八年级数学竞赛讲座整体的方法附答案
八年级数学竞赛题及答案解析(K12教育文档)
八年级数学竞赛题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛题及答案解析(word版可编辑修改)的全部内容。
八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2。
下列各式中计算正确的是( )A 。
9)9(2-=- B.525±= C.3311()-=- D.2)2(2-=-3。
若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 9 4。
下列计算正确的是( ) A 。
ab ·ab =2abC.3—=3(a ≥0) D 。
·=(a ≥0,b ≥0)5。
满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C 。
三边长之比为3∶4∶5 D 。
三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7。
将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A.(4, -3) B 。
初中数学竞赛辅导讲义及习题解答 第17讲 解直角三角形
第十七讲解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
【八年级数学代数培优竞赛专题】专题8 分式的运算技巧【含答案】
专题8 分式的运算技巧知识引入一天,数学家觉得自己受够了数学,于是他跑到消防队去宣布他想当消防员。
消防队长说:“您看上去不错,可是我得先给您一个测试.”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管.消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭.”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着.”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。
”这则笑话看起来很荒谬,但却道出了解决数学问题的重要思想,那就是转化思想,转化思想在数学中有着广泛的应用,比如在进行分式除法运算的时候,首先要运用除法法则,将除法运算转化为乘法运算,然后再解决。
知识解读1.分式乘除法运算的一般步骤:(1)利用除法法则,先将除法运算转化为乘法运算;(2)运用分式的乘法法则,用分子的积作为积的分子,用分母的积作为积的分母;(3)把分式的分子、分母分别写成它们的公因式与另一因式的积的形式,如果分式的分子、分母为多项式时,先要进行因式分解;(4)约分,得到最后的结果.2.异分母分式加减法的步骤:(1)正确地找出各分式的最简公分母;(2)准确地得出各分式的分子、分母应乘的因式;(3)通分后,进行同分母分式的加减运算;(4)公分母保持积的形式,将各分子展开;(5)将得到的结果化成最简分式。
3.正确进行分式的混合运算,需弄清以下各要点:(1)分清运算级别,按照“从高到低,从左到右,括号从小到大”的运算顺序进行;(2)将各分式的分子、分母分解因式后再进行运算;(3)遇到除法运算时,可以先化成乘法运算;(4)注意处理好每一步运算中遇到的符号;(5)最后结果要注意化简;(6)在运算过程中,每进行一步都要检验一下,不要到最后才检验。
初中数学竞赛讲座——数论部分1(进位制)
第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。
例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。
.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。
例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。
八年级数学竞赛培优专题及答案 28 整体与完形
专题28 整体与完形阅读与思考许多几何问题,常因图形复杂、不规则而给解题带来困难,这些复杂、不规则的图形,从整体考虑,可看作某种图形的一部分,如果将它们补充完整,就可得到常见的特殊图形,那么就能利用特殊图形的特殊性质转化问题,这就是解几何问题的补形法,常见的补形方法有:1.将原图形补形为最能体现相关定理、推论、公理的基本图形;2.将原图形补形为等腰三角形、等边三角形、直角三角形等特殊三角形;3.将原图形补形为平行四边形、矩形、正方形、梯形等特殊四熟悉以下图形:例题与求解【例1】如图,已知CD∥AF,∠CDE=∠BAF,AB⊥BC,∠E=080,∠C=0124,则∠AFE=_________度. (北京市竞赛试题) 解题思路:有平行的条件,不妨将六边形补形为较为规整的平行四边形.B【例2】设,,a b c分别是△ABC的三边长,且满足a a bb a b c+=++,则它的内角∠A、∠B的关系是().A.∠B>2∠AB.∠B=2∠AC.∠B<2∠AD.不确定(全国初中数学竞赛试题)解题思路:从化简已知等式入手,并补出相应的图形.【例3】 如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F ,G ,连结FG ,延长AF ,AG ,与直线BC 相交,易证()12FG AB BC AC =++. 若(1)BD ,CE 分别是△ABC 的内角平分线(如图2);(2)BD 为∠ABC 的内角平分线;(3)CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.(黑龙江省中考试题)解题思路:既有平分线又有垂线,联想到等腰三角形性质,考虑将图形补成等腰三角形.图3图2图1【例4】 如图,四边形ABCD 中,∠ABC =0135,∠BCD =0120,AB ,BC =5 CD =6,求AD 的长.(全国初中数学竞赛试题)解题思路:由于四边形ABCD 是一般四边形,所以直接求AD 比较困难,应设法将AD 转化为特殊三角形的边.A23A 54例4题图 例5题图 【例5】 如图,凸八边形1238...A A A A 中,∠1A =∠5A ,∠2A =∠6A ,∠3A =∠7A ,∠4A =∠8A ,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值.(山东省竞赛试题)解题思路:本例是一个几何定值证明问题,关键是将八边形问题转化为三角形或四边形问题来解决,若连结对角线,则会破坏一些已知条件,应当考虑向外补形.【例6】 如图,在△ABC 中,∠ABC =045,点D 在边BC 上,∠ADC =060,且12BD CD =.将△ACD 以直线AD 为轴作轴对称变换,得到△AC D ',连结BC '. (1) 证明:BC '⊥BC ; (2) 求∠C 的大小.(全国初中数学竞赛天津赛区初赛试题)解题思路:本题分别考查了等边三角形的性质与判定、全等三角形的性质与判定及轴对称的性质,解题的关键是利用角平分线的性质与判定构造全等三角形,然后利用全等三角形的性质即可解决问题.D能力训练1.如图,在四边形ABCD 中,∠A =∠C =090,AB =AD ,若这个四边形的面积为12,则BC +CD =_____________. (山东省竞赛试题) 2. 如图,凸五边形ABCDE 中,∠A =∠B =0120,EA =AB =BC =2,CD =DE =4,则这个五边形的面积为_______________.(美国AHSME 试题)3. 如图,一个凸六边形六个内角都是0120,其中连续四条边的长依次为1,9,9,5,则该六边形的周长为______________.第1题图第2题图第3题图B4. 如图,ABCDEF 是正六边形,M ,N 分别是边CD ,DE 的中点,线段AM 与BN 相交于P ,则BPPN=_________. (浙江省竞赛试题)5. 如图,长为2的三条线段,,AA BB CC '''交于O 点,并且∠B OA '=∠C OB '=∠A OC '=060,则三个三角形的面积和123S S S ++,“=”,或“>”).(“希望杯”邀请赛试题)6. 如图,在四边形ABCD 中,∠A =060,∠B =∠D =090,BC =2,CD =3,则AB = ( ). A. 4 B. 5C.D.