九年级数学培优《圆》专题训练
九年级数学下册2023年中考专题培优训练-圆的认识

九年级数学下册2023年中考专题培优训练圆的认识一、单选题1、下列命题的逆命题为假的有()A.对顶角是相等的角B.对应角相等的三角形是全等三角形C.平行四边形是两组对边互相平行的图形D.等圆是半径相等的圆2、计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为2,当任务完成的百分比为m时,弦AB的长度记为d(m).下列描述正确的是( )A.d(25%)=2B.当m>50%时,d(m)>4C.当m1<m2时,d(m1)<d(m2)D.当m1+m2=100%时,d(m1)=d(m2)3、已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )A.30°B.60°C.30°或150°D.60°或120°4、如图,⊙O是△ABC的外接圆,将△ABC绕点C顺时针旋转至△EDC,使点E在⊙O上,再将△EDC沿CD翻折,点E恰好与点A重合,已知∠BAC=36°,则∠DCE的度数是()A .24B .27C .30D .335、已知点在上.则下列命题为真命题的是( ),,A B C O A .若半径平分弦.则四边形是平行四边形OB AC OABC B .若四边形是平行四边形.则OABC 120ABC ∠=︒C .若.则弦平分半径120ABC ∠=︒AC OBD .若弦平分半径.则半径平分弦AC OB OB AC6、如图,是的外接圆,,若扇形OBC (图中阴影部分)正O ABC 22.5,8ABO ACO BC ∠=∠=︒=好是一个圆锥的侧面展开图,则该圆锥的高为( )A B .C D 7、如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC 、BC 为直径作半圆,其中M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q .若AC BC MP+NQ =7,AC+BC =26,则AB 的长是( )A .17B .18C .19D .208、如图,由边长为1的小正方形构成的网格中,点,,都在格点上,以为直径的圆经过A B C AB 点,,则的值为( )C D cos ADC ∠A B C .D 23二、填空题1、如图,点A 、B 、C 、D 、E 都是圆O 上的点,,∠B =116°,则∠D 的度数为______度.AC AE =2、如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O 在水面上方,且被水面截得的弦AB 长为8米,半径为5米,则圆心O 到水面AB 的距离为O _______米.3、如图,点为半圆的中点,是直径,点D 是半圆上一点,、交于点E ,若,C AB AC BD 2AD =,则______, _______.6BD =AC =CD =4、如图,圆内4个正方形的边长均为2a ,若点A ,B ,C ,D ,E 在同一条直线上,点E ,F ,G 在同一个圆上,则此圆的半径为.5、如图,在圆的内接△ABC 中,,,于点D ,则________°.AB AC = 100BC =︒BD AC ⊥DBC ∠=6、如图,以y 轴上的点P 为圆心,过坐标原点O 的⊙P 与平行于y 轴的直线交于M ,N 两点.若点M 的坐标是,则点N 坐标为___________.()21,-三、解答题1、如图,为的直径,是弦,且于点E .连接、、.AC O BD AC BD ⊥AB OB BC(1)求证:;CBO ABD ∠=∠(2)若,求弦的长.4cm,16cm AE CE ==BD2、如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.3、圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味,如图,是一款拱门的示意图,其中拱门最下端分米,为的中点,为拱门最高点,圆心18AB =C AB D 在线段上,分米,求拱门所在圆的半径.O CD 27CD =4、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.5、如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:.AF BD。
人教版九年级数学上册《圆》培优检测试题(含答案)

人教版九年级数学上册《圆》培优检测试题(含答案)一.选择题1.如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=()A.30°B.45°C.60°D.75°2.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是()A.216°B.270°C.288°D.300°3.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,则∠ADB的度数为()A.15°B.30°C.45°D.60°4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10 B.8 C.5 D.35.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π6.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°7.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π8.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm9.下列说法正确的个数()①近似数32.6×102精确到十分位:②在,,﹣||中,最小的数是③如图所示,在数轴上点P所表示的数为﹣1+④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.1 B.2 C.3D.410.如图,△ABC中,∠C=90°,AC与圆O相切于点D,AB经过圆心O,且与圆交于点E,连接BD,若AC=3CD=3,则BD的长为()A.3 B.2C.D.2二.填空题11.如图,⊙O的半径为5,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,CD=8,则弦AC的长为.12.如图,直尺三角尺都和⊙O相切,∠A=60°,点B是切点,且AB=8c m,则⊙O的半径为cm.13.如图,正五边形ABCDE内接于半径为1的⊙O,则的长为.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部面积是.15.如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.16.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连结BM交AC 于点E,AD平分∠CAB交BM于点D.(1)∠ADB=°;(2)当点D恰好为BM的中点时,BC的长为.17.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三.解答题18.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.19.如图,点A在⊙O上,点P是⊙O外一点.PA切⊙O于点A.连接OP交⊙O于点D,作AB上OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,求图中阴影部分的面积.20.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.21.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.22.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,在CD上有点N满足CN=CA,AN交圆O于点F,过点F的AC的平行线交CD的延长线于点M,交AB的延长线于点E (1)求证:EM是圆O的切线;(2)若AC:CD=5:8,AN=3,求圆O的直径长度;(3)在(2)的条件下,直接写出FN的长度.24.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.参考答案一.选择题1.解:∵AB=AC,=60°,∴∠B=∠C,∠A=30°,∴∠B=(180°﹣30°)=75°;故选:D.2.解:设该圆锥侧面展开图的圆心角为n°,圆锥的底面圆的半径==3,根据题意得2π×3=,解得n=216.即该圆锥侧面展开图的圆心角为216°.故选:A.3.解:∵AB=BC,∠ABC=120°,∴∠C=∠BAC=30°,∴∠ADB=∠C=30°,故选:B.4.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.5.解:连接AC ,∵四边形ABCD 是菱形,∴AB =BC =6,∵∠B =60°,E 为BC 的中点,∴CE =BE =3=CF ,△ABC 是等边三角形,AB ∥CD ,∵∠B =60°,∴∠BCD =180°﹣∠B =120°,由勾股定理得:AE ==3,∴S △AEB =S △AEC =×6×3×=4.5=S △AFC ,∴阴影部分的面积S =S △AEC +S △AFC ﹣S 扇形CEF =4.5+4.5﹣=9﹣3π, 故选:A .6.解:∵∠BOD =130°,∴∠AOD =50°,又∵AC ∥OD ,∴∠A =∠AOD =50°,∵AB 是⊙O 的直径,∴∠C =90°,∴∠B =90°﹣50°=40°.故选:B .7.解:∵在▱ABCD 中,∠A =2∠B ,∠A +∠B =180°,∴∠A =120°,∵∠C =∠A =120°,⊙C 的半径为3,∴图中阴影部分的面积是:=3π,故选:C.8.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),∴BD=3cm.故选:B.9.解:①近似数32.6×102精确到十位,故本说法错误;②在,,﹣||中,最小的数是﹣(﹣2)2,故本说法错误;③如图所示,在数轴上点P所表示的数为﹣1+,故本说法错误;④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中至少有两个纯角”,故本说法错误;⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点,故本说法正确;故选:A.10.