高中数学放缩法

合集下载

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法

数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。

常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。

高中数学课程数列中的放缩法

高中数学课程数列中的放缩法

数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。

相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。

一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。

2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用 1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结在高中数学学习中,放缩法是一种常用的解题技巧,尤其在不等式证明和极限计算中应用广泛。

掌握好放缩法的技巧,可以帮助我们更好地解决数学问题,提高解题效率。

下面,我将对高中数学放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一技巧。

首先,放缩法的基本思想是通过构造一个比原来更容易处理的不等式或者关系式,从而简化原问题的解决过程。

在实际运用中,我们可以通过加减变形、乘除变形、配方等方式进行放缩,下面我们来看一些常用的放缩法技巧。

一、加减变形。

在不等式证明中,我们常常会遇到需要证明一个不等式成立的情况。

这时,我们可以通过在两边同时加上或者减去一个特定的数,来改变原不等式的形式,使得原不等式更容易证明。

例如,在证明数学归纳法中的不等式时,我们常常会通过加减变形来简化证明过程,这是一种常见的放缩法技巧。

二、乘除变形。

在极限计算中,我们常常需要通过放缩法来证明一个极限存在或者不存在。

这时,我们可以通过乘除变形,将原极限问题转化为一个更容易处理的形式。

例如,当我们需要证明一个函数的极限不存在时,可以通过乘除变形将原函数转化为一个更容易处理的形式,从而简化证明过程。

三、配方。

在解决数学问题中,有时我们需要通过配方来进行放缩。

例如,在证明三角函数不等式时,我们可以通过对不等式进行配方,将原不等式转化为一个更容易处理的形式。

这种放缩法技巧在解决三角函数不等式问题中应用广泛,可以帮助我们更好地解决这类问题。

总结起来,放缩法是高中数学学习中常用的解题技巧,通过加减变形、乘除变形、配方等方式进行放缩,可以帮助我们更好地解决数学问题,提高解题效率。

希望以上总结的放缩法技巧对大家有所帮助,能够在高中数学学习中更好地运用这一技巧,提高数学成绩。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。

下面总结了一些常见的高中数学放缩法技巧。

1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。

这样做的好处是可以简化分式,消去分子分母中的公因式。

2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。

通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。

这种方法可以有效地缩小问题的范围,简化计算。

3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。

常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。

通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。

4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。

常见的三角函数变换有和差化积、倍角公式等。

通过适当的变换,可以将原问题转化为更容易处理的形式。

5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。

常见的幂函数变换有换元法、幂函数的反函数等。

通过适当的变换,可以使问题的形式更简单,更易于分析。

6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。

通过找到数列的递推关系式,可以将原问题转化为递推问题。

递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。

以上是一些高中数学中常用的放缩法技巧。

通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。

高中数学导数放缩法

高中数学导数放缩法

高中数学导数放缩法
放缩法是一种应用较广泛的数学方法,可以帮助我们更准确地预测趋势。

它可以用于研究不同的模式,并帮助我们理解数学的性质。

放缩法的定义很简洁,可以理解为将待研究的函数缩放到另一个函数上。

它通常是利用比较简单的曲线对复杂曲线进行研究,以提升正确性。

这在高中数学中也被广泛应用。

放缩法在微积分科目中探讨变化的情况下比较重要,如识别函数的导数,判断函数的图形特征等。

比如,考生们可以通过放缩法来研究狭义直线段的性质,具体可以将端点和直线段的某点缩放到同一坐标系。

如果直线段的两个端点都缩放到横坐标或纵坐标的1,那么整条直线段就会缩放到一条平行于横坐标轴或纵坐标轴的直线,如此可以容易研究其斜率,表示为一个分数,有助于理解这条直线段的性质。

