则a 的值为±1( )6、若x +y =0, 且|x |=2, 则y 的值为 2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解, 那么m 的值为m≠-5…………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x +y =5且x , y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解, 反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5, a +b =1则32-的值为ba ………( )12、在方程4x -3y =7里, 如果用x 的代数式暗示y , 则437yx +=( )二、选择:13、任何一个二元一次方程都有( ) (A )一个解;(B )两个解;(C )三个解; (D )无数多个解;14、一个两位数, 它的个位数字与十位数字之和为6, 那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个(D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数, 那么a 的取值范围是( ) (A )a <2;(B )34->a ;(C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x +2y =34的一组解, 那么m 的值是( ) (A )2;(B )-1;(C )1;(D )-2;17、在下列方程中, 只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =319、下列方程组中, 是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xy y x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解, 则a 、b 的值即是( ) (A )a =-3,b =-14(B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0, 且xy ≠0, 则yx y x 3545--的值即是( )(A )32(B )23(C )1(D )-122、若x 、y 均为非负数, 则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0, 则2x 2-3xy 的值是( ) (A )14(B )-4(C )-12(D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解, 则k 与b 的值为( )(A )21=k , b =-4 (B )21-=k , b =4(C )21=k , b =4(D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中, 当x =3时, y =________, 当y =-2时, x =_______若x 、y 都是正整数, 那么这个方程的解为___________;26、方程2x +3y =10中, 当3x -6=0时, y =_________; 27、如果xy , 那么用含有y 的代数式暗示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解, 则⎩⎨⎧==______________b a ;29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1, y =2满足方程141=+y ax , 那么a =____________;31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解, 则a =______,m =______;32、若方程x -2y +3z =0, 且当x =1时, y =2, 则z =______;33、若4x +3y +5=0, 则3(8y -x )-5(x +6y -2)的值即是_________;34、若x +y =a , x -y =1同时成立, 且x 、y 都是正整数, 则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1, 则代数式a 2-4ab +b 2+3的值为__________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a ay x ay x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、□x +5y =13 ①4x -□y =-2 ②⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时, 甲看错了①式中的x的系数, 解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y的系数, 解得⎪⎪⎩⎪⎪⎨⎧==19177681y x , 若两人的计算都准确无误, 请写出这个方程组, 并求出此方程组的解; 48、使x +4y =|a |成立的x 、y 的值, 满足(2x +y -1)2+|3y -x |=0, 又|a |+a =0, 求a 的值;49、代数式ax 2+bx +c 中, 当x =1时的值是0, 在x =2时的值是3, 在x =3时的值是28, 试求出这个代数式;50、要使下列三个方程组成的方程组有解, 求常数a 的值.2x +3y =6-6a , 3x +7y =6-15a , 4x +4y =9a +951、当a 、b 满足什么条件时, 方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;52、a 、b 、c 取什么数值时, x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等? 53、m取什么整数值时, 方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解. 54、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解.六、列方程(组)解应用题55、汽车从甲地到乙地, 若每小时行驶45千米, 就要延误30分钟达到;若每小时行驶50千米, 那就可以提前30分钟达到, 求甲、乙两地之间的距离及原计划行驶的时间?56、某班学生到农村劳动, 一名男生因病不能介入,另有三名男生体质较弱, 教师安插他们与女生一起抬土, 两人抬一筐土, 其余男生全部挑土(一根扁担, 两只筐), 这样安插劳动时恰需筐68个, 扁担40根, 问这个班的男女生各有几多人?57、甲、乙两人练习赛跑, 如果甲让乙先跑10米, 那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟, 那么甲跑4秒钟就能追上乙, 求两人每秒钟各跑几多米?58、甲桶装水49升, 乙桶装水56升, 如果把乙桶的水倒入甲桶, 甲桶装满后, 乙桶剩下的水, 恰好是乙桶容量的一半, 若把甲桶的水倒入乙桶, 待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31, 求这两个水桶的容量.59、甲、乙两人在A 地, 丙在B 地, 他们三人同时动身, 甲与乙同向而行, 丙与甲、乙相向而行, 甲每分钟走100米, 乙每分钟走110米, 丙每分钟走125米, 若丙遇到乙后10分钟又遇到甲, 求A 、B 两地之间的距离.60、有两个比50年夜的两位数, 它们的差是10, 年夜数的10倍与小数的5倍的和的201是11的倍数, 且也是一个两位数, 求原来的这两个两位数. 