解:连接OD,如图,∵AC与圆O相切于点D,∴OD⊥AC,∴∠ODA=90°,∵∠C=90°,∴OD∥BC,∵==3,∴AO=2OB,∴AO=2OD,∴sin A==,∴∠A=30°,在Rt△ABC中,BC=AC=×3=3,在Rt△BCD中,BD===2.故选:B.二.填空题11.解:如图,连接OA,并反向延长OA交CD于点E,∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,即∠CEO=90°,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC=.故答案为:4.12.解:设圆O与直尺相切于B点,连接OE、OA、OB,设三角尺与⊙O的切点为E,∵AC、AB都是⊙O的切线,切点分别是E、B,∴∠OBA=90°,∠OAE=∠OAB=∠BAC,∵∠CAD=60°,∴∠BAC=120°,∴∠OAB=×120°=60°,∴∠BOA=30°,∴OA=2AB=16cm,由勾股定理得:OB===8(cm),即⊙O的半径是8cm.故答案是:8.13.解:如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴的长==,故答案为.14.解:作OD⊥AB于D,∵△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB=60°,BD=AD,则OD=OA×cos∠AOD=3×=,AD=OA×sin∠AOD,∴AB=2AD=3,∴图中阴影部面积=﹣×3×=3π﹣,故答案为:3π﹣.15.解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴BC===4.故答案为:4.16.解:(1)∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,故答为135.(2)如图作MH⊥AB于M,连接AM,OM,OM交AC于F.∵AB是直径,∴∠AMB=90°∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=40,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH==,∴OH===,∴OM ⊥AC ,∴AF =FC ,∵OA =OB ,∴BC =2OF ,∵∠OHM =∠OFA =90°,∠AOF =∠MOH ,OA =OM ,∴△OAF ≌△OMH (AAS ),∴OF =OH =,∴BC =2OF =故答案为.17.解:过A 1作A 1C ⊥x 轴于C ,∵四边形OAA 1B 是菱形,∴OA =AA 1=1,∠A 1AC =∠AOB =60°,∴A 1C =,AC =,∴OC =OA +AC =,在Rt △OA 1C 中,OA 1==,∵∠OA 2C =∠B 1A 2O =30°,∠A 3A 2O =120°,∴∠A 3A 2B 1=90°,∴∠A 2B 1A 3=60°,∴B 1A 3=2,A 2A 3=3,∴OA 3=OB 1+B 1A 3=3=()3∴菱形OA 2A 3B 2的边长=3=()2, 设B 1A 3的中点为O 1,连接O 1A 2,O 1B 2,于是求得,O 1A 2=O 1B 2=O 1B 1==()1,∴过点B 1,B 2,A 2的圆的圆心坐标为O 1(0,2),∵菱形OA 3A 4B 3的边长为3=()3,∴OA 4=9=()4, 设B 2A 4的中点为O 2,连接O 2A 3,O 2B 3,同理可得,O 2A 3=O 2B 3=O 2B 2=3=()2,∴过点B 2,B 3,A 3的圆的圆心坐标为O 2(﹣3,3),…以此类推,菱形菱形OA 2019A 2020B 2019的边长为()2019,OA 2020=()2020, 设B 2018A 2020的中点为O 2018,连接O 2018A 2019,O 2018B 2019,求得,O 2018A 2019=O 2018B 2019=O 2018B 2018=()2018, ∴点O 2018是过点B 2018,B 2019,A 2019的圆的圆心, ∵2018÷12=168…2,∴点O 2018在射线OB 2上,则点O 2018的坐标为(﹣()2018,()2019),即过点B 2018,B 2019,A 2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).三.解答题18.(1)证明:如图1,连接OD ,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴A B=3AE,CE=4AE,∴=2,∴,∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∵CF=6,∴DF=3,∵AB是直径,∴AD⊥BC,∵DF⊥AC,∴∠DFC=∠ADC=90°,∠DAF=∠FDC,∴△ADF∽△DCF,∴,∴DF2=AF•FC,∴,∴AF=3.19.(1)证明:连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB是⊙O的切线;(2)解:∵OP⊥AB,OP经过圆心O,∵∠PBO =∠BCO =90°,∴∠PBC +∠OBC =∠OBC +∠BOC =90°,∴∠PBC =∠BOC ,∴△PBC ∽△BOC ,∴=∴OC ===3,∴在Rt △OCB 中,OB ===6,tan ∠COB ===,∴∠COB =60°,∴S △OPB =×OP ×BC =×(9+3)×3=18,S 扇DOB ==6π,∴S 阴影=S △OPB ﹣S 扇DOB =18﹣6π.20.解:(1)证明:∵AB 、CD 是⊙O 的两条直径,∴OA =OC =OB =OD ,∴∠OAC =∠OCA ,∠ODB =∠OBD ,∵∠AOC =∠BOD ,∴∠OAC =∠OCA =∠ODB =∠OBD ,即∠ABD =∠CAB ;(2)连接BC .∵AB 是⊙O 的两条直径,∴∠ACB =90°,∵CE 为⊙O 的切线,∴∠OCE =90°,∵B 是OE 的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.21.(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴=,即点D为的中点;(2)解:∵OF⊥AC,∴AF=CF,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3,∴DF=OD﹣OF=5﹣3=2;(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,∵PC=PC′,∴PD+PC=PD+PC′=DC′,∴此时PC+PD的值最小,∵=,∴∠BOD=∠AOD=80°,∴∠BOC=20°,∵点C和点C′关于AB对称,∴∠C′OB=20°,∴∠DOC′=120°,作OH⊥DC′于H,如图,则C′H=DH,在Rt△OHD中,OH=OD=,∴DH=OH=,∴DC′=2DH=5,∴PC+PD的最小值为5.22.解:(1)∵∠ACB=90°,点B,D在⊙O上,∴BD是⊙O的直径,∠BCE=∠BDE,∵∠FDE=∠DCE,∠BCE+∠DCE=∠ACB=90°,∴∠BDE+∠FDE=90°,即∠BDF=90°,∴DF⊥BD,又∵BD是⊙O的直径,∴DF是⊙O的切线.(2)如图,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=2×4=8,∴=4,∵点D是AC的中点,∴,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴,在Rt△BCD中,==2,在Rt△BED中,BE===5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴,即,∴.23.(1)证明:连接FO,∵CN=AC,∴∠CAN=∠CNA,∵AC∥ME,∴∠CAN=∠MFN,∵∠CAN=∠FNM,∴∠MFN=∠FNM=∠CAN,∵CD⊥AB,∴∠HAN+∠HNA=90°,∵AO=FO,∴∠OAF=∠OFA,∴∠OFA+∠MFN=90°,即∠MFO=90°,∴EM是圆O的切线;(2)解:连接OC,∵AC:CD=5:8,设AC=5a,则CD=8a,∵CD⊥AB,∴CH=DH=4a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=3,∴a=3,AH=3a=9,CH=4a=12,设圆的半径为r,则OH=r﹣9,在Rt△OCH中,OC=r,CH=12,OH=r﹣9,由OC2=CH2+OH2得r2=122+(r﹣9)2,解得:r=,∴圆O的直径为25;(3)∵CH=DH=12,∴CD=24,∵AC:CD=5:8,∴CN=AC=15,∴DN=24﹣15=9,∵∠AFD=∠ACD,∠FND=∠CNA,∴△FND∽△CNA,∴,∵AN=3,∴,∴FN=.24.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC==5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.6.如图,直径AB为12的半圆绕点A逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是( )A.12πB.24πC.6πD.36π答案 B 因为以AB为直径的半圆绕点A逆时针旋转60°得到以AB'为直径的半圆,故S半圆AB'=S半圆AB,则S阴影=S扇形BAB'+S半圆AB'-S半圆AB=S扇形BAB'===24π,故选B.7.如图,已知线段OA交☉O于点B,且OB=AB,点P是☉O上的一个动点,那么∠OAP的最大值是( )A.30°B.45°C.60°D.90°答案A连接OP,根据题意知,当OP⊥AP时,∠OAP的取值最大.在Rt△AOP 中,∵OP=OB,OB=AB,∴AO=2OP,∴∠OAP=30°.故选A.8.如图,直线AB与☉O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若☉O的半径为,CD=4,则弦EF的长为( )A.4B.2C.5D.6答案 B 连接OA,并反向延长交CD于点H,连接OC,∵直线AB与☉O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴OH⊥CD,∴CH=CD=×4=2,∵☉O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.9.