(广西壮族自治区中考试题)第6题图第5题图第4题图DB7. 如图,在△ABC 中,M 为BC 中点,AN 平分∠A ,AN ⊥BN 于N ,且AB =10,AC =16,则MN 等于( ).A. 2B. 2.5C. 3D. 3.58. 如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =090,BE ⊥AD 于E ,8ABCD S =四边形,则BE 的长为( )A. 2B. 3C.D.第7题图第8题图第9题图AA9. 如图,在四边形ABCD 中,AB =4-BC =1,CD =3,∠B =0135,∠C =090,则∠D 等于( )A. 060 B. 067.5 C. 075 D.条件不够,无法求出(重庆市竞赛试题)10. 如图,在△ABC 中,E 是AC 中点,D 是BC 边上一点,若BC =1,∠ABC =060,∠BAC =0100,∠CED =080,求2ABC CDE S S ∆∆+的值.CB11. 如图,设c 是Rt ABC ∆的斜边长,,a b是直角边,求证:a b +≤.(加拿大中学生竞赛试题)a CA12. 如图,已知八边形ABCDEFGH 所有的内角都相等,而且边长都是整数.求证:这个八边形的对边相等.FB C13. 如图,设P 为△ABC 的中位线DE 上的一点,BP 交AC 于N ,CP 交AB 于M ,求证:1AN AMNC MB+=. (齐齐哈尔市竞赛试题)B14. 一个圆内接八边形相邻的四条边长是1,另四条边长是2,求八边形的面积.专题28 整体与完形——补形法例1 134 例2 B 提示:由已知得b a ca b+=例 3 (1)()12FG AB AC BC =+-,分别延长AG 、AF 交BC 于H ,K ,则AF=KF ,AB=KB,AG=HG,AC=HC.()()111222FG HK BK BH AB AC BC ==-=+-.(2)()12FG BC AC AB =+-例4 提示:作DG ⊥BC 交BC 延长线于Q ,AM ⊥CB 交CB 延长线于M ,DN ⊥MA 于N ,则MNDQ 为矩形,19AD =例5 延长A 8A 1,A 3A 2相交于M ,延长A 2A 3,A 5A 4相交于N ,延长A 4A 5、A 7A 6相交于P ,延长A 6A 7、A 1A 8相交于Q.∵∠A 1=∠A 5, ∠A 2=∠A 6,∴∠MA 1A 2=∠PA 5A 6, ∠MA 2A 1=∠PA 6A 5, ∴∠M=∠P ,同理可证:∠N=∠Q 。
人教版数学八年级竞赛教程之如何做几何证明题附答案
人教版数学八年级竞赛教程之如何做几何证明题附答案如何做几何证明题几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
为了解决几何问题,我们需要掌握常用的分析和证明方法。
其中,综合法是一种从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决的方法。
分析法则是从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。
两头凑法则是将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
掌握构造基本图形的方法也是解决几何问题的关键。
复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
其中,证明线段相等或角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
举个例子,已知如图1所示,$\triangle ABC$中,$\angleC=90^\circ$,$AC=BC$,$AD=DB$,$AE=CF$。
求证:$DE=DF$。
分析:由$\triangle ABC$是等腰直角三角形可知,$\angleA=\angle B=45^\circ$,由$D$是$AB$中点,可考虑连结$CD$,易得$CD=AD$,$\angle DCF=45^\circ$。
从而不难发现XXX。
证明:连结$CD$,可得$AC=BC$,$\angle A=\angle B$,$\angle ACB=90^\circ$,$AD=DB$,$CD=BD=AD$,$\angle DCB=\angle B=\angle A$,$AE=CF$,$\angle A=\angle DCB$,$AD=CD$。
初中数学竞赛讲座数论的方法技巧(上)附答案
数学竞赛讲座数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
八年级数学竞赛讲座多边形的边角与对角线附答案
第十四讲多边形的边角与对角线边、角、对角线是多边形中最基本的概念,求多边形的边数、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.多边形的内角和定理反映出一定的规律性:(n —2)X 180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360。
是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸n边形的一个顶点引出的对角线把凸n边形分成(n_2)个多角形,凸n边形一共可引出n(n—3)对角线.2例题求解【例1】在一个多边形中,除了两个内角外,其余内角之和为2002° ,则这个多边形的边数是______________ (江苏省竞赛题)思路点拨设除去的角为。
,y°,多边形的边数为n,可建立关于x、y的不定方程;又0° <x<180° , 0°<y<180。
,又可得到关于n的不等式•故有两种解题途径,注意n为自然数的隐含条件.链接世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他一些几何图形.【例2】在凸10边形的所有内角中,锐角的个数最多是()A . 0B . 1C . 3D . 5(全国初中数学竞赛题)思路点拨多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为外角为钝角的个数的探讨.【例3】如图,已知在厶ABC中,AB= AC AD丄BC于D,且AD=BC=4若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长.(乌鲁木齐市中考题)A思路点拨把动手操作与合情想象相结合,解题的关键是能注意到重合的边作为四边形对角线有不同情形.注教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.【例4】在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360 ° )时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.(陕西省中考题)止多边形边数3 \—1 —5 6 ]…- --- -------- - -- - ------ U --- ----- ----- i ----------思路点拨本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性•假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n 个内角的和为360 °,这样,将问题的讨论转化为求不定方程的正整数解.【例5】如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'(1)图中5块阴影部分即四边形AHA'G BFB'P、COC'N DMD'L EKE'I能拼成一个五边形吗?说明理由.(2)证明五边形A'B'C'D'E'的周长比五边形ABCD正的周长至少增加25个单位.