【参考谜底】 一、1、√; 2、√; 3、×; 4、×;5、×;6、×;7、√; 8、√; 9、×;10、×;11、×; 12、×;二、13、D ; 14、B ; 15、C ; 16、A ;17、C ; 18、A ;19、C ; 20、A ;21、A ; 22、B ; 23、B ;24、A ;三、25、47, 8, ⎩⎨⎧==14y x ;26、2;27、4125+=y x ;28、a =3, b =1;29、⎩⎨⎧==20b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30、21; 31、3, -4 32、1;33、20;34、a 为年夜于或即是3的奇数;35、4:3, 7:9 36、0;四、37、⎩⎨⎧==204162n m ;38、⎪⎩⎪⎨⎧==22a y a x ;39、⎩⎨⎧-==13y x ;40、⎩⎨⎧==11y x ;41、⎩⎨⎧==11y x ; 42、⎪⎩⎪⎨⎧==225y x ;43、⎪⎩⎪⎨⎧===168z y x ;44、⎪⎩⎪⎨⎧===397z y x ;45、⎪⎩⎪⎨⎧-=-==212z y x ; 46、⎪⎩⎪⎨⎧===202112z y x ;五、47、⎩⎨⎧-=-=+2941358y x y x , ⎪⎪⎩⎪⎪⎨⎧==231792107y x ; 48、a =-149、11x 2-30x +19; 50、31=a ;51、23=a ,b =±352、a =6, b =11, c =-6;53、(1)m 是年夜于-4的整数, (2)m =-3, -2,0, ⎩⎨⎧==48y x , ⎩⎨⎧==24y x , ⎩⎨⎧==12y x ;54、⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ;六、55、A 、B 距离为450千米, 原计划行驶小时;56、设女生x 人, 男生y 人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x57、设甲速x 米/秒, 乙速y 米/秒⎩⎨⎧==-yx y x 641055⎩⎨⎧==)/(4)/(6秒米秒米y x58、甲的容量为63升, 乙水桶的容量为84升; 59、A 、B 两地之间的距离为52875米; 60、所求的两位数为52和62. 二元一次方程组练习题100道(卷二) 一、选择题:1.下列方程中, 是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6D .4x=24y -2.下列方程组中, 是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333 (2)422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0, 则的值是( )A .-1B .-2C .-3D .326.方程组43235x y k x y -=⎧⎨+=⎩的解与x 与y 的值相等, 则k 即是( )7.下列各式, 属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .48.某年级学生共有246人, 其中男生人数y 比女生人数x 的2倍少2人, •则下面所列的方程组中符合题意的有( ) A .246246216246 (22)222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y -4=0, 用含x 的代数式暗示y 为:y=_______;用含y 的代数式暗示x 为:x=________.10.在二元一次方程-12x+3y=2中, 当x=4时,y=_______;当y=-1时, x=______.11.若x3m-3-2y n-1=5是二元一次方程, 则m=_____, n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解, 那么k=_______.13.已知│x-1│+(2y+1)2=0, 且2x-ky=4, 则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解, 则m=_______,n=______.三、解答题17.当y=-3时, 二元一次方程3x+5y=-3和3y-2ax=a+2(关于x, y的方程)•有相同的解, 求a 的值.18.如果(a-2)x+(b+1)y=13是关于x, y的二元一次方程, 则a, b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x, y的值相等,求k.20.已知x, y是有理数, 且(│x│-1)2+(2y+1)2=0, 则x-y的值是几多?21.已知方程12x+3y=5, 请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚, 共花去20元钱, •问明明两种邮票各买了几多枚?(2)将若干只鸡放入若干笼中, 若每个笼中放4只, 则有一鸡无笼可放;•若每个笼里放5只, 则有一笼无鸡可放, 问有几多只鸡, 几多个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x, y的值是否是方程组25 28x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m, 使关于x的方程2x+9=2-(m-2)x在整数范围内有解, 你能找到几个m的值?你能求出相应的x的解吗?谜底:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数, ②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时, 一个二元一次方程有无数个解.4.C 解析:用排除法, 逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的界说来判定, •含有两个未知数且未知数的次数不超越1次的整式方程叫二元一次方程, 注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43, 2 解析:令3m-3=1, n-1=1, ∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中, 得-2-3k=1, ∴k=-1.13.4 解析:由已知得x-1=0, 2y+1=0,∴x=1, y=-12, 把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4, ∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5, ∴y=5-x, 又∵x, y均为正整数, ∴x为小于5的正整数.当x=1时, y=4;当x=2时, y=3;当x=3, y=2;当x=4时, y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程, 如2x+y=17, 2x-y=3等,此题谜底不惟一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时, 3x+5y=-3, ∴3x+5×(-3)=-3, ∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2, ∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x, y的二元一次方程,∴a-2≠0, b+1≠0, •∴a≠2, b≠-1解析:此题中, 若要满足含有两个未知数, 需使未知数的系数不为0.(•若系数为0, 则该项就是0)19.解:由题意可知x=y, ∴4x+3y=7可化为4x+3x=7, ∴x=1, y=1.将x=1, y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系, 可将一个未知数用含另一个未知数的代数式取代, 化“二元”为“一元”, 从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0, 可得│x│-1=0且2y+1=0, ∴x=±1, y=-1 2.当x=1, y=-12时, x-y=1+12=32;当x=-1, y=-12时, x-y=-1+12=-12.解析:任何有理数的平方都是非负数, 且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都即是0, 从而获得│x│-1=0, 2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解, 再写一个方程, 如x -y=3.22.(1)解:设0.8元的邮票买了x 枚, 2元的邮票买了y枚, 根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)解:设有x 只鸡, y 个笼, 根据题意得415(1)y x y x +=⎧⎨-=⎩.23.解:满足, 纷歧定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解, 也满足2x -y=8, •∴方程组的解一定满足其中的任一个方程, 但方程2x -y=8的解有无数组,如x=10, y=12, 不满足方程组2528x y x y +=⎧⎨-=⎩.24.解:存在, 四组.∵原方程可变形为-mx=7,∴当m=1时, x=-7;m=-1时, x=7;m=•7时, x=。
初一下册二元一次方程组练习题含答案)
4.解方程组:
考 点: 专 题: 分
解二元一次方程组. 809625
计算题. 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.