如图,在平面直角坐标系xOy中,☉P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被☉P截得的弦AB的长为4,则a的值是( )A.4B.3+C.3D.3+答案B作如图所示的辅助线,易得OC=CD=3,AP=3,AE=2,故PE=DE==1,PD=,故a=PC=DC+PD=3+.10.如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA、PB,则△PAB面积的最大值是( )A.8B.12C.D.答案 C 如图,平移AB使其与☉C相切于P,此时P点距离AB最远,即△PAB的面积最大,连接AC,连接PC并延长交AB于H.因为PC是☉C的半径,MN∥AB,所以PH⊥AB.∵直线y=x-3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3),则AB=5.∵S△ABC=·BC·AO=·AB·CH,∴CH=,∴PH=1+=,∴△PAB面积的最大值是×5×=,故选C.二、填空题11.“三角形中至少有一个内角大于或等于60°”,这个命题用反证法证明应假设.答案三角形中三个内角都小于60°解析第一步应假设结论不成立,即三角形中三个内角都小于60°.12.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.答案108π解析圆锥的侧面积就是所给扇形的面积,设扇形的半径为r cm,∵弧AB的长为12πcm,∴πr=12π,解得r=18,∴S=πr2=π×182=108π(cm2).另解:S=rl=×18×12π=108π(cm2).13.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形.则S扇形= cm2.答案4解析由题意可知扇形的周长为8cm.因为半径r=2cm,所以弧长l=8-2×2=4(cm),所以S扇形=l·r=×4×2=4(cm2).14.如图,点A、B、C、D都在☉O上,∠ABC=90°,AD=3,CD=2,则☉O的直径的长是.答案解析连接AC,∵点A、B、C、D都在☉O上,∠ABC=90°,∴∠ADC=180°-∠ABC=90°,AC是直径,∵AD=3,CD=2,∴AC==,即☉O直径的长是.15.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,外圆的半径OC⊥AB于D,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.答案50cm解析如图,连接OA,设半径为r cm,∵CD=10cm,AB=60cm,∴AD=AB=30cm,OD=(r-10)cm,∴r2=(r-10)2+302,解得r=50.∴这个车轮的外圆半径是50cm.16.如图,两个同心圆,大圆的半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.答案8<AB≤10解析如图,当AB经过圆心时最长,此时AB=2×5=10.当AB与小圆相切于D时,利用勾股定理可得AD=4.利用垂径定理可得AB=8.根据直线与圆的位置关系可得,若大圆的弦AB与小圆相交,则8<AB≤10.17.如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x 轴上,☉M半径为2,☉M与直线l相交于A、B两点,若△ABM为等腰直角三角形,则点M的坐标为.答案(2,0)或(-2,0)解析过点M作MC⊥l,垂足为C,∵△MAB是等腰直角三角形,∴MA=MB,且∠BAM=∠ABM=45°.∵MC⊥l,∴∠BAM=∠CMA=45°,∴AC=CM.在Rt△ACM中,∵AC2+CM2=AM2,即2CM2=4,∴CM=.在Rt△OCM中,∠COM=30°,∴CM=OM,∴OM=2CM=2,∴M(2,0).根据对称性知,若点M在x轴负半轴上,则点M(-2,0)也满足条件.18.如图24-5-16,在☉O中,AB是直径,点D是☉O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q.连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).答案②③解析如图,连接OD,∵DG是☉O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠APE=∠GPD=∠GDP,∴GP=GD.结论②正确.∵AB是☉O的直径,∴∠ACB=90°,∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.所以结论③正确.由于不能确定∠BAD与∠ABC的关系,所以结论①不一定正确.故答案是②③.三、解答题19.如图,AB是☉O的直径,弦CD⊥AB于点E.点M在☉O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求☉O的直径;(2)若∠M=∠D,求∠D的度数.答案(1)∵AB是☉O的直径,弦CD⊥AB,CD=16,∴DE=CD=8.∵BE=4,∴OE=OB-BE=OD-4.在Rt△OED中,OE2+ED2=OD2,∴(OD-4)2+82=OD2,解得OD=10.∴☉O的直径是20.(2)∵弦CD⊥AB,∴∠OED=90°.∴∠EOD+∠D=90°.∵∠M=∠D,∠EOD=2∠M,∴∠BOD+∠D=2∠M+∠D=90°.∴∠D=30°.20.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的☉O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).答案(1)证明:连接OD.∵BC是☉O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∠OED=∠AOE=60°,∵OE=OD,∴△ODE为等边三角形,∴∠DOE=60°,∴阴影部分的面积=S扇形ODE==π.21.如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为☉O的切线;(3)若☉O的半径为5,∠BAC=60°,求DE的长.答案(1)证明:连接AD,∵AB是☉O的直径,∴∠ADB=90°,又BD=CD,∴AD垂直平分BC,∴AB=AC.(2)证明:连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE为☉O的切线.(3)由AB=AC,∠BAC=60°知,△ABC是等边三角形.∵☉O的半径为5,∴AB=BC=10,CD=BC=5.又∵∠C=60°,∴∠CDE=30°,∴CE=CD=.∴DE===.22.如图①,AB为☉O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求☉O的半径;(2)求证:直线BF是☉O的切线;(3)当点P与点O重合时,过点A作☉O的切线交线段BC的延长线于点E,在其他条件不变的情况下,判断四边形AEBF是什么特殊的四边形,请在图②中补全图形并证明你的结论.答案(1)∵CD⊥AB,AB为☉O的直径,CD=2,∴CP=PD=CD=.又∵BP=4,CD⊥AB,∴BC===.设☉O的半径为x,则OP=4-x,连接OC,∵CD⊥AB,∴OC2=OP2+CP2,∴x2=(4-x)2+()2,解得x=.即☉O的半径为.(2)证明:∵CD⊥AB,∴∠C+∠ABC=90°,∵∠F=∠ABC,∠C=∠A,∴∠A+∠F=90°,即∠ABF=90°,又AB为直径,∴直线BF是☉O的切线.(3)四边形AEBF为平行四边形,证明如下:∵AE为切线,BF为切线,AB为直径,∴∠EAB=∠ABF=90°,∴AE∥BF.∵CD⊥AB,OC=OB,∴∠OCB=∠OBC=45°.∵∠F=∠ABC,∴∠F=45°.∵∠ABF=90°,∴∠BAF=45°,∴∠BAF=∠ABC=45°,∴AF∥BE.又∵AE∥BF,∴四边形AEBF为平行四边形.人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
人教版数学九年级上《第二十四章圆》培优单元试题(含答案)

第二十四章:圆培优单元试题一.选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个2.如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为()A.1l0°B.120°C.130°D.140°3.如图, AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°4.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=25°,则∠B等于()A.25°B.65°C.75°D.90°5.如图,等边三角形ABC的边长为2,CD⊥AB于D,若以点C为圆心,CD为半径画弧,则图形阴影部分的面积是()A.﹣πB.2﹣πC.2D.2﹣6.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm7.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定8.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°10.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F=.其中正确的个数为()是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影A.1 B.2 C.3 D.4二.填空题(共6小题)11.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=(用含α的式子表示).12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为(结果保留π)14.如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在上,连接CD,CE,则∠DCE等于度.15.在△ABC中,AB=AC=2,BC=4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC于点E,交PC于点G,已知PD=PG,则BD=16.如图,AB是⊙O的直径,点C在⊙O上,若⊙O半径为3,AC长为2,则BC=.