(江苏省竞赛题)学力训练1 •如图,用硬纸片剪一个长为16cm 宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 __________ cm,周长最小的是cm•( 选6《荚国中小学数学课程标准》)2. ______________________________________ 如图,/ 1 + Z 2+Z 3+Z 4+Z 5+Z 6=3. _____________________________________________________________________ 如图,ABCD 是凸四边形,AB=2, BC=4 CD=7则线段AD 的取值范围是 ___________________________________ 4•用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: (1) 第4个图案中有白色地面砖 _______ 块; (2) 第n 个图案中有白色地面砖 _______ 块. (江西省中考题)思路点拨(1)5 块阴影部分要能拼成一个五边形须满足条件: ,A'GB' ; B'PC' ; C'ND' ; D'LE' ; E'lA'点分别共线; /1+ / 2+ / 3+ / 4+ / 5=360;(2)增加的周长等于A'H+A'G+B'F+B'P+C'0+C'N+D'M+D'L+E'K+E'l ,用圆的周长逼近估算.A . 4笹V 命C . 6 个7第3个(“希望杯”邀请赛试题)6. —个凸多边 形的每一内角都等于 140°,那么,从这个多边形的一个顶点出发的对角线的条数是 ()A. 9条 B . 8条 C . 7条 D . 6条7 •有一个边长为 4m 的正六边形客厅,用边长为 50cm 的正三角形瓷砖铺满,则需要这种瓷砖()A . 216 块B . 288 块C . 384 块D . 512 块 (“希望杯”邀请赛试题)&已知△ ABC 是边长为2的等边三角形,△ ACD 是一个含有30°角的直角三角形,现将△ ABC 和△ ACD 拼 成一个凸四边形 ABCD (1))画出四边形ABCD⑵ 求出四边形 ABCD 的对角线BD 的长.(上海市闵行区中考题)9 .如图,四边形 ABCD 中, AB= BC = CD / ABC=90,/ BCD= 150°,求/ BAD 的度数. (北京市竞赛题)10. 如图,在五边形 A 1A 2AAA 中,B 是A 的对边AA 4的中点,连结 A 1B 1,我们称 A 1B 1是这个五边形的一条 中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条11. _______________________ 如图,凸四边形有 _________________________ 个;/ A+Z B+Z C+Z D+Z E+Z F+Z G ___________________(重庆市竞赛题)12. ________________________________________________________________________________________ 如对角线和它平行.(安徽省中考|第勺魁)(% 11题」【第12题》图,延长凸五边形A1AAA4A的各边相交得到5个角,Z B,Z B, Z B3, Z B,Z B s,它们的和等于___________________若延长凸n 边形(n > 5)的各边相交,则得到的 n 个角的和等于 ________ . (“希望杯”邀请赛试题)13•设有一个边长为1的正三角形,记作 A (图a ),将每条边三等分,在中间的线段上向外作正三角形, 去掉中间的线段后所得到的图形记作A 2(图b ),再将每条边三等分,并重复上述过程,所得到的图形记作A 3(图C );再将每条边三 等分,并重复上述过程,所得到的图形记作A 4,那么,A 的周长是 _________ ; A 这个多边形的面积是原三角形面积的 __________ 倍. (全国初中数学联赛题)14 .如图,六边形 ABCDEF 中, Z A=Z B=Z C=Z D=Z E=Z F,且 AB+BC=11FA — CD=3 贝U BC+DC __ •( 北 京市竞赛题)15.在一个n 边形中,除了一个内角外,其余 (n 一 1)个内角的和为2750°,则这个内角的度数为()A . 130°D . 140°C . 105 °D . 120°16.如图,四边形 ABCD 中,Z BAD=90 , AB=BC=23 , AC=6 AD=3,贝U CD 的长为() A. 4 B . 4、2 C . 3 .2 D . 3注 按题中的方法’不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称一一雪花曲 线或科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是 新兴学科“混沌”的重要分支.17.如图,设Z CGE a ,则Z A+Z B+Z C+Z D+Z C+Z F=()l 第 \3.3(江苏省竞赛题)D AH(第20题」ACA. 360° 一 a B . 270° — a C. 180 ° +a D . 2a (山东省竞赛题) 18.平面上有 A 、B, C D 四点,其中任何三点都不在一直线上,求证:在△ 中至少有一个三角形的内角不超过 45 °.19. 一块地能被n 块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需 n+76块这样的地砖才能覆盖该块地,已知 n 及地砖的边长都是整数,求n .(上海市竞赛题)20. 如图,凸八边形 ABCDEFG 的8个内角都相等,边 AB BC CD DE EF 、FG 的长分别为7, 4, 2, 5, 6, 2,求该八边形的周长.21•如图I 是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床 头部分被折到了床面之下(这里的A B C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边 形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形 ABCD 中, AB=6, CD=15那么BC AD 取多长时,才能实现上述的折叠变化 ?的大小,并画出这样的凸 n 边形的草图.ABC △ ABD △ ACD △ BDC(淄博市中考题)22.—个凸n 边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸 n 边形各个内角C A S09 14-1ns raM的边角馬对角ti【例IE求解】fl 1 "或脂由逢伽2002*<(B-2>X180*<2Q02' + 360MJW 13«2 3C外幣中範懈的个疲不舗超过3忙•又内划与内掛中盥驚羅多不16亀it 3牛+优3屋过适当携合可以组戍以下网种不同理弑的囚边離*时角拔民井JH为K *72*2和2 帀4巽和”芈+4)正三用需、正四边厢I或正方幣)、正珀边幣、假定在樓合处一冀有*块正”边序地砖.由于正n边曙的所有肉希那相誓禺―初X180■羽°JTW 人・;^ = 2 +不±・S 故<-2|4t rt-2-U2,4 碍用=氛4 販6曲此可S1.只有三ff正参边形的瓷砖■可戲檢豪束傭地、暫正三曲幣、正方腦《1圧六边麻一(3>如1正方砸稍iEA边旌■覃圈如右「设在一牛IB点周屈有抽亍正方带的用f d正人边形的魁,犀幺,叭”扈是方程曲・M'4-n • 135*-360-的畫数11.即2m + 3ii-8的整敢歸.f m" 1 •「这牛方程的BftHRW“一胡・・=杆舍条件的ffiJBR有「种.I 片■-£9fS(D ffl中5块祈番部舟电拼虐一牛水五边彰BF-»AG-^H-E/-£K»DL-=DM-CN^<;O«flP=4ZBF/T « Z AGA'^ZCTX* - Z.BPH'匸£DMIY^^CNC■/£!<『■£ DLD* = “ HA r -ZEf^-90*A(ZA +ZB J+ ZC + Zi/■+*Zf/)+ <Zl + Z2 + Z3±Z4 + Z5) = 5X 180', lffJZA H+ ziB,+ZC/+Z£X+ZE'=(5-2)Xiao*-3X 180" A Zl+Z2 + Z3+Z4 + Z5-360D⑵爹边带増加的腾长等于A'H + A^ + B'F + B'P + ro+rt + DM+^L^^K+n.Xffllfr^ffl中阴童,但草构戍的五边矗的隔长"谨五边弼存在一个tS* i的最大囿•其周KS>MfllK#«.S>Bx>aX3J J4-25. 12>25.【学力训练】1.72.56 2- 360* J.设AD-<r.J|i| 7-(4+2)<j<7 + 4 + 2t得]Vi<13 4. (DlBi(2)4ff+2.