同理,放缩法也可以用于求取圆的半径、椭圆的长轴短轴,以及曲线的凸包和曲率等。

考生们只需要把函数中若干特定点进行缩放,
并运用对称性质、相似性质,就可以更加准确地研究函数的模型,从
而准确分析函数的特点和性质。

最后要提醒的是,放缩法是一种非常灵活的数学方法,通过不断
尝试和改进,可以辅助理解和分析各种函数的性质。

此外,需要注意
的是,放缩法的运用也必须遵守数学的相关定律和原则,以保证较高
的准确度。

总之,放缩法是高中数学中常用的一种研究数学模型的分析方法,在研究不同函数的性质时都很有用,可以帮助考生更准确地预测趋势。

只要认真研究、了解放缩法的运用方法,考生们就可以掌握这种数学
方法,更好地分析函数的模型和性质,为自己的学习和生活中把握更
多技术拓展工具。

放缩法大全

放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=

1
1 dx = ln( n + 1) x
1 n
n +1

n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n

ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1

高中数学导数放缩法

高中数学导数放缩法

高中数学导数放缩法导数作为数学中重要的概念,是微积分中的一个基础知识。

在高中数学中,导数是一个重要的内容,学生需要掌握导数的定义、性质和计算方法。

其中,导数的放缩法是导数的一种重要应用,能够帮助我们简化复杂的导数计算,提高计算的效率。

一、导数的定义及性质回顾在学习导数的放缩法之前,我们先来回顾一下导数的定义及性质。

在数学中,函数y = f(x)在点x处的导数定义为:f'(x) = lim(h->0)[f(x+h)-f(x)]/h这个极限表示当自变量在点x处偏离x时,函数值的变化情况。

导数有一些重要的性质,比如:1.常数函数的导数为0:即对于常数k,f(x) = k的导数为f'(x) = 02.和函数的导数:(u + v)' = u' + v'3.差函数的导数:(u - v)' = u' - v'4.常数倍函数的导数:(ku)' = ku'5.积函数的导数:(uv)' = u'v + uv'6.商函数的导数:(u/v)' = (u'v - uv')/v^2这些性质在导数的计算中起着非常重要的作用,能够帮助我们简化计算过程。

接下来,我们将介绍导数的放缩法,以及如何运用这一方法简化导数的计算。

二、导数的放缩法原理导数的放缩法是指根据导数的定义及性质,通过放缩函数的表达式,将复杂的导数计算化简为简单的计算。

具体来说,导数的放缩法主要有以下几种形式:1.基本放缩法:指利用导数的性质,将一个复杂函数拆分成几个简单函数的和、差、积或商,然后利用导数的性质求导,最后将得到的导数组合起来得到原函数的导数。

2.递推放缩法:指通过递推的方式,将一个复杂函数的导数化简为一个或多个简单函数的导数,然后根据导数的性质组合起来得到原函数的导数。

3.反函数放缩法:指利用反函数的性质,将一个函数的导数与其反函数的导数之间建立联系,通过求导得到原函数的导数。

[整理版]高中数学放缩法

[整理版]高中数学放缩法

高考专题 放缩法缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。

在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。

但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。

因此,使用放缩法时,如何确定放缩目标尤为重要。

要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。

掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2) 求证:112122n n n S S S S S +-<++⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得)1)((11=--+++n n n n a a a a01>+∴>+n n n a a a∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S(2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121nn S n n n S S S =+=+++>++2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n na a a a⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.解:(1)当n 为奇数时,a n ≥a ,于是,n n n n na a a a a a⋅+≥+=--)1()1()(2.当n 为偶数时,a -1≥1,且a n ≥a 2,于是n n n n n n n a a a a a a a a a a a ⋅+≥⋅-+=⋅-≥-=--)1()1)(1()1()1()(22.(2)∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴nn a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n .3.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a ,即021>=-+n nn n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n ,即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a ,故得11213-++-≥>n n n n a a .4.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….解(1)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n .(2)因为 ,2,1,22222211==+⋅+>+++=+=++n nn n n n n n n a a a a b n n n n n ,所以n b b b n 221>+++ .又因为 ,2,1,222222=+-+=+++=n n n n n n n b n ,所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n =32221232+<+-+-+n n n n .综上, ,2,1,32221=+<++<n n b b b n n .注:常用放缩的结论:(1))2(111)1(11)1(11112≥--=-<<+=+-k kk k k k k k k k(2).)2)(111(212112)111(2≥--=-+<<++=+-k kk k k kk k k k常见高考放缩法试题1. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,2a b ==,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .2. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.3. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{nb ,满足11-=n n a b (+∈N n )(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由;(3)记++=21b b S n …n b +,求1)1(lim +-∞→n nS b n n .4. 已知数列{a n }中,a 1>0, 且a n +1=23na +, (Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列;(Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <25.5. (1)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(2)已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。