三.解答题(共7小题)17.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,B P与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.18.如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.(1)求证:=;(2)若AB=6,EF=3.求半径OB的长.19.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.20.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD于点E,BF∥OC,连接BC和CF,CF交AB于点G.(1)求证:∠OCF=∠BCD;(2)若CD=4,tan∠OCF=,求⊙O半径的长.21.如图,在半径为1的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.22.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O交BC于点D,过点D的切线交AC于点E,且DE ⊥AC.(1)证明:AB=AC;(2)设AB=cm,BC=2cm,当点O在AB上移动到使⊙O与边AC所在直线相切时,求⊙O的半径.23.如图,AD的圆O的切线,切点为A,AB是圆O的弦.过点B作BC∥AD,交圆O于点C,连接AC,过点C 作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与圆O的位置关系,并说明理由.(2)若AB=9,BC=6,求圆O的半径和PC的长.参考答案一.选择题1.解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)同圆或等圆中相等的圆心角所对的弧相等,故错误;(3)同圆或等圆中劣弧一定比优弧短,故错误;(4)直径是圆中最长的弦,正确,正确的只有1个,故选:A.2.解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D==110°,故选:A.3.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.4.解:连接OC,如图,∵CD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∴∠OCB=90°﹣∠BCD=90°﹣25°=65°,∵OB=OC,∴∠B=∠OCB=65°.故选:B.5.解:∵△ABC是等边三角形,且CD⊥AB,∴AD=AB=1,∠ACB=60°,由勾股定理得:CD==,∴S阴影=S△ABC﹣S扇形CEF=AB•CD﹣=×2×﹣=﹣,故选:A.6.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.7.解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.8.解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.9.解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,∴∠CDE=∠B=68°,故选:C.10.解:①∵AF是AB翻折而来,∴AF=AB=6,∵四边形ABCD是矩形,AD=BC=3,∴DF===3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴,设OP=OF=x,则,解得:x=2,∴②正确;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE =4CE , ∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边三角形;同理△OPG 为等边三角形; ∴∠POG =∠FOG =60°,OH =,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG ) =S 矩形OPDH ﹣S △OF G =2×﹣××=.∴④正确;其中正确的结论有:①②④,3个; 故选:C .二.填空题(共6小题)11.解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°,∠ECD =∠A =α,∠BCF =∠A =α, ∴∠EDC +∠FBC =180°,∴∠E +∠F =360°﹣180°﹣2α=180°﹣2α, 故答案为:180°﹣2α.12.解:连接OB ,OD ,∵∠DOB 与∠A 都对,∠DOB (大于平角的角)与∠BCD 都对,∴∠DOB =2∠A ,∠DOB (大于平角的角)=2∠BCD , ∵∠DOB +∠DOB (大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°13.解:∵在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD,∴AE=BE,∠BEA=90°,∴BE=AE∴BE=AE=4,∴图中阴影部分的面积是:()×2=(16﹣4π)×2=32﹣8π,故答案为:32﹣8π.14.解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为13015.解:如图,作AH⊥BC于H.∵AB=AC=2,AH⊥BC,∴∠B=∠ACD,BH=CH=2,AH==4,∵PC是直径,∴∠PDC=90°∵DE⊥AC,∴∠CDP=∠CED=90°,∵PD=PG,∴∠PDG=∠PGD=∠CGE,∵∠PDG+∠CDE=90°,∠CDE+∠ECD=90°,∴∠PDG=∠ECD=∠B=∠EGC,∵∠PDB=∠DEC=∠AHB=90°,∴△PDB∽△DEC∽△CEG∽△AHB,设BD=a,则有PD=PG=2a,CD=4﹣a,EC=,CG=,∴PC=PG+CG=,在Rt△PCD中,∵PD2+CD2=PC2,∴4a2+(4﹣a)2=()2,解得a=或4(舍弃),∴BD=.故答案为.16.解:∵如图,AB是⊙O的直径,∴∠C=90°,∵⊙O半径为3,AC长为2,∴由勾股定理知:BC===4.故答案是:4.三.解答题(共7小题)17.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.18.(1)证明:∵AB是直径,∴∠A=90°,∵OF∥AC,∴∠OEB=∠A=90°,∴OF⊥AB,∴=.(2)解:设OB=r,∵OF⊥AB,∴,在Rt△OBE中,∵OB2=OE2+EB2,∴r2=(r﹣3)2+(3)2,∴r=6,即OB=6.19.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.20.(1)证明:∵AB是直径,AB⊥CD,∴,∴∠BCD=∠BFC,∵BF∥OC∴∠OCF=∠BFC,∴∠OCF=∠BCD;(2)解:∵AB⊥CD,∴CE=CD=2,∵∠OCF=∠BCD∴tan∠OCF=tan∠BCD=,∵CE=2∴BE=1,设OC=OB=x,则OE=x﹣1,在Rt△OCE中,∵x2=(x﹣1)2+22,解得x=,即⊙O半径的长为.21.解:(1)∵OD⊥BC,∴BD=BC=,∴OD==;(2)DE的长保持不变,理由如下:连接AB,由勾股定理得,AB==,∵OD⊥BC,OE⊥AC,∴BD=CD,AE=EC,∴DE=AB=.22.(1)证明:连接OD.∵DE是⊙O的切线,∵DE⊥OD,∵AC⊥DE,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠C,∴AB=AC.(2)设AC与⊙O相切于点F,连接OF,作AH⊥BC于H.设半径为r.∵AB=AC,AH⊥BC,∴BH=CH=1,∴AH==2,∴tan∠C==2,∵∠OFE=∠ODE=∠DEF=90°,∴四边形ODEF是矩形,∵OD=OF,∴四边形ODEF是正方形,∴EF=DE=r,∵tan C==2,∴EC=,∴AF=﹣r﹣r=﹣r,在Rt△AOF中,∵OA2=AF2+OF2,∴(﹣r)2=r2+(﹣r)2,解得r=.23.解:(1)直线PC与圆O相切,理由是:如图1,连接CO交延长,交⊙O于点N,连接BN,∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠BNC,∴∠BNC=∠ACD,∵∠BCP=∠ACD,∴∠BNC=∠BCP,∵CN是⊙O的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN=90°,∴∠PCO=90°,即PC⊥OC,∵点C在⊙O上,∴直线PC与圆O相切;(5分)(2)∵AD是⊙O的切线,∴AD⊥OA,即∠OAD=90°,∵BC∥AD,∴∠OMC=180°﹣∠OAD=90°,即OM⊥BC,∴MC=MB,∴AB=AC,在Rt△AMC中,∠AMC=90°,MC=BC=3,由勾股定理得:AM==6,设⊙O的半径为r,在Rt△OMC中,∠OMC=90°,OM=AM﹣AO=6﹣r,MC=3,OC=r,由勾股定理得:OM2+MC2=OC2,即,解得:r=,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴,∴=,∴PC=.(11分)。
人教版数学九年级上册 第二十四章 《圆》 压轴题综合培优训练(包含答案)