初一下册二元一次方程组练习题含答案
析:
解
答: 解:(1)原方程组化为
,
①+②得:6x=18, ∴ x=3.
代入①得:y= .
所以原方程组的解为
.
点 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能 评: 消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.
16.解下列方程组:(1)
(2)
考 点: 分 析: 解 答:
解二元一次方程组. 809625
观察方程组中各方程的特点,用相应的方法求解.
解:(1)①×2﹣②得:x=1, 将 x=1 代入①得: 2+y=4, y=2.
∴ 原方程组的解为
;
初一下册二元一次方程组练习题含答案
(2)原方程组可化为
①×2﹣②得: ﹣y=﹣3, y=3. 将 y=3 代入①得: x=﹣2.
5.解方程组:
考 点: 专 题: 分 析: 解 答:
解二元一次方程组. 809625
计算题;换元法. 本题用加减消元法即可或运用换元法求解.
解:
,
①﹣②,得 s+t=4, ①+②,得 s﹣t=6,
即
,
解得
.
所以方程组的解为
.
点 此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法. 评:
6.已知关于 x,y 的二元一次方程 y=kx+b 的解有 和
解二元一次方程组. 809625
七年级下册二元一次方程计算题含答案
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
七年级下册二元一次方程计算题含答案
七年级下册二元一次方程计算题含答案work Information Technology Company.2020YEAR二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.解二元一次方程组.考点:分先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法析:消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专计算题;换元法.题:分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
二元一次方程超经典题目
初一下数学二元一次方程超经典题目21题(活用特值思想、方程思想)1.方程2x -1y=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个2.如果方程组1x y ax by c+=⎧⎨+=⎩有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠13.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( ) A .x+y=1 B .x+y=-1 C .x+y=9 D .x+y=9 4.关于x 、y 的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ). A . 1、2 B .2、5 C .1、5 D .1、2、55、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6.由123=-y x ,可以得到用x 表示y 的式子( ) A. 322-=x y B. 3132-=x y C. 232-=x y D. 322x y -= 7、已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x ,则x +y 的值是( ). A 、3 B 、5 C 、7 D 、98、若4a -3b=0,则=+bb a _________.9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.10.若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______.11,方程mx -2y=x+5是二元一次方程时,则m________.12、若方程组 275x y k x y k +=+⎧⎨-=⎩的解x 与y 是互为相反数,求k 的值。
初一下册二元一次方程组练习题含答案)
二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考解二元一次方程组.点:分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考解二元一次方程组.点:分(1)(2)用代入消元法或加减消元法均可;析:(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,答:解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加评:减法.4.解方程组:考解二元一次方程组.点:专计算题.题:分把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.析:解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能评:消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考解二元一次方程组.点:专计算题;换元法.题:分本题用加减消元法即可或运用换元法求解.析:解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.评:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考解二元一次方程组.点:专计算题.题:分(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减析:消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解解:答:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要评:求的数.7.解方程组:(1);(2).考解二元一次方程组.点:分根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去析:括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考解二元一次方程组.点:专计算题.题:分本题应把方程组化简后,观察方程的形式,选用合适的方法求解.析:解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入评:法或加减消元法解方程组.9.解方程组:考解二元一次方程组.点:专计算题.题:分本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.