高中数学-放缩法(详解)

高中数学-放缩法(详解)

放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。

放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。

高考导数解答题中常见的放缩大法

高考导数解答题中常见的放缩大法

For personal use only in study and research; not forcommercial use(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。

例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥->(放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x =-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。

高中数列放缩法技巧

高中数列放缩法技巧

高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。

通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。

在高中数学中,数列是一个非常重要的概念。

通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。

数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。

下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。

2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。

3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。

除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。

数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。

总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。

掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。

2023届高考数学二轮复习大题专讲专练:放缩法

2023届高考数学二轮复习大题专讲专练:放缩法

第41讲放缩法在前面的几个章节中已经涉及了一部分放缩法的运用,在导数里放缩法具有广泛用途,比如说直接利用放缩法证明不等式,利用放缩法找零点或者隐零点区间,利用放缩法判定导函数的正负号,进而判定函数单调性等.那放缩法到底是什么?放缩法本质上是一种近似估算,利用它达到简化计算的目的,其理论依据是高等数学里面的泰勒展开,这在后面的章节会具体讲解,本节先从高中数学的视角来讲解不等式放缩.那么如何利用放缩法解决导数问题呢?放缩法的核心在于利用不等式,对函数进行放大或缩小,从而达到简化函数进而简化计算的目的.下面一些关于不等式的常用结论,请在做题过程中慢慢体会.1. 能够利用的不等式通常分为三类:(1)常用不等式,就是常用对数不等式、常用指数不等式和基本不等式,以及相关的变形.(2)已证不等式,通常就是第一小问证明出来的不等式会被用在第二小问题来进行放缩.(3)变形不等式,常用不等式的变形或者在解题过程中积累下来的不等式.2. 在利用不等式放缩的时候需要注意“一向,二等,三证明”.一向.就是不等式放缩时要注意不等号的方向要一致,需要同向才能放缩.二等.就是要注意等号成立的条件,如果多次放缩还要注意等号能否同时成立.三证明.就是在运用了不等式放缩之后,一定要对不等式进行证明,除基本不等式之外,其他必须证明,也就是我们常说的“欲用不等式,必证不等式”.3. 运用不等式放缩时通常可以分为以下几类:(1)直接放缩.就是直接利用常用不等式或者函数单调性放缩即可求解.(2)去参数放缩.利用函数的单调性和参数取值范围,把参数去掉来实现放缩.(3)去项放缩.是通过舍弃一些项来实现放缩简化.(4)系数放缩.对函数进行因式分解,在可预见不等式性质的前提下,把某一个因式作为另一个因式的系数进行放缩.基本放缩公式总结下面一些常用的不等式,可用于放缩法证明不等式或者赋值法找零点,其原理会在后面泰勒展开那里具体讲【解析】,这里不过多证明.