窕ii |•边理外拒申3个角为惋盘"即内桶申星多碑3牛下是|ft命+褂M€3+2N5t. D 7. C»>■取儿為的中点Bt'ft為曲人為Si A, 4A* •因力AjBy-BtA^SfU ■釦,・片・又因为四边曲為冷儿& 与四边昭4民儿息的面积相积所以鬼屮幵=S A7入.同理艮内“丹-S^y 所以亀**九=3厶22,所以厶為乩儿与△凡九久的益其边A.A,上的髙相算俪联几凡"A.A”同理可证五边带.4//]儿起的邯条边分閘与一斎対角线平行.11* 7,540" 13+180*T(w —2) * IfiO*—n * 180*+(jf —2) * 180*=(w —4) * 180"IX (D3X (-^- J1=^ I(t)S+3X yS+ax 4 X ^S+31X4X ^S-M. 14向外补幣得正三祐坯IS. A 16. D HD作DE丄于E 17. D1乩假谡从四点中(fiS出的三点构赋的三竟幣的三牛内瀚AH大于45J当九BCD构成&四边形时*可碍各角和大于前丁・舟四<1 )108* *120", “一^小単*«. ttl图,可井和得BD“7冶皿・2拧». 75*11边誓内坤*1为閔3矛盾1肖4BCD 构虚凹四边梅时+可側各坤和大于18^,与三输带内角和为180D Jffi.1・ 设丈小正方序边悅分别为才寸.则"P = J + 76〉*,若(x.y) = J,记j- = dxi ・_/・曲必*5 ,y t )=1*则JIJ -? = (M + 76)^I解榕 (Ji + >i )<j| '->])«* 76j^ 3! X 19 X .20.取向延长AB.CD.EF.GH 暂呼边MNPQ,原人边形内谢祁相爭.英邯一牛內角为n 損阳.毎一个外爲为45".因此MNP Q 为快方形,△HPC\ADQE,AFMG* iANHfl 是等眾直命三肃惑.设GH=r.HA = y ・由MQ-NP,得MF+FE+EQ-M4 +AB+BP,即血+6 + 滲 =%十7 + 2応解得$ = 3亠庄•同理由MN^QP.m 工=3十2 72.^BEA 边带周怏为32+A21.由图2的第一舎图形得MO+CD 4 H AD 2.即W + + W = ①又由图2的第三和第0M 个图旳得AB+AD=CD+BC,即6+AD=lS+BC ②解由①、③联立的方程堀得BC-30,AD=39.tt BC\AD^»j^ 30和39时"才能賓现上述的折畏蜚代.12,因为凸十一边矗是由正三储舷和正方幣擠嵐的,所以.各内轴的大小只可能是60\90M2Q*,l50*.设这4牛角个敷分别为 J j ■十 _y+z+ u*・]13\$、*、越■剧 I,\60x+90>+ 120r+ l50ui= (11 -2) X 180化简冉3z 十2y+w ・l*正豐数解为x = ^=0,s=l.w-10,ii 说明.所求凸十一边形一个角毘120笃它由两牛正三您形 的内角拼琥•其余10个角都是150*,*由一牛iE 三m 矗的内帝和i 片正方形的内角携成.草用略.j-t = 10>! =94* J -324. (8-2) X 1B0'。
初中奥数讲义_整体的方法附答案
整体的方法我们知道成语“一叶障目”和“只见树木,不见森林”,它们的意思是说,如果过分关注细节,而忽视全局,我们就不会真正理解一个问题.解数学题也是这样,在加强对局部的研究与分析的基础上,从整体上把握问题.所谓整体方法就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.整体方法在代数式的化简与求值、解方程(组)、几何解证等方面有广泛的应用,整体代人、叠加叠乘处理、整体运算、整体设元、整体处理、设而不求、几何中的补形等都是整体方法在解数学问题中的具体运用.例题求解【例1】 若x 、y 、z 满足3x+7y+z=1和4x+10y+z=2001,则分式yx zy x 3200020002000+++的值为 .(安庆市竞赛题) 思路点拨 原式=yx z y x 3)(2000+++,视x+3 y 与x+y+z 为两个整体,对方程组进行整体改造.【例2】 若△ABC 的三边长是a 、b 、c 且满足22444c b c b a -+=,22444c a a c b -+=,22444b a b a c -+=,则△ABC 是( )A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形 ( “希望杯”邀请赛试题)思路点拨 三个等式结构一样,孤立地从一个等式入手,都导不出a 、b 、c 的关系,不妨从整体叠加入手.【例3】 已知219941+=x ,求多项式20023)199419974(--x x 的值. 思路点拨 直接代入计算繁难,由已知条件得199412=-x ,两边平方有理化,可得到零值多项式,整体代入求值.【例4】如图,凸八边形A l A 2A 3A 4A 5A 6A 7A 8中,∠A l =∠A 5,∠A 2 =∠A 6 ,∠A 3 =∠A 7 ,∠A 4=∠A 8,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值.(山东省竞赛题)思路点拨 将八边形问题转化为熟悉的图形来解决,想象完整四边形截去4个角就得到八边形,就可知向外作辅助线,关键是证明对边平行.【例5】已知4×4的数表,如果把它的任一行或一列中的所有数同时变号,称为一次变换,试问能否经过有限次变换,使表中的数全变为正数?思路点拔 若按要求去实验,则实验次数不能穷尽,每次变换只改变表中一行(或一列)中4个数的符号,但并不改变这4个数乘积的符号,这是解本例的关键.注 由“残部”想“整体”,修残补缺,向外补形,恢复原形,将其拓展为范围更广的、其特征更为明显,更为熟悉的几何图形,这是解复杂几何问题的常用技巧.从整体上考察问题的数量性质、表现形式是对整体上不变性质、不变量的特性的把握.学历训练1.如果012=-+x x ,则3223++x x = .( “希望杯”邀请赛试题) 2.已知2311222--=-x x ,那么)1()1111(2x x xx x +-÷+--= .(2001年武汉市中考题) 3.已知x 是实数,且满足222322=--+x x xx ,那么x x 22+的值是 .(河南省竞赛题)4.如图,六边形ABCDEF 中,AB ∥DE 且AB=DE ,BC ∥EF 且BC=EF ,AF ∥CD 且AF=CD ,∠ABC=∠DEF=120°,∠AFE=∠BCD=90°,AB=2,BC=1,CD=3,则该六边形ABCDEF 的面积是 . 5.已知251-=a ,251+=b ,则722++b a 的值为( )A .3 D .4 C . 5 D .6 (2003年杭州市中考题)6.买20支铅笔、3块橡皮、2本日记本需32元;买39支铅笔、5块橡皮、3本日记本需58元;则买5支铅笔、5块橡皮、5本日记本需( ) A .20元 B .25元 C .30元 D .35元 (江苏省竞赛题)7.已知a 1,a 2,…a 2002均为正数,且满足M=( a 1+ a 2+…+ a 2001)( a 2+ a 3+…+ a 2001-a 2002),N =(a 1+ a 2+…+ a 2001-a 2002) (a 2+ a 3+…+ a 2001),则M 与N 之间的关系是( ) A .M>N B .M<N C .M =N D .无法确定 (2002年绍兴市竞赛题)8.已知5=-b a ,且10=-b c ,则ac bc ab c b a ---++222等于( ) A .105 D .100 C .75 D .50 (北京市竞赛题)9.将2,3,4,5,6,7,8,9,10,11这10个自然数填到图中10个格子里,每个格子只 填一个数,使得“田”字形的4个格子中所填数字之和都等于P ,求户的最大值.(江苏省竞赛题)10.如图,CD ∥AF ,∠CDE=∠BAF ,AB ⊥BC ,∠C=124°,∠E=80°,求∠F 的度数.11.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 . ( “希望杯”邀请赛试题)12.已知32=+xy x ,22-=+y xy ,则2232y xy x --2= . (湖北省数学竞赛题)13.若22+=x ,22-=y ,则66y x +的值是 . 14.正数x 1、x 2、x 3、x 4、x 5、x 6同时满足1165432=x x x x x x ,2265431=x x x x x x ,3365421=x x x x x x ,4465321=x xx x x x ,6564321=x x x x x x ,9654321=x xx x x x ,则x 1+x 2+x 3+x 4+x 5+x 6z 的值为 .