析:解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程评:进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考解二元一次方程组.点:专计算题.题:分此题根据观察可知:析:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训评:练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.点:专计算题;换元法.题:分方程组(1)需要先化简,再根据方程组的特点选择解法;析:方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考解二元一次方程组.点:专计算题.题:分(1)运用加减消元的方法,可求出x、y的值;析:(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解解:(1)将①×2﹣②,得答:15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对评:知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考解二元一次方程组.点:专计算题.题:分(1)把甲乙求得方程组的解分别代入原方程组即可;析:(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点此题难度较大,需同学们仔细阅读,弄清题意再解答.评:14.考解二元一次方程组.点:分先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.析:解解:由原方程组,得答:,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点用加减法解二元一次方程组的一般步骤:评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考解二元一次方程组.点:分将两个方程先化简,再选择正确的方法进行消元.析:解解:(1)化简整理为,答:①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.评:16.解下列方程组:(1)(2)考解二元一次方程组.点:分观察方程组中各方程的特点,用相应的方法求解.析:解解:(1)①×2﹣②得:x=1,答:将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.评:。
七年级数学二元一次方程组50道
七年级数学二元一次方程组50道1. 小明去买水果,苹果一斤 5 元,香蕉一斤 3 元,他买了 10 斤水果一共花了40 元,问他买了几斤苹果几斤香蕉?2. 小红和小绿一起做数学题,小红每小时能做 10 道,小绿每小时能做 8 道,两人一起做了 6 小时,一共做了 100 道题,请问小红和小绿分别做了几小时?3. 动物园里有猴子和大象,猴子有 4 条腿,大象有 4 条腿,猴子和大象一共有20 只,腿一共有 64 条,问猴子和大象各有几只?4. 小刚去买文具,铅笔一支 2 元,橡皮一块 1 元,他买了 15 件文具一共花了25 元,问他买了几支铅笔几块橡皮?5. 操场上跑步的男生和女生,男生每分钟跑 200 米,女生每分钟跑 150 米,5 分钟一共跑了 1750 米,问男生和女生各有多少人在跑?6. 学校组织捐书活动,一班每人捐 2 本,二班每人捐 3 本,两个班一共捐了100 本书,一共有 40 人捐书,问一班和二班分别有多少人捐书?7. 周末小明和爸爸去钓鱼,小明每小时钓 3 条,爸爸每小时钓 5 条,4 小时一共钓了 32 条鱼,问小明和爸爸分别钓了几小时?8. 水果店卖西瓜和哈密瓜,西瓜一个 10 元,哈密瓜一个 15 元,一天卖了 12 个瓜一共收入 160 元,问卖了几个西瓜几个哈密瓜?9. 图书馆里有故事书和科技书,故事书一本 8 元,科技书一本 12 元,买了 10 本书一共花了 100 元,问买了几本故事书几本科技书?10. 小李和小王一起组装玩具,小李每小时组装 6 个,小王每小时组装 4 个,两人一起工作 8 小时,一共组装了 80 个玩具,问小李和小王分别工作了几小时?11. 商店里有大书包和小书包,大书包每个 30 元,小书包每个 20 元,买了 8 个书包一共花了 220 元,问买了几个大书包几个小书包?12. 植树节同学们去种树,男生每人种 3 棵,女生每人种 2 棵,一共种了 50 棵树,有 20 个同学参加,问男生和女生各有多少人?13. 妈妈买苹果和梨,苹果一斤 4 元,梨一斤 3 元,买了 12 斤水果一共花了42 元,问买了几斤苹果几斤梨?14. 养殖场里有鸡和鸭,鸡有 2 条腿,鸭有 2 条腿,鸡和鸭一共有 30 只,腿一共有 70 条,问鸡和鸭各有几只?15. 小花和小兰一起做手工,小花每小时做 5 个,小兰每小时做 3 个,两人一起做了 7 小时,一共做了 41 个手工,问小花和小兰分别做了几小时?16. 超市卖牛奶和酸奶,牛奶一盒 5 元,酸奶一盒 4 元,一天卖了 15 盒一共收入 68 元,问卖了几盒牛奶几盒酸奶?17. 学校组织春游,坐大巴车每人 10 元,坐小巴车每人 8 元,一共 40 人坐车一共花了 360 元,问坐大巴车和小巴车的分别有多少人?18. 文具店卖钢笔和圆珠笔,钢笔一支 8 元,圆珠笔一支 2 元,买了 10 支笔一共花了 40 元,问买了几支钢笔几支圆珠笔?19. 哥哥和弟弟一起打扫房间,哥哥每小时打扫 10 平方米,弟弟每小时打扫 6 平方米,两人一起打扫 5 小时,一共打扫了 70 平方米,问哥哥和弟弟分别打扫了几小时?20. 花园里有玫瑰花和百合花,玫瑰花一朵 5 元,百合花一朵 3 元,买了 10 朵花一共花了 44 元,问买了几朵玫瑰花几朵百合花?21. 爸爸买酒和饮料,酒一瓶 20 元,饮料一瓶 5 元,买了 8 瓶一共花了 110 元,问买了几瓶酒几瓶饮料?22. 操场上跳绳的男生和女生,男生每分钟跳 120 个,女生每分钟跳 100 个,3 分钟一共跳了 660 个,问男生和女生各有多少人在跳?23. 书店卖小说和传记,小说一本 15 元,传记一本 10 元,买了 8 本书一共花了 120 元,问买了几本小说几本传记?24. 小明和小红一起做蛋糕,小明每小时做 4 个,小红每小时做 2 个,两人一起做了 6 小时,一共做了 24 个蛋糕,问小明和小红分别做了几小时?25. 水果店里有橙子和草莓,橙子一斤 6 元,草莓一斤 8 元,买了 8 斤水果一共花了 56 元,问买了几斤橙子几斤草莓?26. 工厂里有甲、乙两种零件,甲零件每个 5 元,乙零件每个 3 元,一共买了20 个零件花了 80 元,问买了几个甲零件几个乙零件?27. 周末小刚和妈妈去买菜,青菜一斤 2 元,萝卜一斤 1 元,买了 15 斤菜一共花了 25 元,问买了几斤青菜几斤萝卜?28. 动物园里有长颈鹿和熊猫,长颈鹿有 4 条腿,熊猫有 4 条腿,长颈鹿和熊猫一共有 15 只,腿一共有 56 条,问长颈鹿和熊猫各有几只?29. 小李和小王一起做值日,小李每分钟擦 3 块玻璃,小王每分钟擦 2 块玻璃,两人一起擦了 8 分钟,一共擦了 40 块玻璃,问小李和小王分别擦了几分钟?30. 