注意:如果考试的时候使用了下面的不等式,一定要用构造函数的方式证明出来,所谓“欲用不等式,必证不等式”.第一组:对数放缩(1)放缩成一次函数()-<+.x x x x x xln1,ln,ln1(2)放缩成双撇函数1111ln (1),ln (01)22x x x x x x x x ⎛⎫⎛⎫<->>-<< ⎪ ⎪⎝⎭⎝⎭.(01)x <<. 11ln (1),ln (01)22x x x x <>><<.(01)x <<. (3)放缩成二次函数()()22211ln ,ln 1(10),ln 1(0)22x x x x x x x x x x x -+--<<+->. (4)放缩成类反比【例】函数()211ln 1,ln (1)1x x x x x x -->>+,()21ln (01)1x x x x -<<<+. ()()2ln 1,ln 1(11x x x x x x x ++>>++0),()2ln 1(0)1x x x x+<<+. 第二组:指数放缩(1)放缩成一次函数e 1,e ,e e x x x x x x +>.(2)放缩成类反比【例】函数()11e 0,e (0)1x x x x x x<-<-. (3)放缩成二次函数223111e 1(0),e 1226x x x x x x x x ++>+++ 第三组:指对放缩()()e ln 112x x x x -+--=.第四组:三角函数放缩 222111sin tan (0),sin ,1cos 1sin 222x x x x x x x x x x <<>---. 第五组:以直线1=-y x 为切线的函数121ln ,e 1,,1,ln x y x y y x x y y x x x-==-=-=-=.下面举例说明如何运用不等式放缩来证明不等式.【例】设()ln 1f x ax x =++,若对任意的()20,x x f x x e >⋅恒成立,求a 的取值范围. 先参变分离:()2ln 1e x x g x a x+=-. 放缩法:由e 1x x +可得()()()22ln 2e ln 1e ln 12ln 1ln 1ln 1e 2x x x x x x x x x x x x x x x+-+-+++-++-===. 这里直接利用指数不等式整体代换放缩,即可求出min ()g x ,极大地简化了计算,这也是放缩法的魅力所在,我们一定要铭记不等式放缩的“三注意”:一向,二等,三证明.常用不等式及其变形方法总结不等式一:常用指数不等式【例1】证明:指数不等式:e 1x x +.【解析】证明:令()()e 1x f x x =-+,则()e 1x f x '=-.令()0f x '<得0x <.令()0f x '>得0x >.()f x ∴在(),0∞-单调递减,在()0,∞+上单调递增.()()00e 10f x f ∴=-=,即()e 10x x -+.e 1x x ∴+.(1)记忆:可以利用图像辅助记忆,即指数函数e x y =的图像在一次函数1y x =+的上方.(2)取等条件:0x =时可以取到等号.(3)变形:对于指数不等式变形通常是利用整体代换,11e 1e .t x x x x x 令=+-−−∴−→+(4)变方向:当1x >-时要改变不等号方向通常不等号两边取倒数,1e 11x xx e x -+⇒+不等式二:常用对数不等式【例2】证明:对数不等式:ln 1x x -.【解析】证明:令()()ln 1(0)g x x x x =-->,则()11g x x'=-. 令()0g x '<得1x >,令()0g x '>得01x <<. ()g x ∴在()0,1单调递增,在()1,∞+上单调递减.()()()1ln1110g x g ∴=--=,即()ln 10x x --.ln 1x x ∴-.(1)记忆:可以利用图像辅助记忆,即指数函数ln y x =的图像在一次函数1y x =-的下方.(2)取等条件:1x =时可以取到等号.(3)变形:对于对数不等式变形通常是利用整体代换,()1ln 1ln 1t x x x x x 令=-−−→-+−.(4)变方向:通常不等号两边同时乘负号,1ln 1ln 1x x x x-⇒-.常用不等式直接放缩对于一些无参不等式的证明,特别是同时包含指数函数、对数函数的不等式,我们通常需要用常用指数不等式和常用对数不等式放缩为幂函数,从而实现函数简化,进而方便计算和求解.【例1】证明:()1e ln 1x x ->+.【解析】证明:由常用指数不等式e 1x x +,整体代换可得()1e 11x x x --+=,当且仅当1x =时,取等号.