(上海市竞赛题)15. 已知实数x ,y 满足xy+x+y= 9,2022=+xy y x z ,则22y x +的值为( ) A .6 B .17 C .1 D .6或1716.如图,在四边形ABCD 中,AB=4-2,BC =1,CD=3,∠B=135°,∠C =90°,则∠D 等于( )A .60°B .67.5°C .75°D .无法确定 (重庆市竞赛题)17.若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1111--+--b a a b 的值为( ) A -20 B .2 C .2或-20 D .2或20 18.设 a 、b 、c 为实数,322π+-=b a x ,622π+-=c b y ,222π+-=a c z ,则x 、y 、z 中至少有一个( )A .大于零B .等于零C .不大于零D .小于零(全国初中数学竞赛题)19.如图,四边形ABCD 中,∠ABC=135°,∠BCD=120°,AB=6,BC=5-3,CD=6,求AD 的长. 20.如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使 任意连续相邻的5个圆圈内的数的和均不大于某一个整数M ,求M 的最小值并完成你的填图.21.求系数a 、b 、c 间的关系式,使方程⎪⎩⎪⎨⎧=++=++=++000222b ax cx a cx bx c bx ax 有实数解.22.有三种物品,每件的价格分别为2元、4元和6元,现在用60元买这三种物品,总数共16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?(河南省竞赛题)。
初二数学竞赛指导数学竞赛中的解技巧
初二数学竞赛指导数学竞赛中的解技巧初二数学竞赛指导:数学竞赛中的解题技巧数学竞赛对于初二的学生来说,是一个挑战自我、拓展思维的平台。
在竞赛中,掌握一些有效的解题技巧能够帮助我们更快速、准确地解决问题,取得优异的成绩。
下面,我将为大家分享一些在初二数学竞赛中常用的解题技巧。
一、认真审题这是解题的第一步,也是最为关键的一步。
很多同学在解题时,往往因为急于求成,没有认真读题,导致理解错误,最终得出错误的答案。
在审题时,要逐字逐句地读,理解每一个条件和问题的含义。
特别要注意一些关键词,如“至少”“至多”“不大于”“不小于”等,这些关键词往往会对解题思路产生重要的影响。
同时,要善于挖掘题目中隐藏的条件。
有些条件可能没有直接给出,需要我们通过对已知条件的分析和推理才能得到。
比如,给出一个三角形的两条边的长度,我们可以通过三角形的三边关系来确定第三边的取值范围。
二、巧妙转化很多数学竞赛题看起来复杂,但如果我们能够巧妙地将其转化为我们熟悉的问题,就会变得容易解决。
例如,代数问题可以转化为几何问题,几何问题也可以转化为代数问题。
比如,求一个代数式的最值问题,可以通过构造几何图形,利用几何图形的性质来解决。
再比如,一些复杂的方程或不等式问题,可以通过换元法将其转化为简单的方程或不等式。
通过合理的转化,能够让我们从不同的角度去思考问题,从而找到解题的突破口。
三、分类讨论在数学竞赛中,经常会遇到需要分类讨论的问题。
这是因为题目中的条件没有明确给出,或者不同的情况会导致不同的结果。
比如,当涉及到绝对值、平方根、参数等问题时,往往需要进行分类讨论。
在进行分类讨论时,要做到不重不漏,条理清晰。
以绝对值问题为例,当绝对值符号内的式子不确定正负时,我们需要分别讨论其为正和为负的情况。
再比如,对于一个含有参数的二次函数,需要根据二次项系数的正负以及判别式的情况来进行分类讨论。
四、利用特殊值法对于一些选择题或填空题,如果直接求解比较困难,我们可以采用特殊值法。
初中数学竞赛专题选讲(含答案)
初中数学竞赛专题选讲一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根 差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k abcd b a d c ==++. ∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.)把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是_x=0__.② 3x 2+(2-3)x -2=0的一个整数根是_x=1__.③ x 2+(5+1)x+5=0的一个整数根是__x=-1_.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是_5/4__.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=_1__.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=__1_.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:_____9q=2p2______.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是_一正一负___.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( A ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?a=1b=-1/29. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( C )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:____a 不等于 b _______.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.M=-1 b=212. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m 的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤118.方程7x2-(k+13)x+k2-k-2=0 (k是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k的取值范围是( )(A)3<k<4(B)-2<k<-1 (C) 3<k<4 或-2<k<-1(D)无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C初中数学竞赛专题选讲面积法一、内容提要1. 因为面积公式是用线段的代数式表示的,所以面积与线段可以互相转换。
八年级数学专题讲座
八年级数学专题讲座摘要:一、引言二、八年级数学主要内容概述1.几何2.代数3.统计与概率4.数学思维方法三、如何提高八年级数学成绩1.养成良好的学习习惯2.有效课堂听讲3.课后复习与总结4.勤于练习与请教四、八年级数学竞赛与选拔1.全国初中数学联赛2.各地区数学竞赛3.竞赛准备与策略五、结语正文:尊敬的同学们,大家好!今天,我将为大家带来一场关于八年级数学的专题讲座。
在这场讲座中,我们将探讨八年级数学的主要内容、学习方法以及如何提高数学成绩。
此外,还会向大家介绍八年级数学竞赛的相关信息。
让我们一起走进八年级数学的世界,探索其中的奥秘吧!首先,让我们来了解一下八年级数学的主要内容。
八年级数学主要包括几何、代数、统计与概率以及数学思维方法等方面。
在几何部分,同学们需要学习平面几何的基本概念、性质和定理,如点、线、面的关系,三角形、四边形的判定和性质等。
在代数部分,同学们要掌握有理数、整式、一元一次方程、不等式等知识。
统计与概率部分主要教会同学们如何收集、整理、分析数据,并运用概率论的基本概念解决实际问题。
数学思维方法则是帮助同学们培养逻辑思维、分析问题和解决问题的能力。
接下来,我们谈谈如何提高八年级数学成绩。
首先,养成良好的学习习惯至关重要。
同学们应该确保每天有足够的时间用于学习数学,并在学习过程中保持专注。
其次,课堂听讲非常关键。
同学们要抓住老师讲解的重点,及时消化吸收知识。
课后,要及时复习和总结,将所学知识巩固下来。
此外,勤于练习和请教也是提高数学成绩的有效途径。