商店里有篮球和足球,篮球一个 80 元,足球一个 50 元,买了 6 个球一共花了 460 元,问买了几个篮球几个足球?31. 学校组织植树活动,一班每人种 2 棵,二班每人种 3 棵,两个班一共种了80 棵树,一共有 30 人参加,问一班和二班分别有多少人参加?32. 妈妈买衣服和裤子,衣服一件 100 元,裤子一条 50 元,买了 5 件一共花了 400 元,问买了几件衣服几条裤子?33. 养殖场里有兔子和鸡,兔子有 4 条腿,鸡有 2 条腿,兔子和鸡一共有 25 只,腿一共有 80 条,问兔子和鸡各有几只?34. 小花和小兰一起画画,小花每小时画 6 幅,小兰每小时画 4 幅,两人一起画了 5 小时,一共画了 50 幅画,问小花和小兰分别画了几小时?35. 超市卖洗发水和沐浴露,洗发水一瓶 30 元,沐浴露一瓶 20 元,一天卖了10 瓶一共收入 260 元,问卖了几瓶洗发水几瓶沐浴露?36. 学校组织运动会,跑步项目每人得 3 分,跳远项目每人得 2 分,小明一共得了 20 分,参加了 8 个项目,问小明参加了几个跑步项目几个跳远项目?37. 文具店卖笔记本和作业本,笔记本一本 5 元,作业本一本 2 元,买了 12 本一共花了 46 元,问买了几本笔记本几本作业本?38. 哥哥和弟弟一起玩游戏,哥哥每局赢 4 分,弟弟每局赢 2 分,两人一共玩了 10 局,哥哥一共赢了 30 分,问哥哥和弟弟分别玩了几局?39. 花园里有月季花和牡丹花,月季花一朵 3 元,牡丹花一朵 5 元,买了 10 朵花一共花了 42 元,问买了几朵月季花几朵牡丹花?40. 爸爸买香烟和打火机,香烟一包 20 元,打火机一个 2 元,买了 8 件一共花了 100 元,问买了几包香烟几个打火机?41. 操场上踢足球的男生和女生,男生每人进 2 个球,女生每人进 1 个球,一共进了 25 个球,有 15 人踢球,问男生和女生各有多少人?42. 书店卖字典和杂志,字典一本 25 元,杂志一本 10 元,买了 8 本一共花了185 元,问买了几本字典几本杂志?43. 小明和小红一起做数学作业,小明每小时做 8 道题,小红每小时做 6 道题,两人一起做了 4 小时,一共做了 56 道题,问小明和小红分别做了几小时?44. 水果店里有芒果和荔枝,芒果一斤 8 元,荔枝一斤 10 元,买了 7 斤水果一共花了 66 元,问买了几斤芒果几斤荔枝?45. 工厂里有甲、乙两种机器,甲机器每小时生产 5 个零件,乙机器每小时生产3 个零件,两种机器一起工作 6 小时,一共生产了 48 个零件,问甲、乙机器分别工作了几小时?46. 周末小李和小王去钓鱼,小李每小时钓 4 条,小王每小时钓 3 条,5 小时一共钓了 35 条鱼,问小李和小王分别钓了几小时?47. 商店里有帽子和围巾,帽子一顶 15 元,围巾一条 10 元,买了 6 件一共花了 90 元,问买了几顶帽子几条围巾?48. 动物园里有狮子和老虎,狮子有 4 条腿,老虎有 4 条腿,狮子和老虎一共有 18 只,腿一共有 72 条,问狮子和老虎各有几只?49. 小花和小兰一起折纸鹤,小花每小时折 7 只,小兰每小时折 5 只,两人一起折了 6 小时,一共折了 72 只纸鹤,问小花和小兰分别折了几小时?50. 超市卖面包和蛋糕,面包一个 5 元,蛋糕一个 8 元,一天卖了 12 个一共收入 86 元,问卖了几个面包几个蛋糕?。
七年级初一数学下册 二元一次方程组试题及答案百度文库
21
A. D 3
2 7 B. Dx 14
C. Dy 27
D.方程10.已知方程组{
的解是方程 x﹣y=1 的一个解,则 m 的值是( )
mx y 5
A.1
B.2
C.3
D.4
a b c 0 11.下列四组数值中,方程组 2a b c 5 的解是( )
3a b c 4
a 0 A. b 1
c 1
a 1 B. b 2
c 1
a 1 C. b 1
c 2
a 1 D. b 2
c 3
12.已知关于
x,y
的方程组
x x
2y 3 y 2a
a
,其中﹣2≤a≤0.下列结论:①当
a=0
时,
x,y
的值互为相反数;②
x
y
2 0
是方程组的解;③当
分,如果原来二等奖比三等奖平均分数多 7 分,则调整后一等奖比二等奖平均分数多
______分.
18.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有
5 只雀、6 只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,
则重量相等;将 5 只雀、6 只燕放在一起称量,则总重量为 1 斤.问雀、燕每 1 只各重多
的解,则
3m+n=_____.
17.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前 60 名获奖,
原定一等奖 5 人,二等奖 15 人,三等奖 40 人,现调整为一等奖 10 人,二等奖 20 人,三
等奖 30 人,调整后一等奖平均分降低 3 分,二等奖平均分降低 2 分,三等奖平均分降低 1
七年级下册二元一次方程计算题含答案
七年级下册二元一次方程计算题含答案如果您需要使用本文档,请点击下载按钮下载!二元一次方程组解法练题精选一.解答题(共16小题)1.求适合2.解下列方程组1)2)3)4)3方程组:的x,y的值.4.解方程组:5.解方程组:如果您需要使用本文档,请点击下载按钮下载!6.已知关于x,y的二元一次方程y=kx+b的解有1)求k,b的值.2)当x=2时,y的值.3)当x为何值时,y=3?7.解方程组:1)2)8.解方程组:9.解方程组:10.解下列方程组:1)和.如果您需要使用本文档,请点击下载按钮下载!(2)11.解方程组:1)2)12.解二元一次方程组:1)2)13.在解方程组时,因为大意,甲看错了方程组中的a,而得解为。
乙看错了方程组中的b,而得解为.1)甲把a算作了什么,乙把b算作了什么?2)求出原方程组的精确解.如果您需要使用本文档,请点击下载按钮下载!14.15.解下列方程组:1)2)16.解下列方程组:(1)2)如果您需求使用本文档,请点击下载按钮下载!二元一次方程组解法练题精选(含答案)参考答案与试题剖析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),获得一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得。
由(1)×2得:3x﹣2y=2(3)。
由(2)×3得:6x+y=3(4)。
3)×2得:6x﹣4y=4(5)。
5)﹣(4)得:y=﹣。
把y的值代入(3)得:x=。
点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组1)2)如果您需求使用本文档,请点击下载按钮下载!(3)4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;3)(4)应先去分母、去括号化简方程组,再进一步接纳相宜的办法求解.解答:解:(1)①﹣②得,﹣x=﹣2。
(完整版)七年级数学二元一次方程经典练习题及答案