由常用对数不等式ln 1x x -,整体代换可得()()ln 111x x x ++-=,当且仅当0x =时,取等号.(1)式与(2)式取等号的条件不同,()1e ln 1x x -∴>+.【例2】证明:12e e ln 1x x x x -+>. 【解析】证明:由e 1x x +得1e x x -,即e x ex ,故1e e x x -,当且仅当1x =时,取等号. 又1ex 111ln 1ln 1lne 1ln 0e e t t t t x x t x x令=−⇒−−→---⇒+. 由于(1)(2)式等号不能同时成立,两式相加得2ln e e x x x-+>,两边同乘e x 得()1f x >.【例3】设()()ln 1f x x =+证明:当02x <<时,()96x f x x <+.【解析】证明:当0x >时,2x <+,12x <+. ()()()ln 11ln 12x f x x x ∴=+<++. 记()()9ln 126x x h x x x =++-+, 则()2115412(6)h x x x =+-=++' ()()22153621(6)x x x x x +-++.当02x <<时,()0h x '<,()h x ∴在()0,2内是减函数.又()()00h x h <=.()9ln 126x x x x ∴++<+,即()9ln 116x x x ++<+.∴当02x <<时,()96x f x x <+.去参数放缩所谓去参数放缩,就是在给出了参数取值范围来证明不等式恒成立的题目中,把参数按取值范围放缩为常数.例如:已知参数1a ,证明()0af x >恒成立,按去参数放缩可得()()0af x f x >,只需要证明()0f x >即可.【例1】已知函数()e ln 1x f x a x =--,证明:当1ea 时,()0f x . 【解析】证明:当1ea 时,()e ln 1e xf x x --. 设()e ln 1e xg x x =--,则()e 1e x g x x=-'. 当01x <<时,()0g x '<.当1x >时,()0.1g x x >∴='是()g x 的最小值点.∴当0x >时,()()10g x g =.∴当1e a 时,()0f x .【例2】已知函数()21e xax x f x +-=,证明:当1a 时,()e 0f x +. 【解析】证明;当1a 时,()()21e 1e e x x f x x x +-++-+ 令()211e x g x x x +=+-+,则()121e x g x x +=++'.当1x <-时,()()0,g x g x '<单调递减.当1x >-时,()()0,g x g x '>单调递增.()()10g x g ∴-=.因此()e 0f x +.【例3】已知函数()()ln x f x e x m =-+,当2m 时,证明:()0f x >.【解析】证明:当2m ,(),?x m ∈-+∞时,()()ln ln 2x m x ++,故只需证明当2m =时,()0f x >当2m =时,函数()1e 2x f x x =-+',在()2,∞-+上为增函数,且()10f '-<,()00f '>. 故()0f x '=在()2,∞-+上有唯一实数根0x ,且()01,0x ∈-. 当()02,x x ∈-时,()0f x '<.当()0,x x ∞∈+时,()0f x '>.从而当0x x =时,()f x 取得最小值.由()00f x '=得()00001e ,ln 22x x x x =+=-+. 故()()()20000011022x f x f x x x x +=+=>++. 综上,当2m 时,()0f x >.去项放缩所谓去项放缩,就是直接去掉不等式两边的一些不影响不等式恒成立的确定项,从而去除参数或者简化不等式,进而快速得到证明.说白了,就是简单粗暴地扔掉一些累赘,自然就简单了.比如要证明()()()g x f x h x +>,如果能够得到()0g x ,则把()g x 直接扔掉,若()()f x h x >成立,则不等式()()()g x f x h x +>恒成立.【例1】已知函数()()()11x f x x e =+-,若0m ,证明:()2f x mx x +.【解析】证.明:由()()()11x f x x e =+-得()()00,10f f =-=,去项放缩:根据20,0m x >,可直接放缩去掉含参项2x mx x +,令()()()11x g x x e x =+--,则()()2e 2x g x x =+-',当2x -时,()()2e 220x g x x '=+-<-<.当2x >-时,设()()()2h x g x x ='=+。