《圆》压轴题综合培优训练1.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC 交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.2.如图,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的⊙O经过点C,并交AB 于点D,连结ED.(1)判断△BDE的形状并证明.(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.3.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.5.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)当⊙O半径为3,CE=2时,求BD长.6.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.7.如图,AH是圆O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AD=8,EB=5,求⊙O的直径.8.如图,AB是⊙O的直径,弦CD垂直平分OA,垂足为点M,连接并延长CO交⊙O于点E,分别连接DE,BE,DB,其中∠EDB=30°,∠CDE的平分线DN交CE于点G,交⊙O于点N,延长CE至点F,使FG=FD.(1)求证:DF是⊙O的切线;(2)若⊙O半径r为8,求线段DB,BE与劣弧DE所围成的阴影部分的面积.9.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长10.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.11.如图,AB是圆O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交圆O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果OA=3,求AE•AB的值.12.Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC 延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.13.Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(Ⅰ)如图①,求∠ODE的大小;(Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.14.如图,已知圆O是△ABC的外接圆,AB是圆O的直径,C是圆上的一点,D是AB延长线上的一点,AE⊥CD交DC的延长线于点E,且AC平分∠EAB.(1)求证:DE是圆O的切线.(2)若AB=6,AE=4.8,求BD和BC的长.15.已知AB是半圆O的直径,M,N是半圆不与A,B重合的两点,且点N在弧BM上.(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;(2)如图2,过点M作MC⊥AB于点C,点P是MN的中点,连接MB、NA、PC,试探究∠MCP、∠NAB、∠MBA之间的数量关系,并证明.参考答案一.解答题1.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.2.(1)证明:△BDE是等腰直角三角形.∵AE是⊙O的直径∴∠ACB=∠ADE=90°,∴∠BDE=180°﹣90°=90°.∵CA=CB,∴∠B=45°,∴△BDE是等腰直角三角形.(2)过点F作FG⊥AC于点G,则△AFG是等腰直角三角形,且AG=FG.∵OA=OC,∴∠EAC=∠FCG.∵BE=CE=3,∴AC=BC=2CE=6,∴tan∠FCG=tan∠EAC=.∴CG=2FG=2AG.∴FG=AG=2,∴AF=2.3.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM =S△DMO,∴S阴影=S扇形EOD==π.4.(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴=,∴EC2=DE•AE,∴(2)2=2(2+AD),∴AD=4.(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tan A=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.5.(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)证明:∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD==2.6.证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.7.解:(1)如图1,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线.(2)设AB=x,∵四边形ABCD是矩形,∴AB=CD=x,BC=AD=8,∴CE=BC﹣BE=3,∵AE是∠BAF的角平分线,BE⊥AB,EF⊥AF,∴EF=BE=5,在Rt△CEF中,根据勾股定理得,CF=4,∴DF=CD﹣CF=x﹣4,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB=x,在Rt△ADF中,x2﹣(x﹣4)2=64,∴x=10,∴AB=10,设⊙O的半径为r,∴OB=10﹣r,在Rt△BOE中,r2﹣(10﹣r)2=25,∴r=,∴⊙O的直径为.8.(1)证明:连接OD,∵CD垂直平分OA,∴OM=OA=OD,∴∠ODC=30°,∵CE为⊙O的直径,∴∠CDE=90°,∵DN平分∠CDE,∴∠CDN=45°,∴∠ODN=45°﹣30°=15°,∵OD=OC,∴∠DCO=∠ODC=30°,∴∠FGD=45°+30°=75°,∵FD=FG,∴∠FDG=∠FGD=75°,∴∠ODF=∠ODN+∠FDG=15°+75°=90°,∴DF是⊙O的切线;(2)解:∵∠EDB=30°,∴∠EOB=60°,Rt△CDE中,∠DEC=60°,∴∠DEC=∠EOB=60°,∴DE∥AB,∴S△DOE =S△ODE,∴S阴影=S扇形ODE==;答:线段DB,BE与劣弧DE所围成的阴影部分的面积是,9.(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=90°,∴BC为直径,∴∠BDC=90°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=9.10.解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.11.(1)证明:连接OB.∵CD⊥OA,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OA=OB,∴∠A=∠OBA,∵CE=CB,∴∠CBE=∠CEB=∠AED,∴∠ABO+∠CBE=90°,∴∠OBC=90°,∴OB⊥BC.(2)解:连接OF.∵AD=OD,FD⊥OA,∴FA=FO=AO,∴△AOF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°.(3)解:延长AO交⊙O于H,连接BH.∵AH是直径,∴∠ABH=∠ADE=90°,∵∠DAE=∠HAB,∴△DAE∽△BAH,∴=,∴AE•AB=AD•AH=×6=9.12.(1)证明:连结OD,∵∠ACB=90°,∴∠OED+∠EGC=90°,∵OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB,∵OD为半径,∴AB是⊙O的切线;(2)解:连接OF,∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3,又∵EF=5,∴CF=4,CE=3,设半径=r,则OF=r,CF=4,CO=r﹣3.在Rt△OCF中,由勾股定理,可得r=,∵EF∥AB,∴∠CEF=∠B,∵∠ECF=∠ODB=90°,∴△CEF∽△DBO,∴=,∴=,∴BD=.13.证明:(Ⅰ)连接OE,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵E点是BC的中点,∴DE=BC=BE,∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE,∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=.14.解:(1)如图,连接OC,∵AC平分∠EAB,∴∠EAC=∠BA C;又在圆中OA=OC,∴∠ACO=∠BAC,∴∠EAC=∠ACO,∴OC∥AE,由AE⊥DC知OC⊥DC,∴DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°,∴△DCO∽△DEA,∴=,∴=,∴=,∴BD=2;∵Rt△EAC∽Rt△CAB,∴=,∴=∴AC2=,由勾股定理得:BC==.15.解:(1)如图1,∵AB是半圆O的直径,∴∠M=90°,在Rt△AMB中,AB=,∴AB=10.∴OB=5,∵OB=ON,又∵∠NOB=60°,∴△NOB是等边三角形,∴NB=OB=5.(2)结论:∠MCP+∠MBA+∠NAB=90°.理由:方法一:如图2中,画⊙O,延长MC交⊙O于点Q,连接NQ,NB.∵MC⊥AB,又∵OM=OQ,∴MC=CQ,即C是MQ的中点,又∵P是MQ的中点,∴CP是△MQN的中位线,∴CP∥QN,∴∠MCP=∠MQN,∵∠MQN=∠MON,∠MBN=∠MON,∴∠MQN=∠MBN,∴∠MCP=∠MBN,∵AB是直径,∴∠ANB=90°,∴在△ANB中,∠NBA+∠NAB=90°,∴∠MBN+∠MBA+∠NAB=90°,即∠MCP+∠MBA+∠NAB=90°.方法二:如图2﹣1中,连接MO,OP,NO,BN.∵P是MN中点,又∵OM=ON,∴OP⊥MN,且∠MOP=∠MON,∵MC⊥AB,∴∠MCO=∠MPO=90°,∴设OM的中点为Q,则QM=QO=QC=QP,∴点C,P在以OM为直径的圆上,在该圆中,∠MCP=∠MOP=∠MQP,又∵∠MOP=∠MON,∴∠MCP=∠MON,在半圆O中,∠NBM=∠MON,∴∠MCP=∠NBM,∵AB是直径,∴∠ANB=90°,∴在△ANB中,∠NBA+∠NAB=90°,∴∠NBM+∠MBA+∠NAB=90°,即∠MCP+∠MBA+∠NAB=90°.。
初三数学圆的综合的专项培优练习题(含答案)及答案