(完整版)七年级数学二元一次方程经典练习题及答案二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x —2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a —1)x +(2a —3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为ba ………( )12、在方程4x —3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a 〈2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x —3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =—7 (C )a =-1,b =9 (D )a =—3,b =1421、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )—122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2—3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =—4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =—4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =—2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x —6=0时,y =_________;27、如果0。
七年级下册二元一次方程组经典习题
二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 2.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( )A .3333 (242)2x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩ 5.若│x -2│+(3y+2)2=0,则yx的值是( )A .-1B .-2C .-3D .326.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .47.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246...22222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______. 12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____. 14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41 xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.7.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程组七年级下册计算题
二元一次方程组七年级下册计算题一、计算题。
1. x + y = 5 2x - y = 1- 解析:将两个方程相加可消去y,(x + y)+(2x - y)=5 + 1,即3x=6,解得x = 2。
把x = 2代入x + y=5,得2+y = 5,解得y = 3。
所以方程组的解为x = 2 y = 3。
2. 2x+3y = 8 3x - 2y=-1- 解析:给第一个方程乘以2,第二个方程乘以3,得到4x + 6y=16 9x-6y=-3。
将这两个新方程相加,(4x+6y)+(9x - 6y)=16+( - 3),13x = 13,解得x = 1。
把x = 1代入2x+3y = 8,得2 + 3y=8,3y=6,解得y = 2。
所以方程组的解为x = 1 y = 2。
3. 3x - y = 7 x+3y=-1- 解析:给第一个方程乘以3,得到9x-3y = 21 x + 3y=-1。
将这两个方程相加,(9x-3y)+(x + 3y)=21+( - 1),10x = 20,解得x = 2。
把x = 2代入3x - y=7,得6 - y = 7,解得y=-1。
所以方程组的解为x = 2 y=-1。
4. 4x+5y = 11 5x - 4y=-7- 解析:给第一个方程乘以4,第二个方程乘以5,得到16x+20y = 44 25x-20y=-35。
将这两个方程相加,(16x + 20y)+(25x-20y)=44+( - 35),41x = 9,解得x=(9)/(41)。
把x=(9)/(41)代入4x + 5y = 11,得4×(9)/(41)+5y = 11,(36)/(41)+5y = 11,5y = 11-(36)/(41),5y=(451 - 36)/(41)=(415)/(41),解得y=(83)/(41)。
所以方程组的解为x=(9)/(41) y=(83)/(41)。
5. x - 2y = 3 3x + y = 2- 解析:给第二个方程乘以2,得到x-2y = 3 6x + 2y = 4。
七年级数学下册二元一次方程练习题
七年级数学下册二元一次方程练习题2022七年级数学下册二元一次方程练习题要想学好知识,就必须大量反复地做题,为此,店铺为大家搜索整理了2022七年级数学下册二元一次方程练习题,希望对大家学习有所帮助。
2022七年级数学下册二元一次方程练习题一、选择题(每小题5分,共20分)1.下面为二元一次方程的是 ( )A.x+3yB.x+y2=0C.x+y=2xD.x+x2=62.下面说法正确的是 ( )A.二元一次方程的解是唯一的 .B.二元一次方程有无数个解.C.二元一次方程中有一个未知数.D.二元一次方程中的二元是指未知数的项的次数为二次.3.下列哪组是二元一次方程2a+3b=8的一个解 ( )A.a=1,b=2B.a=1,b= 1C.a=2 ,b=1D.a=2,b=24. 小红用20元买了3只铅笔和1和文具盒,求铅笔和文具盒的单价.设铅笔的单价为x元,文具盒的单价为y元,则可列出什么方程 ( )A. y-3x=20B.3x+y=20C.3y+x=20D.3x-y=20二、填空题(每空4分,共20分)5.已知二元一次方程3x+y=0,当x=1时,y=___.6.已知对于x、y的二元一次方程mx+nyn +(m-1)z=0,则m= ,n= .7.写出二元一次方程2a+3b=6的一个解: a= ,b= .(只需填写一组你认为合适的数字即可).三、简答题(每题20分,共60分)8. 根据题意列出方程:(1)买5㎏苹果和3㎏香蕉共需30元,分别求出苹果和香蕉的单价.设苹果的单价为每千克x元,香蕉的单价为每千克y元.(2)七年级二班男生人数的2倍比女生人数的3倍少10人,求男、女生的人数.设男生人数为x,女生人数为y.9. 已知二元一次方程3a+6b=12.(1)用含有a的式子表示b;(2)计算当a=0,2,4时对应的b值.10. 已知二元一次方程6x+6=3y.(1)根据给出的x值,求出对应的y值,填入表内:x -2 -1 0 1 2 3y(2)写出6x+6=3y的6个解.参考答案一、选择题1. C【解析】二元一次方程是指有两个未知数,并且未知数的项的次数为一次的方程,A选项没有“=”号,不是;B选项y的次数为2不是1,不是;C选项有x和y两个未知数其次数都是1,是;D选项只有一个未知数,不是.2. B【解析】对于二元一次方程,当有一个未知数x值确定具有另一个未知数y的值与之对应,一个x值和一个对应的y组成二元一次方程的一个解。