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

人教课标版高中数学选修4-5《放缩法》参考案例

人教课标版高中数学选修4-5《放缩法》参考案例

证明不等式的基本方法——放缩法案例
一、 课题:证明不等式的基本方法——放缩法
二、 背景:证明不等式有时并不需要什么公式和定理,只需要数学常识就行了。

三、教学任务:
1.感受在什么情况下,需要用放缩法证明不等式。

2.探索用放缩法证明不等式的理论依据和技巧。

3.迁移知识,解决“最近发展区”,编构“发展网络”。

四、教学重点与难点:
1.掌握证明不等式的三种放缩技巧。

2.体会用放缩法证明不等式时放大或缩小的“度”。

五、教学基本流程:
提出问题
合作、交流、解决问题 反思解决问题的过程 编构“发展网络”,形成能力 六、教学情景设计:
七、反思研究:
1.放缩法是有“危险性”的,因为放大或缩小过了头,就会得出错误的结论或达不到预期的目的,因此一定要注意控制放缩的“尺度”。

2.整个教学过程,给学生充分时间与空间开展探究活动。

3.注意对课本题的改编,使之源于课本、高于课本并活于课本,这也是高考永不退色的一道风景线。

高中数学导数放缩法技巧

高中数学导数放缩法技巧

高中数学导数放缩法技巧
高中数学放缩法技巧是指在高中数学中学生运用技巧来解决相关问题。

放缩法技巧是一种重要的严数基础学习策略,可以更好地指导高中学生的学习。

首先,学习放缩法技巧要有明确的思路。

首先要熟练掌握高中数学中对导数的基本概念,对导数有较深入的了解,并迅速记住导数计算公式,这样在进行高中数学学习时可以提高学习效率。

其次,要学会在不同数学计算中使用放缩法技巧。

放缩法的基本思想是选取合适的学习范围,在范围内熟练掌握相关公式,在学习期间必须做好复习,通过放缩法来减少重复的思考,减少学习的时间和精力的消耗。

此外,学习放缩法也应注重掌握学习方法。

应尽可能分析题目和其中的数学性质,并联系相关公式,以减轻学习负担和提高学习效果。

并在定性和定量分析之间进行折衷,不要追求快速只是牺牲正确性和直觉性。

最后,应杜绝学习技巧依赖。

有时学习者们会过分依赖技巧,忘了背后保障技巧正确性的基础和理论,从而致使技巧的一时成功转变成长久的学习失败的情况,所以最好的学习技巧是熟练掌握基本理论,坚持原则,并结合实际应用,把握技巧之间的适应关系。

总的来说,学习数学的放缩法技巧是能够使学习过程变得更高效,更加便捷的一项重要策略,只需要掌握正确的思路,就可以帮助学生轻松地学习数学。

高中数学放缩法结论及例题

高中数学放缩法结论及例题
所以 f (x) 3的解集为 x|x 1 Ux|x 4 .
⑵ f (x) | x 4 | x 4 x 2 x+a
.当 x 1, 2时, x 4 x 2 x+a 4 x 2 x x+a 2 a x 2 a .
(4)
1 k2

1 k2 1

(k
1 1)( k
1)

1( 1 2 k 1
1 ) (程度小); k 1
(5)绝对值不等式: a b ≤ a b ≤ a b ;
技巧积累:
(1)
1 n2

4 4n2

4n
4 2
1

2
1 2n
1

1 2n 1
(2) 1
1
2n
3 2n 1 3
(15)
k 2
1 1
k!(k 1)! (k 2)! (k 1) ! (k 2) !
(16) 1 n n 1(n 2)
n(n 1)
(17)
i2 1 j2 1
i2 j2

i j
1
i j
(i j)( i2 1 j2 1) i2 1 j2 1
证明 记 m = a b c d abd bca cdb dac
∵a, b, c, d 都是正数
∴m a b c d 1 abcd abca cdab dabc
m a b c d 2 ab ab cd d c
∴c>a>0,c>b>0,即 0<ac<1,0<cb<1,