初三数学圆的综合的专项培优练习题(含答案)及答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°. 【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ∆≅∆ ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A ,∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD ,CA .(1)求证:∠ABD =2∠BDC ;(2)过点C 作CH ⊥AB 于H ,交AD 于E ,求证:EA =EC ;(3)在(2)的条件下,若OH =5,AD =24,求线段DE 的长度.【答案】(1)证明见解析;(2)见解析;(3)92DE =. 【解析】 【分析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴AC =CD ,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α,∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==,∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图AB 是△ABC 的外接圆⊙O 的直径,过点C 作⊙O 的切线CM ,延长BC 到点D ,使CD=BC ,连接AD 交CM 于点E ,若⊙OD 半径为3,AE=5, (1)求证:CM ⊥AD ; (2)求线段CE 的长.【答案】(1)见解析;(2)5 【解析】分析:(1)连接OC ,根据切线的性质和圆周角定理证得AC 垂直平分BD ,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可. 详解:证明:(1)连接OC∵CM 切⊙O 于点C , ∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=1AD2∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE2=AE×DE∴CE=5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.4.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.5.如图,一条公路的转弯处是一段圆弧().AB()1用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)()2若AB的中点C到弦AB的距离为2080m AB m=,,求AB所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;()2连接OA OC OC,,交AB于D,如图2,根据垂径定理的推论,由C为AB的中点得到1OC AB AD BD AB402⊥===,,则CD20=,设O的半径为r,在Rt OAD中利用勾股定理得到222r (r 20)40=-+,然后解方程即可. 详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C 为AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===,设O 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD 中,222OA OD AD =+,222(20)40r r ∴=-+,解得50r =,即AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.6.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD 3FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.7.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.8.已知:BD 为⊙O 的直径,O 为圆心,点A 为圆上一点,过点B 作⊙O 的切线交DA 的延长线于点F ,点C 为⊙O 上一点,且AB =AC ,连接BC 交AD 于点E ,连接AC . (1)如图1,求证:∠ABF =∠ABC ;(2)如图2,点H 为⊙O 内部一点,连接OH ,CH 若∠OHC =∠HCA =90°时,求证:CH =12DA ; (3)在(2)的条件下,若OH =6,⊙O 的半径为10,求CE 的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】 【分析】()1由BD 为O 的直径,得到D ABD 90∠∠+=,根据切线的性质得到FBA ABD 90∠∠+=,根据等腰三角形的性质得到C ABC ∠∠=,等量代换即可得到结论;()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;()3根据相似三角形的性质得到AB BD 2OHOC==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影定理得到212AF 916==,根据相交弦定理即可得到结论.【详解】()1BD 为O 的直径,90BAD ∴∠=,90D ABD ∴∠+∠=,FB 是O 的切线, 90FBD ∴∠=, 90FBA ABD ∴∠+∠=,FBA D ∴∠=∠, AB AC =,C ABC ∴∠=∠, CD ∠=∠,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=,//AC OH ∴,ACO COH ∴∠=∠, OB OC =,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠, 即ABD ACO ∠=∠, ABC COH ∴∠=∠,90H BAD ∠=∠=,ABD ∴∽HOC , 2AD BD CH OC ∴==, 12CH DA ∴=; ()3由()2知,ABC ∽HOC ,2AB BDOH OC∴==, 6OH =,O 的半径为10,212AB OH ∴==,20BD =,2216AD BD AB ∴=-=,在ABF 与ABE 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩, ABF ∴≌ABE ,BF BE ∴=,AF AE =, 90FBD BAD ∠=∠=,2AB AF AD ∴=⋅,212916AF ∴==,9AE AF ∴==,7DE ∴=,2215BE AB AE =+=, AD ,BC 交于E , AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===.【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.9.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=2523812n n- ;(3) n 9559155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =22233m m n m -+-()()n =,解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.10.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD . (1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233π【解析】 【分析】(1)根据EF =BD 可得EF =BD ,进而得到BE DF ,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF ,根据切线的性质及垂径定理求出GF 、GE 的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG ,进而求出∠BDE 的度数,确定BE 所对的圆心角的度数,根据∠DFH =90°确定DE 为直径,代入弧长公式即可求解. 【详解】 (1)∵EF =BD , ∴EF =BD ∴BEDF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.11.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积. 【答案】(1)详见解析;(2)6334π-.【解析】 【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC, ∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º ∴∠PCA=∠OCB, ∵OC=OB,∴∠OBC=∠OCB, ∴∠PCA=∠ABC ; (2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B, ∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形, ∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º, ∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA, 同理,CF =FM,∴AM =2CF=3 Rt △ACM 中,易得AC=33=3=OC,∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º, ∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB, 连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =OA×tan30º=3 , ∵△CDO ≌△EDO(AAS), ∴EG=CD=AC×sin60º=332, ∴1332ABM S AB MO ∆=⨯=, 同样,易求934AOE S ∆=, 260333602BOES ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.12.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC . (1)求证:DE 是⊙O 的切线;(2)当AB =AC 时,若CE =2,EF =3,求⊙O 的半径.【答案】(1)证明见解析;(235. 【解析】【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三角形的性质即可得到结论. 【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE . ∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.13.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×332=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.14.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且;【解析】【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB≌△AMN,△APM是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C、P、M、N四点在同一条直线上;②解:连接BN,易得ΔABN是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,BC=23,∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22+=,BC BN27∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ3-1,PQ3+1,PQ≠2,∴33+1且PQ≠2.且∴≤≤≠PQ1PQ1PQ2【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。