初一下册二元一次方程练习题含答案)
二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于 x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.b看成了什么?(1)甲把a看成了什么,乙把(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考解二元一次方程组.点:分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x= ,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考解二元一次方程组.点:分(1)(2)用代入消元法或加减消元法均可;析:(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,答:解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x= ,把x= 代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加评:减法.4.解方程组:考解二元一次方程组.点:专计算题.题:分把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.析:解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y= .所以原方程组的解为.点要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能评:消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考解二元一次方程组.点:专计算题;换元法.题:分本题用加减消元法即可或运用换元法求解.析:解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.评:6.已知关于 x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考解二元一次方程组.点:专计算题.题:分(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减析:消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解解:答:(1)依题意得:①﹣②得:2=4k,所以k= ,所以b= .(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要评:求的数.7.解方程组:(1);(2).考解二元一次方程组.点:分根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去析:括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:专题:分解二元一次方程组.计算题.本题应把方程组化简后,观察方程的形式,选用合适的方法求解.析:解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入评:法或加减消元法解方程组.9.解方程组:考解二元一次方程组.点:专计算题.题:分本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.析:解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程评:进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考解二元一次方程组.点:专计算题.题:分析:解答:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣= .所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训评:练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.点:专计算题;换元法.题:分方程组(1)需要先化简,再根据方程组的特点选择解法;析:方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考解二元一次方程组.点:专计算题.题:分(1)运用加减消元的方法,可求出x、y的值;x、y 的值.析:(2)先将方程组化简,然后运用加减消元的方法可求出解解:(1)将①×2﹣②,得答:15x=30,x=2,把x=2 代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对评:知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考解二元一次方程组.点:专计算题.题:分(1)把甲乙求得方程组的解分别代入原方程组即可;析:(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的 a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点此题难度较大,需同学们仔细阅读,弄清题意再解答.评:14.考解二元一次方程组.点:分先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.析:解解:由原方程组,得答:,由(1)+(2),并解得x= (3),把(3)代入(1),解得y= ,∴原方程组的解为.点用加减法解二元一次方程组的一般步骤:评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考解二元一次方程组.点:分将两个方程先化简,再选择正确的方法进行消元.析:解解:(1)化简整理为,答:①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.评:16.解下列方程组:(1)(2)考解二元一次方程组.点:分观察方程组中各方程的特点,用相应的方法求解.析:解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;WORD格式(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.