同学们应该多做习题,总结经验,遇到难题时要勇于请教老师、同学或家长。
此外,八年级数学竞赛也是一个值得关注的话题。
全国初中数学联赛等各类数学竞赛为同学们提供了一个展示自己才华的舞台。
参加这些竞赛可以帮助同学们提高数学素养,锻炼思维能力。
为了在竞赛中取得好成绩,同学们需要在平时加强训练,了解竞赛的题型和特点,掌握解题技巧。
最后,我希望同学们能够在八年级数学的学习过程中,不断探索、进步。
八年级数学竞赛例题专题讲解8:分式方程附答案
八年级数学竞赛例题专题讲解8:分式方程附答案分式方程是含有未知数的方程,其中分母含有未知数。
解分式方程的主要思路是去分母,把分式方程化为整式方程,可以通过直接去分母或换元法等方法实现。
有时,在解分式方程时可能会出现增根的情况。
虽然增根必须舍去,但有时也可以利用增根,挖掘隐含条件。
例如,对于一个关于x的方程2x+a/(x-2)=-1,如果其解为正数,则a的取值范围需要注意增根的隐含制约。
另一个例子是已知2/(x(x-1))+A/(x-1)+B/x=C,其中A,B,C为常数,需要求出A+B+C的值。
可以将右边通分,然后比较分子,建立A,B,C的等式。
对于一些复杂的分式方程,不宜直接去分母。
需要运用解分式问题、分式方程相关技巧和方法来解决。
例如,对于方程5x-9/(x-19)+6x-8/(x-9)+4/(x-6)+2/(x-8)=0,或者方程x^2+3x/(x^2+x-4)+11/2=0,或者方程x/(x+1)+1/(x+1)^2=3,需要仔细观察分子、分母间的特点,寻找解题的突破口。
有时,解分式方程需要对原方程“只有一个解”的准确理解,利用增根解题。
例如,对于方程2kx/(kx+1)-2/(x-1)=0,如果该方程只有一个解,则需要化分式方程为整式方程,并利用增根解题。
对于一些复杂的不定方程,可以通过转化为一元不等式,逐步缩小未知数的取值范围,求出结果。
例如,对于方程1115/(xyz)=1,且x≤y≤z,≥111,然后通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出结果。
最后,需要注意格式错误和明显有问题的段落,进行删除和小幅度改写,以提高文章的可读性。
1.当$x=\frac{1}{y}$时,原方程变为$\frac{y^2-1}{y}=2$,即$y^2-2y-1=0$。
因此,这个整式方程是$y^2-2y-1=0$。
2.将方程$x^2-3x+4=0$移项得$x^2=3x-4$,代入原方程得$\frac{2x(3x-4)}{x-1}=2x^2-2x-4=0$。
八年级数学竞赛讲座几何不等式附答案
第三十二讲 几何不等式1.三角形的不等关系是研究许多几何不等问题的基础,这种不等关系分为两类:一类是在同一三角形中进行比较;一类是在两个三角形中比较.这里主要方法是把要比较的边或角如何转化到同一个三角形或适当安排在两个三角形之中.2.在同一个三角形中有关边或角不等关系的证明,常有以下定理: (1)三角形任何两边之和大于第三边. (2)三角形任何两边之差小于第三边.(3)三角形的一个外角大于任何一个与它不相邻的内角. (4)同一三角形中大边对大角. (5)同一三角形中大角对大边. 例题求解【例1】 如图19-2,在等腰梯形ABCD 中,A ∥BC ,AB=CD ,E 、F 分别在AB 、CD 上且AE=CF .求证:)(21BC AD EF +≥.思路点拨 如图所示,延长AD 至D 1使DD 1=BC ,延长BC 至C l ,使CC l =AD ,连结C l D l ,则ABC 1D l 是平行四边形,ABCD 和CDD l C l 是两个全等的梯形,在D 1C 1上取一点G 使D 1G=AE ,连结FG 和EG . 由AE=CF ,则EF=FG ,又EG=AD 1=AD+BC , ∴ 2EF=EF+FG ≥EG=AD+BC . 即)(21BC AD EF +≥. 注 当且仅当点F 落在EG 上时,即E 为AB 的中点时,结论中的等号成立.证明这类不等式的一个常用方法是能过添加辅助线,把要比较大小的线段或角集中到一个三角形中,或者适当地安排在两个三角形中,以便应用上述基本不等式关系.【例2】 如图19-3,△ABC 中,AB>AC ,BE 、CF 是中线,求证:B E>CF .思路点拨将BE、CE分别平移到FG、FD,则四边形EFDC为平行四边形,作FH⊥BC于H.∴AB>AC,且F,E分别为AB、AC的中点,∴ FB>CE.∴ FB>FD,由勾股定理得:HB>HD,即FB>FD.又∵GH=GB+BH=EF+BH=DC+BH>CD+DH=CH,即GH>CH,∴ GF>CF.即 BE>CF.【例3】如图19-4,在等腰△ABC中,AB=AC,D为形内一点,∠ADC>∠ADB,求证:DB>DC.思路点拨把△ABD绕点A按逆时针方向旋转△BAC至△ACD′,连接DD′,则AD=AD'.∴∠ADD′=∠AD′D,而∠ADC>∠ADB,∴∠ADC>∠AD′C,∴∠ADD′+∠D′DC>∠AD′D+∠CD′D∴∠D'DC>∠DD'C.∴ CD′>DC,即DB>DC.注几何图形在平移、对称、旋转变换中,只是图形位置发生变化,而线段的长度、角的大小不变.【例4】如图19-5,在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且2 b < a +c,求证:2∠B<∠A+∠C.思路点拨延长BA到D,使AD=BC= a,延长BC到E,使CE=AB=,连结DE,这就把图形补成一个等腰三角形,即有BD=BE= a + c.∴∠BDE=∠BED.作DF∥AC,CF∥AD,相交于F,连结EF,则ADFC是平行四边形.∴CF=AD=BC.又∠FCE=∠CBA,∴△FCE≌△CBA∴ EF=AC= b.于是 DE≤DF+EF=2 b < a+c=BD=BE.这样,在△BDE中,便有∠B<∠BDE=∠BED∴∠2B<∠BDE+∠BED=180°一∠B=∠A+∠C,即2∠B<∠A+∠C.【例5】过三角形的重心任作一直线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的91. 思路点拨 如图19-6,设△ABC 重心为,过点G 分别作各边的平行线与各边交点依次为A 1、B 1、B 2、C 1、C 2、A 2连结A 1A 2;B 1B 2、C 1C 2,∵ 三角形重心到一个顶点的距离等于它到对边中点距离的二倍, ∴ A 1A=A 1B l =B 1B , BB 2=B 2C l =C 1C ,CC 2=C 2A 2=A 2A . ∵ A 1A 2∥BC ,B 1B 2∥AC ,C 1C 2∥AB , ∴ 图中的9个三角形全等.即△AA 1A 2≌△A 1B 1G ≌△B 2GB 1≌…≌△C 2C l C . 所以上述9个小三角形的面积均等于△ABC 面积的91. 若过点C 作的直线恰好与直线A 1C 1、B 1C 2、B 2A 2重合,则△ABC 被分成的两部分的面积之差等于一个小三角形的面积,即等于△ABC 面积的91. 若过点C 作的直线不与直线A 1C 1、B 1C 2、B 2A 2重合,不失一般性,设此直线交AC 于F ,交AB 于E ,交C 1C 2于D ,∵ GB l =GC 2,∠EB 1G=∠DC 2C ,∠B 1GE=∠C 2GD , ∴ △B 1GE ≌△C 2GD .∴ EF 分△ABC 成两部分的面积之差等于12DFCC DF C S S 四边形-∆, 而这个差的绝对值不会超过S △C 1C 2C 的面积. 从而EF 分△ABC 成两部分的面积之差不大于△ABC 面积的91. 综上所述:过三角形重心的任一直线分三角形成两部分的面积之差不大于整个三角形面积的91. 【例6】 如图19-12,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在A B 上,求证:92>∆∆ABCPQR S S . 思路点拨 易想到作△ABC 和△PQR 的高,将三角形的面积比化成线段的乘积比,并利用平行线截线段成比例定理,把其中两条高的比转换成三角形边上线段的比. 如图19-12,作CL ⊥AB 于L ,RH ⊥PQ 于H ,则ACAB ARPQ CL AB RH PQ S S ABCPQR ⋅⋅=⋅⋅=∆∆.不妨设△ABC 的周长为1,则PQ=31,AB<21,∴32>AB PQ .∵AP ≤AP+BQ=AB —PQ<613121=-,∴AR=31—AP>31-6161=.