人教版数学九年级上册第24章《圆》单元培优练习题卷(含解析)

《圆》单元培优练习卷一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A.2 B.3 C.6 D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4πB.2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.7.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BAC=∠BOD,则⊙O 的半径为()A.4B.8 C.10 D.68.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.59.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若AC=6,则图中阴影部分的面积是()A.2π﹣3B.2π+3C.π﹣D.π+11.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°12.如图,四边形ABCD中,CD∥AB,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D,点B在⊙O上,连接BD,若DE=4,则BD的长为()A.4 B.4C.8 D.813.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接P D,BC=6,DP =4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=42°,则∠CAD=16.如图,在Rt△ABC中,∠C=90°,∠B=30°,其中AC=2,以AC为直径的⊙O交AB 于点D,则圆周角∠A所对的弧长为(用含π的代数式表示)17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为.18.如图,在边长为2的菱形ABCD中,∠B=45°,以点A为圆心的扇形FAG与菱形的边BC相切于点E,则图中的弧长是.19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.23.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.参考答案一.选择题1.解:设扇形的半径为r.由题意:=6π,∴r2=36,∵r>0,∴r=6,故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:∵四边形ABCD为圆O的内接四边形,∴∠B+∠D=180°,∵∠B=135°,∴∠D=45°,∵∠AOC=2∠D,∴∠AOC=90°,则l==2π,故选:B.5.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.6.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.7.解:∵∠BAC=∠BOD,∴,∴AB⊥CD,∵AE=CD=16,∴DE=CD=8,设OD=r,则OE=AE﹣r=16﹣r,在Rt△ODE中,OD=r,DE=8,OE=16﹣r,∵OD2=DE2+OE2,即r2=82+(16﹣r)2,解得r=10.故选:C.8.解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.9.解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.10.解:∵在菱形ABCD中,AC与BD交于点O,BD=CD,AC=6,∴AC⊥BD,OC=3,BD=CD=BC,BD=2OB,∴△BCD是等边三角形,∴∠BDC=60°,OB=,∴BD=2,∴图中阴影部分的面积是:S阴=S扇形CDB﹣S△CDB=﹣×2×3=2π﹣3,故选:A.11.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.12.解:如图,连接OD,设⊙O的半径为r,∵⊙O与边CD相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ADE=90°,∴∠ODA+∠ODE=90°,∴∠ODA=∠3,而∠ODA=∠1,∴∠1=∠3,∵ED=EC=4,∴∠2=∠3,∴∠1=∠2,∵AB∥CD,∴∠2=∠CAB,∴∠1=∠CAB∴=,∴AE⊥BD,∵∠1=∠2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠DEF=∠AED,∠DFE=∠ADE,∴△EDF∽△EAD,∴DE:EA=EF:DE,即4:2r=(r﹣2):4,整理得r2﹣2r﹣8=0,解得r=﹣2(舍去)或r=4,∴EF=r﹣2=2,在Rt△DEF中,DF==2,∴DB=2DF=4.故选:B.二.填空题(共6小题)13.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连接OC,OD,如图所示.∵∠CAB=42°,∴∠COB=84°.∵=,∴∠COD=(180°﹣∠COB)=48°,∴∠CAD=∠COD=24°.故答案为:24°.16.解:连接OD,在Rt△ABC中,∠C=90°,∠B=30°,∴∠A=60°,∴∠COD=2∠A=120°,∵AC=2,∴圆周角∠A所对的弧长为:=,故答案为:.17.解:如图,连接OF.S阴=(S扇形OFC﹣S△OFC)+(S△ABC﹣S△OFC﹣S扇形OBF)=﹣•×+×2×﹣××﹣=﹣+﹣=+,故答案为: +.18.解:连接AE,如图,∵以点A为圆心的扇形FAG与菱形的边BC相切于点E,∴AE⊥BC,在Rt△ABE中,∵AB=2,∠B=45°,∴∠BAE=45°,AE=AB=×2=2,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAE=∠BEA=90°,∴的弧长==π.故答案为π.三.解答题(共6小题)19.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PF,FC,FO并延长交⊙O于G,则∠G=∠ACF,∠G+∠PFG=90°,∵AF是⊙O的切线,∴∠AFG+∠PFG=90°,∴∠AFP=∠G=∠ACF,∵∠FAP=∠A CF,∴△AFP∽△ACF,∴=,∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ABO∽△AOE,∴,∴=,∴AE=3.22.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.23.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.24.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠A DO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.。
九年级培优圆的综合辅导专题训练及答案

九年级培优圆的综合辅导专题训练及答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.3.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(29);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
九年级数学第24章《圆》单元培优卷

《圆》单元培优卷一.选择题1.如图,点A,B,C都在⊙O上,∠A=∠B=20°,则∠AOB等于()A.40°B.60°C.80°D.100°2.下列说法中,不正确的个数是()①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点.A.1个B.2个C.3个D.4个3.⊙O的半径为3,锐角三角形ABC内接于⊙O,且BC=3.则∠A的度数为()A.30°B.150°C.30°或150°D.不能确定4.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π5.如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则∠BAD等于()A.50°B.55°C.65°D.70°6.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()(第七题图)A.2πB.C.D.7.如图,在△ABC中,以边BC为直径做半圆,交AB于点D,交AC于点E,连接DE,若=2=2,则下列说法正确的是()A.AB=AE B.AB=2AE C.3∠A=2∠C D.5∠A=3∠C8.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()9.如图,⊙O的外切正八边形ABCDEFGH的边长2,则⊙O的半径为()第十题图A.2B.C.3D.10.如图,⊙O的内接正六边形ABCDEF的边心距为,分别以B、D、F为圆心,正六边形的半径画弧,则图中阴影部分的面积是()A.B.C.D.二.填空题11.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.12.