高考数学:数列放缩法

高考数学:数列放缩法

⾼考数学:数列放缩法
数列放缩法需要把握两⽅⾯:
⼀、放缩⽅向
数列放缩的⽅向包含两层意思:
1.放缩成什么形式?
2.放⼤呢还是缩⼩呢?
第2个问题看题⽬要求即可.
对于第1个问题,⾼中阶段,数列放缩主要有两个⽅向.
1.朝等⽐数列去放缩,即把数列放缩为等⽐数列.
看这样⼀个例题:
从解答过程能够看出,本题需要放⼤,原数列⽆法求和,放⼤之后为等⽐数列,顺利实现求和.
2.朝裂项相消去放缩,即把数列放缩为能够采⽤裂项相消法求和的形式.
看这个例题:
数列⽆法求和,需要放缩,⽽且需要放⼤.
注意:为保证n-1有意义,n从2开始取值.
⼆、放缩的度
看个例题,体会放缩的“度”:
先分析通项,貌似能够朝裂项相消去放缩.
从上式结论看出,我们没有达到题⽬的要求,放的过⼤了.
为此,我们需要重新放⼤⼀次,这⼀次要往回收⼀些.
⼩结:
1.根据不等式符号决定放⼤还是放⼩;
2.常⽤的放缩⽅向:朝等⽐放缩和朝裂项相消法放缩;
3.放缩“度”的调节⽅法:不同形式放缩.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题 放缩法缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。

在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。

但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。

因此,使用放缩法时,如何确定放缩目标尤为重要。

要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。

掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。

数列及不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列及不等式知识解决问题的能力.本文介绍一类及数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+< 解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.解:(1)当n 为奇数时,a n ≥a ,于是,n n n n n a a a a a a ⋅+≥+=--)1()1()(2. 当n 为偶数时,a -1≥1,且a n ≥a 2,于是n n n n n n n a a a a a a a a a a a ⋅+≥⋅-+=⋅-≥-=--)1()1)(1()1()1()(22.(2)∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. ∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 3.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n nn .求证: 11213-++-≥>n n n n a a 证明:因为n n n a na )21(1+=+,所以1+n a 及n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .4.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 及P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,…. 解(1)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n . (2)因为 ,2,1,22222211==+⋅+>+++=+=++n nn n n n n n n a a a a b n n n n n , 所以n b b b n 221>+++ .又因为 ,2,1,222222=+-+=+++=n n n n n n n b n , 所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n=32221232+<+-+-+n n n n .综上, ,2,1,32221=+<++<n n b b b n n . 注:常用放缩的结论:(1))2(111)1(11)1(11112≥--=-<<+=+-k k k k k k k k k k(2).)2)(111(212112)111(2≥--=-+<<++=+-k k k k k k k k k k常见高考放缩法试题1. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,a b ==1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .2. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.3. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-=n n a b (+∈N n )(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项及最小项,并说明理由;(3)记++=21b b S n …n b +,求1)1(lim +-∞→n nS b n n . 4. 已知数列{a n }中,a 1>0, 且a n +1=23na +,(Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列;(Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <25.5. (1)已知:)0(∞+∈x ,求证x x x x 11ln 11<+<+; (2)已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。

6. 已知n N *∈,各项为正的等差数列{}n a 满足263521,10a a a a ⋅=+=,又数列{}lg n b 的前n 项和是()()11lg312n S n n n n =+--。

(1)求数列{}n a 的通项公式;(2)求证数列{}n b 是等比数列;(3)设n n n c a b =,试问数列{}n c 有没有最大项?如果有,求出这个最大项,如果没有,说明理由。

7. 设数列{}n a 前项和为n s ,且(3),(32)+∈+=+-N n m ma s m n n ,其中m 为常数,m .3≠(1) 求证:是等比数列;若数列{}n a 的公比q=f(m),数列{}n b 满足),2,)((231,11≥∈==+-n N n b f b a b n n 求证:⎭⎬⎫⎩⎨⎧n b 1为等差数列,求n b .8. 已知数列}{n a 满足:,21,121==a a 且0]1)1[(22])1(3[2=--+--++n n n n a a ,*N n ∈.(Ⅰ)求3a ,4a ,5a ,6a 的值及数列}{n a 的通项公式; (Ⅱ)设n n n a a b 212⋅=-,求数列}{n b 的前n 项和n S ;9. 设数列}{n a 是首项为0的递增数列,(N n ∈),,)(1sin )(n n a x nx f -=,[n a x ∈]1+n a 满足:对于任意的b x f b n =∈)(),1,0[总有两个不同的根。

相关文档
最新文档