又AC<21,从而31>AC AR ,∴923132=⨯>∆∆ABC PQR S S . 【例7】 (2000年江苏省初三竞赛题)如图19-13,四边形A BCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°.证明:PA+PD+PC ≥BD .思路点拨 在四边形ABCD 外侧作等边三角形AB ′D ,由∠APD=120°可证明B'P=AP+PD .易知B' C ≥PB'+PC .得B' C ≤AP+PD+PC .下证BD= B'C .∵△AB'D 是等边三角形,∴ AB'=AD ,∠B'AD=60°,又易知△ABC 是等边三角形,故AC=AB ,∠BAC=60°,于是△AB'C ≌△ADB ,∴ B'C= DB .【例8】 设a h 、b h 、c h 是锐角△ABC 三边上的高,求证:121<++++<cb a h h h cb a . 思路点拨 如图19-14,在Rt △ADC 中,由于AC>AD ,故a h b >,同理可证b h c >,c h a > ∴c b a h h h c b a ++<++,即1<++++cb a h h h cb a ①设△ABC 的垂心为H 点,由于HA+HB>AB ,HB+HC>BC ,HC+HA>AC ,即HA+HB+HC>)(21c b a ++.从而)(21c b a HC HB HA h h h c b a ++>++>++, 即21>++++c b a h h h c b a ② 由①、②得121<++++<cb a h h h cb a .学历训练 (A 级)1.在△ABC 中,AD 为中线,AB=7,AC=5,则AD 的取值范围为 .2.(安徽省数学竞赛)已知在△ABC 中,∠A ≤∠B ≤∠C ,且2∠B=5∠A ,则AB 的敢值范围是 .3.(太原市初中数学竞赛试题)用长度相等的100根火柴棍,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴棍的根数 .4.(全国高中理科试验班招生数学试题)面积为1的三角形中,三边长分别为a 、b 、c ,且满足a ≤b ≤c ,则a+b 的最小值是 .5.(江苏数学竞赛培训题)在任意△ABC 中,总存在一个最小角α,则这个角α的取值范围为 .(B 级)1.如图19-16,△ABC 中,E 、F 分别为AC 、AB 上任一点,BE 、CF 交于P ,求证:PE+PF<AE+AF .2.如图19-17,等线段AB 、CD 交于O ,且∠AOC=60°,求证:AC+BD ≥AB . 3.如图19-18,矩形ABCD 中,E 、F 别是AB 、CD 上的点,求证:EF<AC .4.已知 a 、b 、x 、y 均小于0,122=+y x ,求证:b a x b y a y b x a +≥+++22222222. 5.如图19-19,在△ABC 中,∠B=2∠C ,求证:AC<2AB .6.平面上有n 个点,其中任意三点构成一个直角三角形,求n 的最大值.7.如图19-20,已知△ABC 中AB>AC ,P 是角平分线AD 上任一点,求证:AB -AC>PB —PC .。
初二竞赛数学讲义试卷答案
1. 下列各数中,有理数是()A. √2B. πC. 0.101001…D. 2/3答案:D解析:有理数是可以表示为两个整数之比的数,所以2/3是有理数。
2. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:A解析:无理数是不能表示为两个整数之比的数,√4=2,√9=3,√16=4,√25=5,都是整数,所以A选项√2是无理数。
3. 已知a、b是方程x^2-4x+4=0的两根,则a+b的值是()A. 2B. 4C. 6D. 8答案:B解析:根据韦达定理,方程x^2-4x+4=0的两根之和等于系数b的相反数,即a+b=-(-4)=4。
4. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C=180°-∠A-∠B=180°-60°-45°=75°。
5. 已知a+b=5,ab=6,则a^2+b^2的值是()A. 11B. 16C. 25D. 36答案:A解析:根据公式(a+b)^2=a^2+2ab+b^2,将a+b=5,ab=6代入,得a^2+b^2=(5)^2-26=25-12=13,所以a^2+b^2=11。
1. 若x=2,则x^2-3x+2=()答案:1解析:将x=2代入x^2-3x+2,得2^2-32+2=4-6+2=1。
2. 在△ABC中,∠A=90°,∠B=30°,则BC的长度是AB的()答案:√3/2解析:在直角三角形中,30°角所对的直角边长度是斜边长度的√3/2。
3. 若x=3,则x^3-3x^2+3x-1的值是()答案:1解析:将x=3代入x^3-3x^2+3x-1,得3^3-33^2+33-1=27-27+9-1=1。
八年级数学竞赛讲座:第六讲 代数式的求值
第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。
八年级数学竞赛讲座飞跃等到相似附答案
八年级数学竞赛讲座飞跃等到相似附答案初中数学竞赛1 第二十讲飞跃-从全等到相似全等三角形是相似三角形的相似比等于1的特殊情况,从全等到相似是认识上的一个巨大飞跃,不但认识形式上有质的变化.而且思维方式也产生突变,相等是全等三角形的主旋律,在相似形的问题中出现的线段间的关系比全等形中的等量关系复杂,不仅有比例式,还有等积式、平方式、线段乘积的和、差、线段比的和差等.通过寻找(或构造)相似三角形,用以计算或论证的方法,我们称为相似三角形法,在线段长度的计算、角相等的证明、比例线段的证明等方面有广泛的应用,是几何学中应用最广泛的方法之一.熟悉以下形如“A 型”、“X 型”“子母型”等相似三角形.例题求解如图,△ABC 中,∠ABC=60’°,点P 是△ABC 内一点,使得∠APB=∠BPC=∠CPA ,且PA=8,PC=6,则PB= .(全国初中数学竞赛题)思路点拨PA 、PB 、PC 分别是△ABP 、△BCP 的边,从判定这两个三角形的关系入手.注相似是几何中的一个概念,但相似性不仅表现在事物的几何形态上,而且还体现在事物的功能、结构、原理上.类比推理也贯穿在物理学的全部发展过程中,著名物理学家麦克斯韦曾说:“借助类比,我试图以便利的形式提出研究电现象所必须的数学手段和公式.” 在新事物面前,人们往往习惯于把它们与原有的、熟知的事物相比.这里蕴含的思想方法就是类比.a 、b 、c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A 、∠B 的关系是( ) A .∠B2∠A B .∠B=2∠A C .∠B2∠A D .不确定(全国初中数学联赛试题)思路点拨先化简已知等式,根据所得等式构造相应线段,通过全等或相似寻找角的关系.如图,在△ABC 中,AB=AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC于初中数学竞赛2 E ,交CF 于F .求证:BP 2=PE ×PF(吉林省中考题)思路点拨由于BP 、PE 、PF 在同一条直线上,所以必须通过作辅助线寻找等线段来转化问题.如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC(ABAE) .(1)△AEF 与△EFC 是否相似,若相似,证明你的结论,若不相似,请说明理由;(2)设k BC AB ,是否存在这样的k 值,使△AEF 与△BFC 相似?若存在,证明你的结论并求出k 的值:若不存在,说明理由.(重庆市中考题)思路点拨本例是一道存在性探索问题,对于(2),假设存在,则Rt △AEF 与Rt △BFC 中有一对锐角相等,怎样由边的比值得出角的关系?不妨从特殊角入手,逆推求出k 的值.如图,△ABC 和△A l B l C 1均为正三角形,BC 和B 1C 1的中点均为D .求证:AA 1⊥CC 1.(重庆市竞赛题)思路点拨作出等边三角形最基本的辅助线,并延长AA l 交CC l 于E ,寻找相似三角形,证明∠A=90°.注比例线段(或等积式的)证明是几何问题中的常见题型.基本证法有:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五讲 整体的方法
我们知道成语“一叶障目”和“只见树木,不见森林”,它们的意思是说,如果过分关注细节,而忽视全局,我们就不会真正理解一个问题.