如图,点A、B、C在⊙O上,点D是AB延长线上一点,∠CBD=75°,则∠AOC=.14.如图,在3×3的方格纸中,每个小方格都是边长为1的正方形,O,A,B都是格点,若图中扇形AOB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.15.P是⊙O内一点,⊙O的半径是15,OP=9,则过P点且长度是整数的弦共有条.16.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.三.解答题17.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.18.如图,已知,在以AB为弦的弓形劣弧上取一点M(不包括A,B两点),以M为圆心作圆M和AB相切,分别过A,B作⊙M的切线,两条切线相交于点C.求证:∠ACB为定值.19.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O点D.点E在⊙O上.(1)若∠AOC=40°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.20.如图,在△ABC中,AB=AC=2,BC=4,⊙O是△ABC的外接圆.(1)求⊙O的半径;(2)若在同一平面内的⊙P也经过B、C两点,且P A=2,请直接写出⊙P的半径的长.21.如图所示,AB是圆O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和圆O的位置关系,并给出证明;(2)当CE=5,BC=8时,求圆O的半径.22.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°(1)求证:BD=CD;(2)若圆O的半径为3,求的长.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.24.如图,⊙O为△ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16①求⊙O的半径;②求△ABC的内心到点O的距离.参考答案一.选择题1.解:连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.2.解:①直径是特殊的弦.所以①正确,不符合题意;②经过圆心可以作无数条直径.所以②不正确,符合题意;③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意;④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意;⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意.故选:C.3.解:如图,锐角三角形ABC内接于⊙O,∵⊙O的半径为3,BC=3.∴OB=OC=BC=3,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=BOC=30°,∴∠A的度数为30°,4.解:圆锥的侧面积为:π×2×5=10π.故选:B.5.解:连接OB,OC∵∠ADC=55°,∴∠AOC=2∠ADC=110°,∴弧AC=110°,∵AD是半圆的直径,∴∠COD=70°,∵C是弧BD的中点,∴∠BOD=2∠COD=140°,∴∠BAD=∠BOD=70°,故选:D.6.解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.7.解:∵=2=2,∴∠BOD=∠EOC=∠DOE,∵∠BOD+∠EOC+∠DOE=180°,∴∠BOD=∠EOC=45°,∠DOE=90°,∴∠OBD=∠ODB=67.5°,同理,∠OEC=∠OCE=67.5°,∴∠A=45°,∵BC为直径,∴∠AEB=∠CEB=90°,∴AB=AE,故A、B错误;3∠A=135°,2∠C=135°,∴3∠A=2∠C,C正确;5∠A=225°,3∠C=202.5°,∴5∠A≠3∠C,D错误;故选:C.8.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.9.解:设DE与⊙O相切于点N,连接OD、OE、ON,作DM⊥OE于M,如图所示:则ON⊥DE,DE=2,OD=OE,∠DOE==45°,∵DM⊥OE,∴△ODM是等腰直角三角形,∴DM=OM,OE=OD=DM,设OM=DM=x,则OD=OE=x,EM=OE﹣OM=(﹣1)x,在Rt△DEM中,由勾股定理得:x2+(﹣1)2x2=22,解得:x2=2+,∵△ODE的面积=DE×ON=OE×DM,∴ON====+1,即⊙O的半径为:1+;故选:B.10.解:如图,连接OB,OA,作OM⊥AB于点M,则OM=.∵∠AOB==60°,AO=OB,∴BO=AB=AO,AM=AB=AO,OM=,∴,∴AO=1,∴S△AOB=AB×OM=×1×=,∵S扇形AOB==,∴阴影部分面积是:(﹣)×6=π﹣.故选:A.二.填空题11.解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.12.解:在优弧AC上取点E,连接AE,CE,∵∠ABC=180°﹣∠E,∠ABC=180°﹣∠CBD,∠CBD=75°,∴∠E=∠CBD=75°.∴∠AOC=2∠E=150°,故答案为:150°.13.解:反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.证明时,可以先假设这两个角所对的边相等,故答案为:这两个角所对的边相等.14.解:∵每个小方格都是边长为1的正方形,∴AO==,∵∠AOB=90°,∴=2πr,∴r=.故答案是:.15.解:如图示,作AB⊥OP于P,AP=BP,在Rt△AOP中,OP=9,OA=15,AP==12,∴AB=24,故过点P的弦的长度在24和30之间,根据圆的对称性可得,二者之间的每个整数值的弦各2条,共10条,所以过点P的弦中长度为整数的弦的条数为10+2=12条.故答案为12.16.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.三.解答题17.证明:如图,连接AD,∵AB=CD,∴=,∴﹣=﹣,即=,∴∠BAD=∠CDA,∴AE=DE,又∵AB=CD,∴AE=CE.18.证明:连接AM,BM,由题意得:M是内心,∴AM平分∠CAB,BM平分∠ABC,∴∠CAM=∠BAM,∠CBM=∠ABM,∴∠AMB=180°﹣∠BAM﹣∠ABM,∴∠BAM+∠ABM=180°﹣∠AMB,△ABC中,∠C=180°﹣(∠CAB+∠ACB)=180°﹣2∠BAM﹣2∠ABM=180°﹣2(180°﹣∠AMB)=2∠AMB﹣180°,∵所在圆是个定圆,弦AB和半径都是定值,∴∠AMB为定值,∴∠ACB为定值2∠AMB﹣180°.19.解:(1)∵AB是⊙O的一条弦,OD⊥AB,∴弧AD=弧BD,∴∠DEB=∠AOC=×40°=20°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,则AB=2AC=8.20.解:(1)过点A作AD⊥BC,垂足为D,连接OB、OC,∵AB=AC,AD⊥BC,∴AD垂直平分BC,∵OB=OC,∴点O在BC的垂直平分线上,即O在AD上,∵BC=4,∴BD=BC=2,∵在Rt△ABD中,∠ADB=90°,AB=2,∴AD==6,设OA=OB=r,则OD=6﹣r.∵在Rt△OBD中,∠ODB=90°,∴OD2+BD2=OB2,即(6﹣r)2+22=r2.解得r=,即⊙O的半径为,(2)当⊙P也经过B、C两点,则设PB=r,P A=2,则PD=6﹣2=4或6+2=8,BD=2,∴PB==2或PB==2.所以⊙P的半径的长为2或2.21.解:(1)直线BD和⊙O相切.证明:∵∠AEC=∠ODB,∠AEC=∠ABC,∴∠ABC=∠ODB,∵OD⊥BC,∴∠DBC+∠ODB=90°,∴∠DBC+∠ABC=90°,∴∠DBO=90°,∴直线BD和⊙O相切;(2)∵OD⊥BC,BC=8,∴BF=CF=4,在Rt△CEF中,EF==3,设圆O的半径为r,则OF=r﹣3,在Rt△OBF中,OB2=OF2+BF2,即r2=(r﹣3)2+42,解得,r=,即圆O的半径为.22.(1)证明:∵四边形ABCD内接于圆O,∴∠C=180°﹣∠BAD=75°,∵∠DBC=75°,∴∠DBC=∠C,∴DB=DC;(2)解:连接OB、OC,∵∠DBC=∠C=75°,∴∠BDC=30°,由圆周角定理得,∠BOC=2∠BDC=60°,∴的长==π.23.解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得AD==4.∵S ACD=AD•CD=AC•DE,∴×4×3=×5DE.∴DE=.24.解:(1)证明:连接AO,并延长AO交⊙O于点F,连接CF∵AF是直径∴∠ACF=90°∴∠F+∠F AC=90°,∵∠F=∠ABC,∠ABC=∠EAC∴∠EAC=∠F∴∠EAC+∠F AC=90°∴∠EAF=90°,且AO是半径∴直线AE是⊙O的切线.(2)①如图,连接AO,∵D为AB的中点,OD过圆心,∴OD⊥AB,AD=BD=AB=8,∵AO2=AD2+DO2,∴AO2=82+(AO﹣6)2,∴AO=,∴⊙O的半径为;②如图,作∠CAB的平分线交CD于点H,连接BH,过点H作HM⊥AC,HN⊥BC,∵OD⊥AB,AD=BD∴AC=BC,且AD=BD∴CD平分∠ACB,且AH平分∠CAB∴点H是△ABC的内心,且HM⊥AC,HN⊥BC,HD⊥AB∴MH=NH=DH在Rt△ACD中,AC===BC,∵S△ABC=S△ACH+S△ABH+S△BCH,∴×16×6=×10×MH+×16×DH+×10×NH,∴DH=,∵OH=CO﹣CH=CO﹣(CD﹣DH),∴OH=﹣(6﹣)═5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学培优《圆》专题训练(一)
九年级数学培优《圆》专题训练(二)
九年级数学培优《圆》专题训练(三)
九年级数学培优《圆》专题训练(四)
九年级数学培优《圆》专题训练(五)
九年级数学培优《圆》专题训练(六)
九年级数学培优《圆》专题训练(七)
九年级数学培优《圆》专题训练(八)
九年级数学培优《圆》专题训练(九)
九年级数学培优《圆》专题训练(十)
九年级数学培优《圆》专题训练(十一)
九年级数学培优《圆》专题训练(十二)
九年级数学培优《圆》专题训练(十三)
九年级数学培优《圆》专题训练(三十)
九年级数学培优《圆》专题训练(三十一)
九年级数学培优《圆》专题训练(三十二)。