评:专业资料整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组练习题100道(卷一)(围:代数:二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解…………() 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组()4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ()5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1()6、若x +y =0,且|x |=2,则y 的值为2 …………()7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………()8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解…………() 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组…………() 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解………()11、若|a +5|=5,a +b =1则32-的值为ba………() 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=() 二、选择:13、任何一个二元一次方程都有() (A )一个解;(B )两个解; (C )三个解;(D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有() (A )5个(B )6个(C )7个(D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值围是()(A )a <2;(B )34->a ;(C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是()(A )2;(B )-1;(C )1;(D )-2;17、在下列方程中,只有一个解的是()(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是()(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是()(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于()(A )32(B )23(C )1(D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是() (A )无解(B )有唯一一个解(C )有无数多个解(D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是() (A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为() (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +951、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;52、a 、b 、c 取什么数值时,x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等?53、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。
54、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解。
六、列方程(组)解应用题55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?56、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?57、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好1,求是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的3这两个水桶的容量。
59、甲、乙两人在A地,丙在B地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A、B 两地之间的距离。
1是11的倍数,且60、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的20也是一个两位数,求原来的这两个两位数。
【参考答案】一、1、√;2、√;3、×;4、×;5、×;6、×; 7、√;8、√;9、×;10、×;11、×;12、×; 二、13、D ;14、B ;15、C ;16、A ;17、C ;18、A ;19、C ;20、A ;21、A ;22、B ;23、B ;24、A ; 三、25、47,8,⎩⎨⎧==14y x ;26、2;27、4125+=y x ;28、a =3,b =1;29、⎩⎨⎧==20b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30、21;31、3,-4 32、1;33、20;34、a 为大于或等于3的奇数;35、4:3,7:936、0;四、37、⎩⎨⎧==204162n m ; 38、⎪⎩⎪⎨⎧==22a y ax ;39、⎩⎨⎧-==13y x ;40、⎩⎨⎧==11y x ; 41、⎩⎨⎧==11y x ; 42、⎪⎩⎪⎨⎧==225y x ;43、⎪⎩⎪⎨⎧===168z y x ; 44、⎪⎩⎪⎨⎧===397z y x ;45、⎪⎩⎪⎨⎧-=-==212z y x ; 46、⎪⎩⎪⎨⎧===202112z y x ;五、47、⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩⎪⎪⎨⎧==231792107y x ;48、a =-1 49、11x 2-30x +19;50、31=a ; 51、23=a ,b =±3 52、a =6, b =11, c =-6;53、(1)m 是大于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==12y x ; 54、⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ; 六、55、A 、B 距离为450千米,原计划行驶9.5小时;56、设女生x 人,男生y 人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x57、设甲速x 米/秒,乙速y 米/秒⎩⎨⎧==-y x y x 641055⎩⎨⎧==)/(4)/(6秒米秒米y x 58、甲的容量为63升,乙水桶的容量为84升;59、A 、B 两地之间的距离为52875米; 60、所求的两位数为52和62。