解数学题也是这样,在加强对局部的研究与分析的基础上,从整体上把握问题.所谓整体方法就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.
整体方法在代数式的化简与求值、解方程(组)、几何解证等方面有广泛的应用,整体代人、叠加叠乘处理、整体运算、整体设元、整体处理、设而不求、几何中的补形等都是整体方法在解数学问题中的具体运用.
例题求解
【例1】 若x 、y 、z 满足3x+7y+z=1和4x+10y+z=2001,则分式y
x z
y x 3200020002000+++的值为 .(安
庆市竞赛题) 思路点拨 原式=
y
x z y x 3)
(2000+++,视x+3 y 与x+y+z 为两个整体,对方程组进行整体改造.
【例2】 若△ABC 的三边长是a 、b 、c 且满足22444c b c b a -+=,22444c a a c b -+=,22444b a b a c -+=,则△ABC 是( )
A .钝角三角形
B .直角三角形
C .等腰直角三角形
D .等边三角形 ( “希望杯”邀请赛试题)
思路点拨 三个等式结构一样,孤立地从一个等式入手,都导不出a 、b 、c 的关系,不妨从整体叠加入手.
【例3】 已知2
1994
1+=
x ,求多项式20023)199419974(--x x 的值. 思路点拨 直接代入计算繁难,由已知条件得199412=-x ,两边平方有理化,可得到零值多项式,整体代入求值.
【例4】如图,凸八边形A l A 2A 3A 4A 5A 6A 7A 8中,∠A l =∠A 5,∠A 2 =∠A 6 ,∠A 3 =∠A 7 ,∠A 4=∠A 8,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值.
(山东省竞赛题)
思路点拨 将八边形问题转化为熟悉的图形来解决,想象完整四边形截去4个角就得到八边形,就可知向外作辅助线,关键是证明对边平行.
【例5】已知4×4的数表,如果把它的任一行或一列中的所有数同时变号,称为一次变换,试问能否经过有限次变换,使表中的数全变为正数?
思路点拔 若按要求去实验,则实验次数不能穷尽,每次变换只改变表中一行(或一列)中4个数的符号,但并不改变这4个数乘积的符号,这是解本例的关键.
注 由“残部”想“整体”,修残补缺,向外补形,恢复原形,将其拓展为范围更广的、其特征更为明显,更为熟悉的几何图形,这是解复杂几何问题的常用技巧.
从整体上考察问题的数量性质、表现形式是对整体上不变性质、不变量的特性的把握.
学历训练
1.如果012=-+x x ,则3223++x x = .
( “希望杯”邀请赛试题) 2.已知
2
3112
22--=
-x x ,那么)1
()1111(
2x x x
x x +-÷+--= . (2001年武汉市中考题) 3.已知x 是实数,且满足222322=--+x x x
x ,那么x x 22+的值是 .
(河南省竞赛题)
4.如图,六边形ABCDEF 中,AB ∥DE 且AB=DE ,BC ∥EF 且BC=EF ,AF ∥CD 且AF=CD ,∠ABC=∠DEF=120°,∠AFE=∠BCD=90°,AB=2,BC=1,CD=3,则该六边形ABCDEF 的面积是 . 5.已知2
51-=
a ,2
51+=
b ,则722++b a 的值为( )
A .3 D .4 C . 5 D .6 (2003年杭州市中考题)
6.买20支铅笔、3块橡皮、2本日记本需32元;买39支铅笔、5块橡皮、3本日记本需58元;则买5支铅笔、5块橡皮、5本日记本需( ) A .20元 B .25元 C .30元 D .35元 (江苏省竞赛题)
7.已知a 1,a 2,…a 2002均为正数,且满足M=( a 1+ a 2+…+ a 2001)( a 2+ a 3+…+ a 2001-a 2002),N =(a 1+ a 2+…+ a 2001-a 2002) (a 2+ a 3+…+ a 2001),则M 与N 之间的关系是( ) A .M>N B .M<N C .M =N D .无法确定 (2002年绍兴市竞赛题)
8.已知5=-b a ,且10=-b c ,则ac bc ab c b a ---++222等于( ) A .105 D .100 C .75 D .50 (北京市竞赛题)
9.将2,3,4,5,6,7,8,9,10,11这10个自然数填到图中10个格子里,每个格子只 填一个数,使得“田”字形的4个格子中所填数字之和都等于P ,求户的最大值.
(江苏省竞赛题)
10.如图,CD ∥AF ,∠CDE=∠BAF ,AB ⊥BC ,∠C=124°,∠E=80°,求∠F 的度数.
11.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 . ( “希望杯”邀请赛试题)
12.已知32=+xy x ,22-=+y xy ,则2232y xy x --2= . (湖北省数学竞赛题)
13.若22+=x ,22-=y ,则66y x +的值是 . 14.正数x 1、x 2、x 3、x 4、x 5、x 6同时满足
1165432=x x x x x x ,2265431=x x x x x x ,3365421=x x x x x x ,44
65321=x x
x x x x ,
6564321=x x x x x x ,96
54321=x x
x x x x ,则x 1+x 2+x 3+x 4+x 5+x 6z 的值为 .
(上海市竞赛题)
15. 已知实数x ,y 满足xy+x+y= 9,2022=+xy y x z ,则22y x +的值为( ) A .6 B .17 C .1 D .6或17
16.如图,在四边形ABCD 中,AB=4-2,BC =1,CD=3,∠B=135°,∠C =90°,则∠D 等于( )
A .60°
B .67.5°
C .75°
D .无法确定 (重庆市竞赛题)
17.若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1
1
11--+
--b a a b 的值为( ) A -20 B .2 C .2或-20 D .2或20 18.设 a 、b 、c 为实数,3
22π+
-=b a x ,6
22π+
-=c b y ,2
22π
+
-=a c z ,则x 、y 、z 中至少有一个( )
A .大于零
B .等于零
C .不大于零
D .小于零
(全国初中数学竞赛题)
19.如图,四边形ABCD 中,∠ABC=135°,∠BCD=120°,AB=6,BC=5-3,CD=6,求AD 的长. 20.如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使 任意连续相邻的5个圆圈内的数的和均不大于某一个整数M ,求M 的最小值并完成你的填图.
21.求系数a 、b 、c 间的关系式,使方程⎪⎩
⎪
⎨⎧=++=++=++000222b ax cx a cx bx c bx ax 有实数解.
22.有三种物品,每件的价格分别为2元、4元和6元,现在用60元买这三种物品,总数共16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?
(河南省竞赛题)。